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Tille Page Abstract

Interactive computer graphics methods provide new in-
sights into the world of pure geometry.

1 Introduction

Mathematical visualization is the art of creating a tangible experience with abstract mathe-
matical abjects and concepts. While this process has been a cornerstone of the mathematical
reasoning process since the times of the ancient geometers, the advent of high-performance
interactive computer graphics systems has opened a new era whose ultimate significance can
only be imagined.

Typical geometric problems of interest to mathematical visualization applications involve
both static structures, such as real or complex manifolds, and changing structures requiring
animation. In practice, the emphasis is on manifolds of dimension two or three embedded
in three or four-dimensional spaces due to the practical limitations of holistic human spatial
perception — it is extremely challenging to construct intuitively useful images of anything
more complicated! General approaches to visualizing N-dimensional spaces are at best
piecemneal, so that algebraic manipulations often remain our most powerful toal for high
dimensions. Nevertheless, despite the apparent limitations of visual representations, their
utility is far from being completely exploited; we may still gain significant intuitive value
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by pushing our visual understanding of relatively simple geometric objects as far as our
imagination can take us.

Our goal is to show the nature of the interrelationship between mathematics and computer
science, especially computer graphics. In this article, we adopt for the most part a computer
scientist's perspective on the progress, techniques, and prospects of mathematical visualiza-
tion, emphasizing those areas of 3D and 4D geometry where interactive paradigms are of
growing importance. Without demanding detailed mathematical expertise of the reader, we
present a selection of the domains with which we are familiar, describe some of the critical
visunalization problems involved, and discuss how various researchers have approached the
solution of these problems.

The article begins with some general background and then turns its attention to some
of the visualization methods that have been used to bring computer graphics technology to
bear on mathematical problems of low-dimensional topology and geometry. The concluding
sections discuss the system design philosophies of various research groups and prospects for
the future. Examples of computer-generated images are supplied throughout, and separate
sidebars are devoted to a brief glossary, sources of additional background information on
wisualizable mathematics, and an overview of selected film and video animations concerned

with mathematical visnalization.

2 Pictures and Mathematics

Mathematics has a long tradition of interest in visualization methods. The explosive de-
velopment of geometry in the late ninetesnth century was accompanied by intense activity
in creating plaster and wire models as well as pedagogical illustrations. The reader need
only consult such classic works as Anschauliche Geometrie by Hilbert and Cohn-Vossen to
see the influence of this visual approach to mathematics; it 1s warth noting that the English
translation [6], Geometry and the Imagination, of the German title only barely does justice
to the complex nuances of the German anschaulich, which involves other connotations, in-
cluding “vivid," “graphic,” “intuitive,” “demonstratable,” “perceivable in the mind's eye,”
or perhaps visualizable: hence our choice of the phrase Visualizable Geometry in the title of
this paper.

Despite the fact that pictures scratched on napkins and blackboards never ceased to play
an important part in mathematical creativity and intuition, the mathematical literature has
been predominantly algebraic for most of the twentieth century. There are good reasons for
this: for one thing, it is easy to abuse pictures and convince oneself of false arguments that
would not stand up to a formal proof; for another, many interesting current questions invaolve
the properties of spaces so complex that we only know how to treat them algebraically.

It i3 no accident that the emergence of computer graphics, and especially interactive
computer graphics, as a communication medium has coincided with renewed interest in visual
mathematics. Many mathematicians harbor the hope that computer graphics technology will
have a significant positive influence on the progress of mathematics.



Goals and Methods of Mathematical Visualization If graphics i1z to contribute to
mathematics, we must next ask: What are the principal tasks of mathematical visualization?
Like other visualization domains, it must address several levels of problems:

s Information Content. Images, animations, and interactive systems invalving dis-
plays of mathematical objects must possess intrinsically non-trivial information con-
tent and reveal this information in some way to the viewer. Since each viewer sees
the world differently, the information display should also take into account the beliefs,
assumptions, and perceptual preconceptions carried by the viewer.

e Teaching. To carry out effective research, one must master what has gone before.
Worthwhile visualization techniques attempt to convey a useful and accurate knowledge

of the subject material. Computer-assisted methods should enhance breadth, depth,
and learning speed compared to standard teaching methods.

s Insight. Visual ways of representing objects that the viewer has only studied alge-
braically should offer previously unattained insights, help expose general principles,
and should suggest fruitful conjectures.

s Resulis. The final objective is to prove interesting new results, thereby extending the
corpus of known mathematics.

These are lofty and difficult goals, as significant mathematical insights and results are unosual
no matter how they are obtained.

Creating mental models. How can we expect computer graphics and interactive graphics
methods to help attain these goals? The real power of computer graphics lies in its ability
to accurately represent objects for which physical models are difficult or impossible to build,
combined with its ability to allow the user to interact with simulated worlds. To understand
how significant these features are, consider this: our entire common-sense knowledge of the
physical world exists only in our mental models - we have watched and interacted with the
immensely complex laws of physics governing such objects as water, sand, and trees, and
have developed, through interaction, a mental picture that enables us to predict with some
accuracy what is physically reasonable. Successful systems should include the capability
of exploiting old models — creating pictures of unknown domains that exploit our ezisting
mental models and perceptions — and creating new models — enabling the development of
new classes of mental worlds.

3 Problems in Visualizable Geometry

We now turn to a discussion of selected visualization tasks and the approaches that have
been used to carry them out. We first consider the depiction of surfaces or 2-manifolds,



beginning with familiar surfaces such as the Klein bottle; we are led immediately to con-
sider surfaces in 4D space as well as in 3D because the self-intersections of many classical
surfaces in 3D disappear when they are represented in 4D coordinates. We then proceed to
a discussion of volumes or 3-manifolds, methods for exploiting 4D lighting models, and the
visualization of non-Euclidean geometry. Finally, we turn to surfaces that obey geometric
constraints such as minimizing an energy functional, and then to the question of surfaces
that change in time subject to the constraint that the curvature remains finite at every point;
deformations obeying this constraint, the so-called regular homotopies, play a special role in
the development of descriptive topology.

