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We derive a new expression for the dual N-point function integrand which is invariant under
the action of the projective general linear group PGL(N-2,C). The (N-1)(N-3) free complex
parameters of the group are used to make the integrand independent of the values of (V—1)
points of complex dimension (N—3) which appear in the integrand. These points uniquely
specify the location of all 3(N—1) (V~2) hyperplanes which appear as branch singularities of
the integrand when it is viewed as a function on (N-3)-dimensional complex projective space.
In contrast to the Koba-Nielsen formalism, the PGL(N—-2, C)-invariant form of the N-point
integrand allows transformations which mix the (N-3) integration variables and permits
greater freedom in the placement of the branch singularities while preserving a simple hy-

perplane structure for the singularities.

I. INTRODUCTION

A large portion of the literature dealing with the dual N-point functions! has made use of the appealing
Koba-Nielsen description? of the N-point function integrands. The purpose of this paper is to introduce a
generalization of the Koba-Nielsen formalism in which the N-point integrands become invariant under the
projective general linear group PGL(N - 2,C). When the dual N-point integrands are written in
PGL(N - 2, C)-invariant form, we may move the branch singularities of the integrand wherever we please
in (N - 3)-dimensional complex projective space. We therefore view PGL(N - 2,C) as a natural singularity-
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structure group of the dual N-point integrands which is no less significant than the Koba-Nielsen group
PGL(2,C).

Let us first review the properties of the dual N-point functions and of the Koba-Nielsen formalism so
that we may see the characteristics which suggest the introduction of a group such as PGL(N-2,C). We
define the dual N-point function as!

1 1 N-2 N-3 -1 N-2 N-1
BN(pan; oo :pN) =f e f H duxk(H (1 _u]_kul,k+1)) H H u“-a”—l ’ (1.1)
0 0 k=2 k=2 i=1 j=i+1
(,Np=0,N=-D
where
0;;=0;(0) + @' Py + Dy 40 + D)2 =@y 140, (1.2)

and the u;;’s may be expressed uniquely in terms of the u,,’s by using the relations

§ i-2
uij=1— H II Umn s
m=i+1l n=4+1 (1.3)

Ugg SUje1,4-1"Uia N5+

By changing variables in (1.1) from the u,,’s to other appropriate sets of the (N - 3)-independent u;,’s, one
may exhibit the cyclic and anticyclic symmetry of By in its arguments:

By(1,2,...,N)=By(2,3,...,N,1)=B,(3,4,...,N,1,2) =+

=By(N,N-1,...,2,1)=By(N-1,N=2,...,2,1,N)=- ..,
(1.4).

This set of variable changes, the cross-ratio substitutions,® suggested to Koba and Nielsen that the u;;’s
be identified with the cross ratios

ey =2z~ 250y)
(z;-, - 21)(Zi =R )

Uiy (1.5)

of N points lying on a single complex circle; the u;,’s so defined automatically obey Eq. (1.3). Fixing any
three of the N variables z; permitted Eq. (1.1) to be recast in the form?

By(byy+ .-y by) = f te fdzl te [dzadzbdzc] eedzy(zg = 2,)(2, - 2,.) (2, - Za)jg (2; - z{)e“ -, (1.6)

cyclic-ordered circle

where
014015 =g i1s
Oiie2=1 = 0 puat Q1+ Qpuy iz (1.7)
Oig>em=1 = 0y + @+ 0y = Qg

Using Eq. (1.2) and 6,; = 6,;, one may show

N
Z_) 9”.=N-3 (1.8)
4=
and

iy =1=By;—2a'p;* by, (1.9)

where g;; =0 if a;;(0)=-a'm,*=1. Equations (1.6) and (1.9) suggest that we identify each particle momen-
tum p; with one of the integration variables z;.

The fact that the cross ratios (1.5) are unchanged when the three-parameter projective transformation

+
2~ ’:%—ﬁ aé_BY#:o’

2] ol (1.10)

is applied simultaneously to each z; automatically requires that Eq. (1.6) be invariant when all the z; are
transformed. We may, in fact, use Eq. (1.10) to transform the points (z,, z,, z,) to the values (1, ,0) in
order to derive alternative expressions for By such as
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By(pyy- - sD0 = fdx1fdxz"'f A%y -3 H

*N-4

We observe that the Koba-Nielsen notation (1.6)
serves to abolish the special role played by the
numbers (0, 1, ) in Eq. (1.11) and to replace
(0,1, ») by three arbitrary numbers (z,, z,, 2,);
the only way the integrand could be independent of
the values of (z,, z,, z,) is to possess a symmetry,
namely, invariance under the three-parameter
group PGL(2, C) whose action is given by Eq.
(1.10).