3.1 Manifolds
What is a manifold?

A central visualization problem in pure geometry is to create pictures of manifolds situated
in space, as well as images showing how they might look from the inside.

Informally speaking, surfaces are 2-manifolds and volumes are 3-manifolds. A few exam-
ples of 2-manifolds constructed by gluing and twisting strips of paper may help clarnfy the
definition in the Glossary. When we glue the ends of a strip of paper together after a twist,
we get a [(one-sided) surface called a Mobius band. If we glue opposite pairs of edges of a
square together, we get the 2-torus, a 2-manifold that looks like the surface of a donut. A
manifold is embedded when it is situated in a space without self-intersections or singularities.
When we give one of the edges of a square a twist before gluing, we get a Klein bottle,
which, being a closed, one-sided surface, cannot be embedded in 3-space. We can embed
it in 4D space, but its projection to 3D must be self-intersecting. When we glue wvolumes
instead of surfaces, we construct 3-manifolds. Gluing together the walls of a cube in opposite
pairs yields a 3-torus. If we twist one volume before gluing, we obtain a 3-dimensional Klein
bottle.

Surfaces in 4D

During the seventies, Thomas Banchoff and his collaborators pioneered a mathematical
visualization program at Brown university. They achieved interactive, real-time geometrical
visunalizations of surfaces projected from 4D to 3D with a custom-built matrix multiplier and
a fast-refresh vector graphics display for wire-frame modelling. They also explored techniques
such as enhancing depth perception by rotating the resulting 3D object at a constant angular
velocity, and produced many animations of classical objects such as projective planes and
tori projected from 4D to a 3D graphics depiction. In Figure 1, we show an image of a classic
Klein bottle generated by this group that exhibits two separate visualizsation methods: the
use of a color code to indicate 4D depth and a surface rendered with alternating transparent
ribbons to reveal some internal structure of the self-intersecting surface.

At the University of North Carclina/Chapel Hill, the Fourphront system by David Banks
is another interactive system for the stody of surfaces in 4D [1]. This system, which runs



on the high-speed massively parallel Pixel-Planes 5 graphics engine, provides user contral of
transparency, depth cueing, intersection highlights, and 2-sided paint as well as supporting
user control of rotation and translation. An illustration of Fourphront's alternative approach
to the Klein bottle display s shown in Figure 2.

Another influential development was Apéry's presentation in 1984 of a long sought para-
metric equation for Boy's surface, a classic immersion of the projective plane in 3D whose
purely topological description dates to the turn of the century. Apéry also formulated the
“*Romboy homotopy” a smooth deformation between his own parametrization of Boy's sur-
face and Steiner's Roman Surface, another projective plane whose parametrization as a 4D
surface had been known for a century. George Francis and his collaborators Donna Cox and
Ray Idaszak exploited this work to create an animation, “The Etruscan Venus," whose title
refers to the suggestive shape of a singular Klein bottle that appears in the deformation.
An additional deformation leads to a new, highly symmetrical immersion of the Klein bottle
dubbed “Ida.,” which graced the cover of the August 1989 issue of IEEE Computer . The
animation editor used to produce the Etruscan Venus and Ida has evolved into the highly
interactive real-time illiView collection of mathematical animators, produced principally by
students tanght by George Francis in the Renaissance Experimental Laboratory at the Na-
tional Center for Supercomputing Applications {NCsA) at the University of Illinois. Figure
3 shows an example of a current illiView visualization.

In 1987, the Geometry Supercomputer Project was created at the University of Min-
nesota, and subsequently evolved to become the Geometry Center, a National Science and
Technology Research Center, in 1991, The Center has served as a focal point for a number
of efforts in mathematical visualization; a widely used system distributed by the Geometry
Center is (Geomview (9], a very general surface viewer developed by Stuart Levy, Tamara
Munzner, and Mark Phillips. Its built-in functionality can be extended by customized user
programs, called ezrfernal modules. While Geomview is fundamentally a 3D viewer, the
4DView external module by Daeron Meyer supplied with Geomview accepts 4D data points,
allows the user to change the 40 viewpoint, and includes tools for creating 4D slices. Another
external module, NDView by Olaf Holt and Stuart Levy, interacts with objects of dimension
4 and higher using multiple projections into families of 3D subspaces. A typical Geomview
surface display is shown in Figure 15.

A 4D viewer with a different philosophy is the MeshView program designed by Hui Ma
and Andrew Hanson of Indiana University. This system supports the Geomview 4D surface
mesh data format, but in addition provides a high-speed mouse-driven 41} rotation interface
and a utility for locating particular points on a projected surface relative to the abstract
parametric mesh coordinates. Figure 4 illustrates a MeshView display of the n = 4 case
of a closed-form construction developed by Andrew Hanson for representing the complex
“Fermat” equations (z;)™ 4 {z3)" = 1; the surface is projected from 2 complex dimensions
to 3 real dimensions from any desired viewpoint. Large families of complex surfaces can be

displayed interactively in MeshView using this technique.



Knotted Surfaces in 4D

An important special case of surfaces in 4D is the subject of knotted surfaces. While closed
curves are knottable in 3D, smooth curves (whether or not they are thickened) can always
be untied without self intersection in 4I). However, surfaces con be knotted in 4D. Some
surfaces in 4D appear to be knotted but are really unknotted. They can be “untied” in
principle by a series of deformations developed by Dennis Roseman during which the surface
does not develop self-intersections; such deformations are examples of fsotopies.

The important topological as well as graphical problem is that of determining which a
priori characteristics of an apparently knotted surface guarantee that it is isotopic to another
surface; of particular interest is determining whether a surface is isotopic to an embedded
sphere, and thus unknotted.

Examples of strategies for understanding these issues range from analyzing 4D slices of
the surface and projecting them to 3D, as shown in Figure 5, to showing cutaway interiors
or providing above-below crossing markings on the self-intersections of the 3D projection, as
shown in Figure 6. The latter may be thought of as a special case of the color coded 4D depth
method in Figure 1; Roseman has also experimented with the use of varying 4D-depth-keyed
tezture sizes to appeal to “near” and “far” visual preconceptions, illustrated in Figure 5. In
the next section, we note a method involving thickened surfaces that automatically provides
occlusion cues on the 3D image of the 4D structure; these occlusions are analogous to the
3D occlusion cues observed in 2D} images of curves thickened into tubes.

J-manifolds

When we extend our domain from 2-manifolds to 3-manifolds, we are confronted with the
problems of volume visualization. The traditional surface visualization approach is to embed
the 2-manifold in 3-space and let the user fly around in the empty spaces, viewing the
manifold from the outside. This is harder for 3-manifolds, but still feasible if one can do
rapid volume rendering. In essence, one projects from 4D to 3D, treating space as a photo-
sensitive medium that one can also fly through. In [5, 4], Hanson, Pheng, and Cross introduce
“autside viewer” techniques that allow interaction with 4D-lit, thickened 2-manifolds as well
as moderately complex tessellated 3-manifolds.

Charlie Gunn's imaging system, Maniview [3], an external module of Geomview, takes
an alternative approach that dates to Bernard Riemann, the founder of manifold theory.
The viewer is placed inside the 3-manifold, with no notion of an embedding in some ambi-
ent, higher-dimensional space. This is an elegant, mathematical solution because it avaids
artifacts of any particular embedding. One can interact with an environment that is 3-
dimensional, just like our familiar 3-space, but with surprises. For example, the barber-
shop experience of sitting between two parallel mirrors is similar to being inside certain
3-manifolds, provided you ignore images of yourself that face you. What seems subjectively
like being inside a vast, repeating volumetric tiling of space is objectively the gluing of one
wall to another to form a 3D cylinder. Conceptually, the “insider's view” obtained by this
approach is an infinite tessellation of space. Of course, the tessellation drawn by Maniview



must be finite, but the combination of a large tessellation radius with light attenuation
yields a convincing picture. In Figure 11, we sees Maniview’s representation of life inside a
3-dimensional Klein bottle.

Viewing with 4D Light.

A perceptual capability finely honed in humans is the ability to perceive 3D shape from
2D shading information such as one might see in a photograph or painting. Traditionally,
surfaces projected from 4D to 3D have been illuminated by 3D lighting models to generate
the rendered shading. We can generalize this procedure and systematically compute the
properties of shaded images of illuminated 4D objects in an attempt to recover some of this
intuitive perception. The image of a 2D world is a projection to 1D film, 3D worlds project
to 2D film, and 4D worlds project to 3D film, a volume filled with points of light. Volumes
differentially reflect 4D light to give changing shades in the projected 3D volume image just
as faces of a 3D polyhedron reflect 3D light to give different shades in the 2D image plane.

A commeon technique for viewing 1D curves in 3D graphics is “tubing,” which thickens
each point on a curve by adding a disk; the boundary or outer skin of this solid fiber is
a finite cylindrical surface that can now be rendered by standard methods; 3D shading
and occlusion cues can now be computed directly. In [5], Hanson and Heng propose an
analogous technique for 4D shading: thicken a surface embedded in 4D by adding a shiny
circle at each point, illuminate with 4D light, depth buffer the projection to a 3D volume
image, and volume render. The 4D depth buffer in principle produces precisely the same
type of characteristic occlusion coes that 3D rendering produces for tubes. However, the full
method using wolume imaging, 4D occlusion calculations, and a final volume rendering step
is very time consuming. In [4], Hanson and Cross introduce new techniques that are fast
encugh to use for interactive 4D visualization in virtual reality environments. In Figure 12
we compare the low-resolution, time-consuming, full volume image of the thickened surface
to the fast approximation that computes a texture map for an ideal, infinitesimally thickened
surface illuminated by 4D light and then projected from 4D to 3D.

Non-Euclidean Geomelry

Mathematicians in the nineteenth century showed that it was possible to create consistent
geometries in which Euclid’s Parallel Postulate was no longer true. Absence of parallels leads
to spherical, or elliptic, geometry; abundance of parallels leads to hyperbolic geometry. By
mid-century the English mathematician Arthur Cayley had constructed analytic models of
these three geometries that had a common descent from projective geometry, which one may
think of as the formalization of the renaissance theory of perspective. Cayley’s construction
is in fact ideal for programming interactive navigations of nonEuclidean geometries [10].
Many manifolds are naturally suited for hyperbolic or spherical, rather than Euclidean,
geometry. Although the formulas for computing distance and angles in these geometries
differ from Euclidean geometry, they can be built into mathematical visnalization systems
by hand. Translations, rotations, and dot-products for shaders and illumination must also be



handled differently in the non-Euclidean geometries. In Figure 7, we see a partial tessellation
of regular right-angled dodecahedra in the three built-in Geomview models of hyperbolic 3-
space. In the virtual model shown in Figure Ta, the user can fly around to see the tessellation
from the insider's point of view. The other two madels are from the outsider’s point of view,
and we can see the position of the insider's camera marked by the blue X.

In the projective { Beltrami-Klein] model of hyperbolic space, shown in Figure Th, geodesics
(the paths of light rays] are Euclidean straight lines, while angles are non-Euclidean in
character. In the conformal (Poincaré) model, on the other hand, angles are measured by
Euclidean protractors, but light rays travel along circular arcs as in Figure Tc. Figure 8
from the animation Not Knot (Sidebar B), shows us what an insider in an interesting hy-
perbolic 3-manifold would experience. This 3-manifold is obtained by gluing the faces of a
right-angled dodecahedron {an impossibility in Euclidean space] in a way analogous to our
imaginary barbershop.