For N=4, the Koba-Nielsen method removes the
branch points of (1.11) from special consideration.
For N=5, however, we argue that when the inte-
grand of (1.11) is viewed as a function on two-
dimensional complex projective space, it gives
special consideration not to three numbers
(0,1, ) but to six branch lines. Since two points
determine a line, the minimum amount of informa-
tion needed to describe the ‘six branch lines is
provided by the four two-dimensional numbers
(xl, xa) = (0’ 0); (1’ 1): (°°: 0), (0, °°)- For general
N, Eq. (1.11) gives special privileges to (N-1)
different (N ~ 3)-dimensional numbers,

(O’Os oo ’0)’ (1’ 1: . ’ 1)’ (wl)’ (coa)’ ey (°°N-3)'
These (N - 1) points determine the location of the
+(N - 1)(N - 2) singularities which occur when the
B, integrand of Eq. (1.11) is considered as a func-
tion of X on an (N - 3)-dimensional complex pro-
jective space. The (N - 1)(N - 3)-parameter pro-
jective general linear group PGL(N - 2, C) is then
exactly the right group to introduce in order to
generalize the concept behind the Koba-Nielsen
notation and to write the B, integrand in a form
which is independent of the values of all the priv-
ileged numbers determining the branch singu-
larities of Eq. (1.11).

In Sec. II, we derive the general expression for
the By integrands as invariants under the projec-
tive general linear group PGL(N -2,C). In the
Appendix, we work out in detail our prescription
for treating the four- and five-point functions.

II. REFORMULATION OF THE DUAL N-POINT
INTEGRAND AS A PGL(N-2,C) INVARIANT

In order to understand the nature of the inte-
grands of the dual N-point functions, it is instruc-
tive to look at them as functions of (N -3) complex
variables on an (N - 3)-dimensional complex pro-
jective space. Let us therefore briefly review the
necessary elements of classical projective geome-
try in p dimensions.* We first define the (p +1)
homogeneous coordinates %@, The usual p in-
homogeneous coovdinates 2@ are defined by

N-4 N-3
eoakr2 (1 = o )ONer2 T T (o = &) %4227t (1.11)
i=1 j=i+1
(a)
X
Z(a)=;(m. (2.1

Note that the inhomogeneous coordinates are just
equal to the first p homogeneous coordinates when
x(b+ D=1,

The purpose of introducing the extra homoge-
neous coordinate is to eliminate all possible am-
biguities in the treatment of infinity. It allows us
to satisfy this basic postulate of projective ge-
ometry: All parallel lines meet in exactly one
point, at infinity. Groups of parallel lines not
parallel to each other do not meet at infinity, thus
leading to the concept that infinity is (p — 1)-dimen-
sional in projective p space. The other basic char-
acteristic of projective space that we shall need is
the fact that the space is coordinatized once we
specify (p +2) nondegenerate points. All other
points in the space may be uniquely described with
respect to the coordinatizing points. The standard
choice for the coordinate system in homogeneous
coordinates is

%=01,1,...,1,1), i3=(1;0,0;---;0y0))
%,=(0,1,0,...,0,0),. (2.2)
x,+2=(0,0,...,0,1,0), xp+3=(0,0,...,0,1).

If we now try to use Eq. (2.1) to write (2.2} in in-
homogeneous coordinates, we observe that the un-
defined quotient 0/0 occurs for (p - 1) of the vari-
ables when the pth is (1/0) =~. This happens be-
cause at «, parallel lines drawn through any values
of the undefined points must meet. Thus the in-
homogeneous coordinates corresponding to (2.2)
are

.,1,1), Z;=(o, anything,...),

Ny
1]

,=(1,1,..

->

Z, = (anything, ©, anything,...),..., (2.3)
Z,,, = (anything,...,»), %,,,=(0,0,...,0,0).

“Finally, let us introduce the projective trvans-
Jformation which preserves all the characteristics
of a p-dimensional projective space. In terms of
the homogeneous coordinates, the projective trans-
formation is the linear substitution

p+1
2l (@)= » a®Bx(8 (2.4)
B=1

given by the (p+1)X (p +1) matrices A =] a*®||. The
group acting on the homogeneous coordinates is
then just the general linear group GL(p +1,C). Us-
ing (2.1) and (2.4) we find the following transforma-
tion law for -the inhomogeneous coordinates:



[on

4
Y a®Bz (B 4 gob+l
2@ grle) o B2 . @5)

ﬂz;ap+1,ﬂz(e)+ap+1.p+1
=1

This is, of course, the generalization of the one-
dimensional linear fractional transformation
(1.10). We observe first that DetA must be non-
zero for the transformation to be nondegenerate.
Secondly, we notice that the transformation (2.5)
is unaltered if we make the replacement

A-cA, cEC*, (2.6)

where C* is the field of nonzero complex numbers
times the identity matrix. The group acting on

the inhomogeneous coordinates is then GL(p + 1, C)/
C*, which we now define as the projective general
lineay group PGL(p+1,C). This is not isomorphic
to the group SL(p +1,C), defined by the matrices

of determinant one, for the following reason: If 1
is the identity matrix, I and I exp[2nmi/(p +1)] are
the same element of PGL(p + 1, C) but are distinct
elements of SL(p+1,C).