The prajective models of non-Euclidean geometry can be represented by 4 x 4 real matrix
transformations on homogeneous coordinates that are serendipitously supported by today's
computer graphics transformation hardware and software [10]. The conformal model, how-
ever, cannot be implemented using 4 * 4 real matrices, so standard computer graphics hard-
ware does not suffice. Furthermore, the lines between edge endpoints as well as the faces
themselves are curved, thus requiring subdivision of polygon edges and faces into small line
segments and polygons in order to draw them as curves in computer graphics. Thus, the
graphics in the conformal model is considerably slower than in the other two models.

In all cases, however, the standard built-in illumination computations are implicitly Eu-
clidean; correct rendering of surface shading requires custom software shaders that use al-
ternative inner products for computing distances and angles in non-Euclidean geometry.
Such shaders have been implemented and shown in [3] to impose only moderate performance
penalties in comparison to the built-in Euclidean ones.

Such interactive tools for the exploration of non-Euclidean spaces show clearly how com-
puter graphics can allow humans to experience worlds that otherwise would not be accessible.
Direct manipulation of non-Euclidean rotation and translation allows us to develop an in-
tuition for non-Euclidean behawior that we would be hard put to gain in any other way.
For research mathematicians, it provides a microscope for investigating the diverse world of
three-dimensional manifolds.

Not all technical problems in geometrical visualization stem from complicated manifolds,
dimensions higher than three, or the challenge of representing non-Euclidean geometry. Prob-
lems imposing strong geometric constraints on the evolution of surfaces in ordinary 3D space
are also of great potential interest. The remaining parts of this section deal with two impor-
tant domains of this type: minimal surfaces — surfaces that minimize curvatures or energy
functionals — and regular homotopies — manifold deformations whose curvatures remain
finite at every point. The latter treatment focuses on a particularly fascinating regular
homotopy, the sphere eversion.



3.2 DMinimal Surfaces

The study of minimal surfaces, also known as optimal geometry, is a branch of differential
geometry, because the methods of differential calculus are applied to geometrical problems.
One of the oldest questions here 15: “What is the surface of smallest area spanning a given
contour?” The gquestion is nontrivial despite the fact that every physical soap film appears
to know the answer. Unbordered minimal surfaces have the property that each point is the
center of a small patch that behaves like a soap-film relative to its boundary contour. From
the point of view of local geometry, a minimal surface is equivalently described as one that
is equally bent in all directions so as to have zero average curvature, e.g., a saddle shape.

The field of minimal surfaces has been one of the success stories of mathematical visual-
ization: insights gleaned from computer graphics tools have led directly to concrete results
and theorems.

Previously unknown and certainly unexpected minimal surfaces were found by David
Hoffman and his collaborators at GaNG, the Center for Geometry, Analysis, Numerics, and
(Graphics at the University of Massachusetts in 1985. They first used their MESH computer
graphics systemn to find these surfaces, and then later proved their existence with fully rig-
orous mathematics. This truly excited the minimal surface community and piqued their
interest in computer graphics. In Figure 10, we show new surfaces recently given by Hoff-
man, Wei, and Karcher [7]; the one-hole surface is the first complete, properly embedded
minimal surface of finite topology and infinite total curvature to be found since the discovery
of the helicoid in the sighteenth century.

The “Minimal Surfaces Team”™ of the Geometry Center consists of mathematicians and
applied mathematicians modeling equilibrium and growth shapes of surfaces such as occur
in soap bubbles and crystals. It includes Jean Taylor of Rutgers, Fred Almgren of Princeton,
Ken Brakke of Susquehanna University, and John Sullivan of the University of Minnesota.
Recently, Brakke's Surface Evolver was instrumental in finding a counter-example to an
1837 conjecture of Lord Kelvin. A partition of space into equal volume cells was found with
less interface area than one conjectured by Lord Kelvin to be minimal in 1887. The Surface
Evolver has also been used outside of pure mathematics, by an engineer at Martin-Marietta to
aid in the design of rocket-fuel tanks where surface tension is the only force available to guide
fuel to the intake valve in low-gravity conditions (see Figure 9). Since the end of the 19807,
other groups in Berlin and Bonn working mostly in the area of minimal/optimal surfaces have

developed systems tailored to their visualization needs that have led to significant results
[11].

Software Systems. Many problems in optimal geometry require specialized software sys-
tems because there is often no explicit parametrization of a desired minimal surface. Here
we take note of some of the specific software systems being used in minimal surface research.

One tactic for generating minimal surfaces is to evolve a given initial surface to minimise
energy, such as surface tension. Ken Brakke's Surface Evolver [2] is an interactive program
that evolves a surface toward minimal energy by a gradient descent method. The energy in



the Evolver can be a combination of factors such as surface tension, gravitational energy,
squared mean curvature, user-defined surface integrals, or knot energies. The user can inter-
actively modify the surface to change its properties or to keep the evolution well-behaved.
The Evolver was originally written for one and two dimensional surfaces, but it can handle
higher dimensional surfaces with some restrictions on the features available. A limitation on
the Ewvolver is the requirement that it be given an initial combinatorial structure.

Another approach is taken by the University of Massachusetts MESH system, which
generates triangulations of parametric surfaces defined by conformal mappings from a two-
dimensional domain to a three dimensional range. It deals correctly even with highly non-
uniform mappings, for example where points on the domain map to infinity on the range,
employing an incremental process starting at the origin of the domain and repeatedly adding
new triangles to the perimeter of a growing region.

Ulrich Pinkall’s geometrical graphics group at the Technical University of Berlin has
chosen the software product AVS as its primary visualization tool. This system allows the
researcher to chain together independent modules into complex computational networks.
With a family of standard and user-generated modules, this group conducts research on the
visualization of optimal surfaces, such as H-surfaces (surfaces of constant mean curvature),
and on discrete dynamical models for quantum systems. This work has led to new results
such as the discovery of the simplest soliton.

A group at the University of Bonn led by Konrad Polthier has created its own visualiza-
tion environment, known as GRAPE, for their research into minimal surfaces and related
differential systems. GRAPE [(GRAphical Programming Environment] reflects an object-
oriented approach that encourages users to create specific grometric objects, and includes
features that expedite the creation of animations.

3.3 Homotopies and the Sphere Eversion Problem

There is a mathematical phenomenon, the homoifopy, that lends itself particularly well to
real-time interactive computer animation. Mathematically speaking, the notion of a ho-
motopy spans a continuum of sophistication. At one end are the familiar, rigid Euclidean
motions of translation, rotation and reflection; at the other are exotic metamorphoses of sur-
faces, such as sphere eversions, whose complexity resists holistic comprehension, and thus
challenges computer graphics in a unique way. Simply put, one wishes to interact with the
temparally extended homotopy as easily as with rigid objects.

Current hardware and graphics libraries deal well with objects in 3-space that do not
change their shape during a rigid motion. Animating mild deformations that alter object
shape without losing recognizable identity requires ingenuity and good technique, but is not
intrinsically difficult. Non-linear interpolation between two given forms, such as morphing,
is a familiar example of a less trivial homotopy that does generate animation problems. A
topologist’s (regular] homotopy, however, tends to be much more complicated than morph-
ing. Turning a sphere inside out without tearing or excessively creasing its virtual fabric
(everting it) is the paradigm example of such a homotopy. If a rendered teapot is the classical
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subject of computer graphics, sphere eversion is the “teapot” of visualizable geometry.

During an eversion the surface must be permitted to pass through itself. If either of the
two constraints of continuity and regularity on a regular homotopy is relaxed, then eversion
becomes trivial mathematically, though a graphical depiction may remain difficalt. When
both constraints are enforced, the problem has remained a challenge into this, the fourth
decade since Smale proved the existence of an eversion. The collection of explicit examples
has Erown :l:ca.dil}r ower the YEars, and we discuss those that are most relevant to the present
paper below.

In the early seventies, Nelsan Max digitized Charles Pugh's wire mesh models of the
stages in Bernard Morin’s sphere eversion. Central to this eversion is an immersion of the
sphere with symmetric but very complicated self-intersections. The homotopy simplifies this
in stages until an embedded sphere i3 reached. There are two ways of proceeding that differ
by an easily programmed symmetry. Reversing the one and following the other everts the
sphere. With the technology of the time, Max could interact in real-time only with animated
wire-frames of the homotopy, so that his film with fully rendered surfaces {see Sidebar B),
had to be generated painstakingly frame-by-frame.

Mathematicians as well as computer animators require analytic expressions that parame-
trize homotopies. The former are obliged to mistrust purely qualitative depictions on logical
grounds, while the latter find analytic representations far preferable to huge hand-generated
data bases. Morin devised the first parametrizations of his eversion in the late seventies.

The power to manipulate a homotopy in real-time using a mouse did not appear until
the eighties, when John Hughes used a Stardent graphics computer to realize an interactive
parametrization of Morin's eversion. Like Max, he began with polyhedral models, but ones
with very few vertices. Using techniques from Fourier analysis, he converted these first to
power series in the frequency domain, and then mathematically manipulated the results so
that their inverse transforms produced a fast and beauntifully smooth eversion, a frame of
which is shown in Figure 13.

More recently, Frangois Apéry realized the Morin-Denner eversion as an illiView interac-
tive animation, pictured in Figure 14. This polyhedral homotopy, influenced by a polyhedral
M&bius band of Ulrich Brehm {who also inspired the trefoil knotbox in Figure 3], has the
minimum number of vertices thearetically possible. It thus also solves an optimization prob-
lem. With the help of an illiView team, Apéry was also able to use an experimental smooth
parametrization to accomplish the Morin-Apéry homotopically minimal sphere eversion.

A truly new sphere eversion based on an idea of William Thurston is the focus of the
Geometry Center video Cuiside In, discussed in Sidebar B, and illustrated in Figure 15.
From a mathematical viewpoint, the parametrization of this homotopy comes closest to
Smale’s original concept. The basic idea is that for any eversion there is another homotopy
in an associated, higher dimensional manifold, which shadows it in an imperfect way. The
equations for this doppelganger are easy to find. Thurston solved the problem of producing
an actual eversion from the higher dimensional “shadow™ homotopy.
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4 Design Philosophies for Geometry Visualization

The selection of visnalization systems discussed in this paper represents a multitude of de-
sign philosophies. Due to time and resource limitations, the developers of these systems
have settled on different trade-offs among a host of issues: ease of implementation, general-
ity, domain-specialization, extensibility, exploitation of architecture-specific features, inter-
architecture portability, interactivity of the user interface, simplicity of the programmer's
interface, code customizability, integration with other programs, and Internet distributabil-
ity. We shall discuss the choice of emphasis for several software systems whose details the
authors know well.

The philosophy of the Brown University mathematical visualization group is to create
online “interactive books™ which incorporate interactive graphics demonstrations into a hy-
pertext system for teaching calculus and differential geometry. The fnord system, developed
at and distributed by Brown, is used for the graphics. The commercial dynatezt hypertext
system is the basis for the interactive books, which have been integrated into the mathemat-
ics curriculum at Brown and are spreading to other universities. Besides reading text, the
student can click on words to get definitions, follow links to related subjects, and interact
with a multitude of 3D visualizations whose parameters can be manipulated to help under-
stand a wide array of concepts. A typical example permits the user to “fy" on a curve in
3-space, keeping track of all the differential geometry (eg., curvature and torsion) contin-
ucusly as the curve is traversed. The “interactive book”™ approach of situating interactive
graphics within a written context is an appealing educational paradigm.

Geomview [9] and the Surface Evolver [2] can be widely distributed because of their
generality, extensibility, and portability; they were designed to accommodate user-defined
tasks not built into the original system. Both reflect considerable effort devoted to making
them available to broad community of users; Evolver will run on any system with a C com-
piler, while Geomview was until recently limited to SGI workstations and systems running
NeXTStep. A limited X-windows version that runs on a wider variety of workstations has
recently become available.

Geomview has a multilevel interface including mouse-driven 3D interaction, control pan-
els, and an interpreted command language. Its programming interface is built on an object-
oriented library, but the command language can be used for high-level run-time communica-
tion with external modules written in any language. While this text-based communication
approach is flexible, it does not suffice for applications that require massive data transfer or
highly interactive custom mouse manipulation.

While the Surface Evolver can produce graphics in a number of formata, it uses Geomview
as its preferred graphics output server and concentrates mainly on computation. The Evolver
text interface permits flexible specification of user data as well as interactive user control of
a large number of parameter settings that can be changed while monitoring the output. The
system already supports a wide variety of application-specific energy programs, and custom
code may be added by the user as well.

Like the Evolver and Geomview, GRAPE from the University of Bonn features a machine-
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independent interface for graphics that runs on a wide variety of workstations. While not
in the public domain, it is non-commercial and the developers will distribute libraries to
scientific sites. GRAPE is an object-oriented programming environment for developing ap-
plications, not an application itself.

The University of Massachusetts MESH system has focused on specific research at GANG
rather than wide distribution. MESH features a mouse-based direct manipulation philoso-
phy; but instead of hardwiring the mouse functionality or providing a control panel approach
where a mouse mode is chosen from a relatively small set of fixed possibilities, MESH em-
phasizes dynamic mouse binding. Hierarchical popup menus are used to set up a mapping
from mouse motion to parameter change on the ly. Mouse motion can then be used to easily
vary any of an extremely wide variety of parameters.

The illiView collection of RTICAs (real-time interactive computer animators) for 5GI
workstations exemplifies another interactive design philosophy. Users of illiView are ex-
pected to understand, modify and, on occasion, rewrite from scratch the code for their
particular RTICA. A typical RTICA is a single C program that uses SGI's GL-library to bring
mathematical phenomena to life. Mouse motions and keys control all conceivable parameters
in tandem, requiring substantial dexterity on the part of the illiViewer. To avoid breaking
visual concentration, illiView avoids popup menus and control panels. Numerical and the
status information can be incorporated into a heads-up display in the single window.

The Indiana University 4D lighting software system [4] illustrates another contrasting
approach. Here a particular piece of high performance hardware (the SGI Reality Engine) is
chosen and is exploited to achieve unusunal effects for unique applications. To simulate a warld
of surfaces lit by 4D light, for example, the hardware's unique texture-mapping capabilities
are used to compute in real-time a texture-map representing the current reflection map of
the 4D light; the intensities are fixed to the 3D geometry because the 3D space is the “Alm"
on which 4D images are projected.

The Fourphront system, which relies on the custom-built testbed Pixel-Planes 5 and mul-
tiple 3D joysticks, iz even further along the hardware-specific continuum than the previous
example. The 5GI Reality Engine, while an extremely high-end machine, is nevertheless a
commercial product. Pixel-Planes 5, in contrast, 1s the unique result of the research program
in high-speed parallel rendering hardware at UNC-Chapel Hill; it has been used by UNC
software developers for experiments with exotic input and output devices and related virtual
reality applications. Fourphront has sought to extend the envelope of wiable user interaction
techniques, sidestepping the restrictions of commercially available hardware.

Mathematical Virtual Reality. FEmphasis on speed and the no-control-panel, direct
manipulation philosophy characterizing the last several systems becomes very important
when trying to produce workable mathematical visualizations in virtual reality environ-
ments. Demonstrations from both the Illinois and Indiana groups now run in the duplicat-
able room-size CAVE environment pioneered by the Electronic Visualization Labaoratory of
the University of Illincis at Chicago. If it is possible to induce new mathematical percep-
tions by immersing the user in intuition-building interactive worlds of this sort, then these
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developments are potentially of great importance.

5 Prospects for the Future

Mathematical visualization, like other areas in the rapidly developing field of visualization
science, is still defining itself. We have presented examples of interactive workstation systems
for wisualizing pure geometry as well as noting the importance of these systems for developing
precomputed animations (see Sidebar B). Many of these techniques can be adapted to the
emerging virtual reality medium as interactive performance continues to improve.

Furthermore, there are clearly many areas of development that are appropriate for the
participation of computer scientists with skills in interactive interface design, computer
graphics, efficient algorithms, and perhaps data management. One can also conclude from
looking at the images we have presented that graphic arts and design skills also have a
unique role to play in improving the guality of graphical communication. Yet clearly the
active participation of the end-users, the mathematicians themselves, is just as critical as in
other visualization problems, and possibly more so, since the subject material is so complex
that research into visualization merges rapidly with the mathematics itself. Our purpose
here has been to provide a lock at some major developments and trends in this fascinating
field, and to try to build a bridge between the computer science and mathematics cultures
by summarizing problems of mutunal interest, hopefully with the result of generating more
activity in this style of research in both communities.
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Glossary

i

. Manifold. A generalization of N-dimensional space in which a neighborhood of each

point, called its chart, looks like Euclidean space. The charts are related to each other
by Cartesian coordinate transformations and comprise an atlas for the manifold. The
atlas may be non-trivially connected; there are round-trip tours of a manifold that
cannot be contracted to a point. The surface of a donut, called a torus, is a familiar
non-trivial 2D manifold.

. Submanifold, ambient space. A submanifold is a subset of a manifald, its ambient

space, for which each point has a chart in which the submanifold looks like a linear
subspace of lower dimension. A common knot is a 1-dimensional submanifold of its
3 dimensional ambient space.

. Homotopy. A continuous deformation of a mathematical object which preserves its

tD]:ID].ﬂEi.EE.l integrity but may d:v:lup self-intersections and ewven worse uiugularit.i:a.
There is a homotopy that takes a teapot to a torus [a sphere with a hole). There is
another deforming it to a point.

. Isotopy. A homotopy of an object produced by a deformation of the ambient space,

s0 therefore the object cannot develop new self-intersections. The deformation of the
teapot to a torus is an isotopy, but the deformation to a point is not.

. Embedding. The parametrization of a submanifold by means of a standard moadel.

A knotted sphere in 4-space 13 an embedding of the familiar round sphere. Whitney's
theorem says that an N-dimensional manifold is guaranteed to have an embedding in
Eunclidean 2N-space.

. Immersion. A locally (but not globally) smoothly invertible mapping of one manifald

into another. The image may have self-intersections; the figure-8 is an immersion of

the circle in 2D

. Minimal Surface. A surface that locally has the smallest area given a particular

topological shape for it, and possibly, constrained by a fixed boundary (soap-films) or

prescribed behavior at infinity.

. Sieepest Descent Method. A particular way of guiding an isotopy of an embedded

surface to one which minimizes a function that measures its shape. Moving down the
gradient of the area function often terminates at a minimal surface.
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A

Background for Further Reading

The exploitation of pictorial representations in mathematical problems is attracting new

interest, as described in the main body of the paper. The reader who is interested in more
general literature exhibiting the development of this subject area over the last 15 years is
invited to consult other books and collections on the subject. Among these, the anthors
particularly recommend the following:

1.

i

T.F. Banchoff, Beyond the Third Mmension: Geomeiry, Computer (Graphics, ond
Higher Dimensions, Scientific American Library, New York, 1990. This is general
book, accessible to people with a moderate level of mathematical interest; the graphics
are excellent, and the exposition very readable.

. D.W. Brisson, Ed., Hypergraphics: Visualizing Compler Relationships in Art, Science

and Technology, AAAS Selected Symposiom 24, Westview Press, 1978. This collection
contains many of the early seeds of the current work in visuvalizing geometry; this
contains a considerable amount of mathematics as well as graphics.

. Gerd Fischer, Mathematische Modelle/ Mathematical Models, Vols. I and II, Friedr.

Vieweg & Suhn? Braunachwciglfrw'mahad:n? 1986. This book includes an exhaustive

survey of classical models of mathematical shapes. It is worth noting that perhaps the
most significant change in capability enabled by computer graphics is the new ability
to animate models such as those in Fischer's book in response to a user's actions.

. G.K. Francis, A Topological Picturebook, Springer-Verlag, New York, 1987. This book

is primarily a mathematical survey that phrases its material in terms of “descriptive
topology™ with the goal of resurrecting our nineteenth century fascination with math-
ematical pictures.

. J.R. Weeks, The Shape of Space, Marcel Dekker, New York, 1985. Weeks' brief book is

a gem of clarity and mathematical insight, and yet is sufficiently complete that it has
been used as the basis for courses on topology for secondary school teachers. Weeks
also has developed an advanced computer program SnapPea, for creating and studying
hyperbolic 3-manifolds, available by anonymous ftp from geom.umn. edu.

Finally, we remind the reader of the classic Geomelry and the Imagination, by Hilbert

and Cohn-Vossen [6], which has served to inspire generations of professional and amateur

mathematicians.
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B Mathematical Videos

The emergence of computer graphics has sparked a renewed interest in visual mathematics
in the form of films and videotapes. Many of these efforts have made use of interactive
graphics.

For the past 15 years, the yearly focal point of the computer graphics world has been Sig-
graph, the annual computer graphics meeting of the Association for Computing Machinery.
The new, refereed, computer animations shown in both the Animation Screening Room and
in the evening Electronic Theater, stringently refereed technical paper and panels sessions,
and huge exhibit floor now draw in excess of 30,000 people. Many of the animations men-
tioned below have been shown at Siggraph, which showcases animations from the science,
art, and entertainment communities.

Nelson Max was one of the pioneers of mathematical visualization movies with his ground-
breaking Topology Films project in the early 1970's, when computer graphics was first used
to make mathematical movies despite the primitive state of hardware and software. His films
on curves, Regular Homotopies in the Plane, Farts 1 and 2, were made using a computer-
controlled oscilloscope to plot individual points and multiple exposures to create the image
of a dynamically moving curve. His classic film Terning A Sphere Inside Out [8] captures
Bernard Morin’s concrete description of Smale's surprising but abstract theorem that a
sphere can be turned inside out (“everted”) in 3-space (see 3.3). Max created this epic of
mathematical visualization on many computers at the nodes of the far-lung ARPANET.
Later, he and Banchoff used their common visual insight to prove that every sphere eversion
has a quadruple point.

Other early efforts in this area that received wide attention were Thomas Banchoff’s in-
teractive, real-time geometrical visnalization studio at Brown University. In the late 1970's
and early 1980's, he and his associates produced computer animated films of 4-dimensional
objects such as the award winning “Hypercube,” “The Veronese Surface,” and wireframe ver-
sions of his recent video animation, “The Hypersphere: Foliations and Projections.” Several
of these animations were shown at early Siggraph conferences.

At Indiana University, a scientific visualization effort led by Andrew Hanson has focused
on finding new ways to represent and visualize Riemann surfaces, on rendering techniques
using 4D light, and on the development of corresponding interactive methods {see 3.1);
this group has produced a variety of short animations, including three shown at Siggraph,
“Visualizing Fermat’s Last Theorem,” “FourSight,” and “knot*” and three others at [EEE
Visualization conferences.

George Francis of the University of Illinois at Urbana-Champaign has worked on a num-
ber of mathematical animations. Francis, Donna Cox and Ray Idassak of the National
Center for Supercomputing Applications created the animation The Etruscon Venus, shown
at Siggraph 88. A variety of other short video productions have been created by Francis and
tliView teams as well. Francis recently teamed with Louls Kauffman of the University of
Illinois at Chicago Mathematics Department and Dan Sandin of The Electronic Visualiza-
tion Laboratory at the University of Illincis at Chicago to produce Air on the Dirac Strings,
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shown at Siggraph 93.

Finally, the Geometry Center has produced a wide range of animations. At one end of the
spectrum are short videos intended for use in lieu of a computer demonstration in a lecture.
In the middle of the spectrum are longer animations by individuals and small groups. Exam-
ples of such productions are Tuisting and Turning in Four Dimensions by Dennis Roseman,
who has made several animations on 3D and 4D knots shown at mathematical conferences,
and Computing Soop Films and Crystals, distributed by the American Mathematical Society,
produced by the “Minimal Surfaces Team” of pure and applied mathematicians led by Jean
Taylor of Rutgers and Fred Almgren of Princeton. At the other extreme are high-quality
productions aimed at the general public, which require years of effort. These include Noi
Knot, a guided tour of hyperbolic geometry (see 3.1] and knot theory directed by Charlie
Gunn and Delle Maxwell (see Figure 8), and (utside In, which focuses on the sphere ever-
sion problem (see 3.3 and Figure 15), directed by Silvio Levy, Delle Maxwell, and Tamara
Munzner.

To sum up, there is today a lively activity in the area of producing mathematically
oriented computer graphics animations that are shown at computer graphics conferences
and mathematics seminars, and to the general public.
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Figure 1: Image of a Klein bottle with
color coded 4D depth and ribbon slicing
to reveal interior structure. (T. Banchoff
and N. Thompson, Brown University. )

Figure 2: This semi-transparent Klein bot-
tle displayed by Fourphront contains a
Mébius band (opaque). The projection of
the surface to 3D contains an intersection
line, highlighted in black. {D. Banks, Uni-
versity of North Carolina and Langley Re-

search Center.)

A snapshot from an interac-

Figure 3:
tive sequence showing the deformation of
a Mdbius band with 3 half-twists into Tl-
rich Brehm's trefoil krothoz. (G, Chappell,
(3. Francis and C. Hartman, University of
[llinnis at Urbana-Champaign.)

Figure 4: The n = 4 Fermat surface pro-
jected to 3D using the MeshView interac-

tiwe 410 viewer. The colors encode the rel-
ative E-::mplcx pham: of different Patc]:l.:u af

the surface. (H. Ma and A. Hanson, Indi-
ana University.)
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Figure 5: Lefi: An application of slicing, projection, and color-coding to exhibit the prop-
erties of a knotted sphere in 4D space. Right: A cutaway view of a knotted sphere with
4D-depth-dependent texture map density. (D). Roseman, University of lowa.)

Figure 6: [lustration of cutaway and above-below crossing markings for the twist-spun
trefoil, a surface embedded 4D that, surprisingly, is actually not knotted. (Frames from the
video animation *knot*,” Indiana University.)
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Figure T: A partial tessellation of regular right-angled dodecahedra in the three built-in
Geomview models (virtual, projective, and conformal, respectively) of hyperbalic 3-space.

[Geometry Center.)

Figure B: A view of the tessellation of hy-
perbolic space by regular right-angled do-
decahedra. (Frame from the movie “Not
Knot™; C. Gunn, Geometry Center.)

Figure 9: Evolver/Geomview display of
spacecraft fuel tank; the fuel surface ten-
sion computed with the Evolver is the only
force available to guide fuel to the intake
valve in low gravity. (K. Brakke, Susque-

hanna University.)



Figure 10: The minimal surfaces W, periodic with quotient genus one, and He,, which is
nonperiodic of genus one. These surfaces were discovered with the aid of computer graphics
techniques. (D). Hoffman, University of Massachusetts, Amherst.)

Figure 11: Usng Manmiview,
an external moduole of Ge-

omview, the user can fly
around in the insider’s view
of the 3D Klein bottle. Note
that spaceships in alternating
columns are mirror reversed.
(C. Fowler and C. Gunn, Ge-
ometry Center.)

Figure 12: Images of 4D-lit knotted spheres including de-
piction of 4D occlusion in the 3D projection; this s similar
to the self-occlusions of a knotted rope in 3D projected to
a 2D image. The left image is a time-consuming volume
rendering, while its equivalent on the right can be manipu-
lated using real-time methods. [R. Cross, A. Hanson, and
P. Heng, Indiana University.)
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real-time interactive animation of Bernard

Morin’s eversion of the sphere realized on
a Stardent graphics computer. (J. Hughes,
Brown University.

Figure 14: This image, the cuboctahedral
sphere eversion, is a piece-wise linear real-
ization of this classical sphere eversion ho-

motopy due to Morin, Denner and Apéry.
(F. Apéry, G. Francis, C. Hartman and G.
Chappell, University of Illinois at Urbana-

Champaign. )

Figure 13: A frame from John Hughes' |

A& frame from the film in

Figure 15:
progress “‘QOutside In," a sphere halfway
through the Thurston eversion. In this
example of a typical Geomview applica-
tion, the Animator external module is be-
ing used to control a “Hipbook”™ of the an-
imation. The main “geomview” control
panel at the upper left controls the view-
ing state, invokes modules, and brings up
other control panels for control of lighting,
object appearance, and so on. The basic
mouse driven motion controls for changing
the user's view are in the *Taals” panel on

the left. (Geometry Center.)