The number of free parameters in PGL(p +1,C)
is just one less than the number in GL(p +1,C),
namely, (p+1)®~1=p(p+2). Thus we come to un-
derstand the meaning of the p(p +2) numbers ap-
pearing in the (p +2) vectors of dimension p listed
in Eq. (2.3). Under the action of PGL(p +1,C),
these vectors can be transformed to any (p +2)
arbitrary vectors in projective p space. Further-
more, specifying these points exhausts the free
parameters of PGL(p +1,C); the transformed
coordinates of any other vector are completely
specified in terms of the coordinates of the basis

1=l =L =e(1 5 T NN 2l

where € is the permutation symbol which here as-
sumes the value 1 if (j —7) is odd or even, re-
spectively. When the transformation (2.4) is per-
formed simultaneously on all the x{*’s, we may
easily show

[4j]~ DetAl[45]. (2.8)

We must also notice that, in terms of inhomoge-
neous coordinates,

[z]]homog [Z]]mhom I-‘[jx(N—Z) (2-9)
r#i,

Since, in the standard coordinate system,
[]z] (f 2) _ (i-z) (=3-N-1,j=i+1~N),
[2,i]=2{2 (=3-M), (2.10)

we may use (2.1) to make the rough guess
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vectors. Now suppose we consider an arbitrary
vector

( (» zim,z( ',zip))

Z, =
in addition to the coordinatizing vectors Z,, ...,
Z,.3. If we find the form of the PGL(p +1, C) trans-
formation which moves the coordinatizing vectors
into (p +2) arbitrary vectors %},...,%,,;, we may
solve for the old vector Z, in terms of all the new
ones, Zi,%},...,%,,;. Suppose

Z, =021, 25, ... ,2),3) .

Then, since the projective transformation taking
Z; into Z} was completely arbitrary and because
the projective transformations form a group, 1
is invariant under further projective transforma-
tions of the coordinates Z!.

Let us now find the explicit form of U for N=p +3.
We first define the homogeneous coordinates
X,,...,Xy of dimension (N - 2) and consider the
determinants

ERE
X1 % cer XN-2
(1,2,...,N-2)=Det .
x?v—z) xz(N—Z) - x}(ﬂ;z)d

Since two of the column variables X; must be omit-
ted in order to form a square matrix, we may la-
bel the determinants by the columns omitted. We
therefore define

,lil,...,N=-1,N), (2.7

(a)?[z 0[+2]
“T2,NT

z; N a=1-(N=3).

(2.11)
According to Eq. (2.8), this is projectively in-
variant. However, (2.9) indicates that (2.11) is

not independent of the homogeneous coordinates
%32 and x{"~?, and therefore cannot be expressed
exclusively in inhomogeneous coordinates. Since
the determinants [¢j] in the standard basis contain
contributions from X, which will make the right-
hand side of (2.11) quadratic in x(") unless X, is
one of the columns omitted, we may use only

[1, @ +2] and [1, N] to cancel the dependence of
(2.11) on x{*3? and x{¥~?, We are thus led uniquely
to the following PGL(N 2, C)-invariant expression
for Z,:

(@ -, (= - =[2,a+2][1,N]
UeZyy e oo Zp) 2N ar2

2 (2.12)
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Equation (2.9) shows that (2.12) is equally valid
for determinants expressed in homogeneous or
inhomogeneous coordinates. The obvious analog
of the cross ratios occurring in the Koba-Nielsen
notation is

[i,]li=1,5+1]

WG -1,710,5+1] ° 2.13)
Thus Eq. (2.12) may be written
U Uz o42U2,043° * " Uz N-1"+ (2.14)

The generalization of the cross ratio (1.5) to
many dimensions is thus a cross ratio of (N —2)-
dimensional determinants.® Since each determi-
nant is proportional to the volume of the (N - 3)-di-
mensional solid the coordinates of whose vertices
are given by the columns of the determinant,® the
u;,’s are cross ratios of (N~ 3)-dimensional vol-
umes. We notice that a determinant vanishes
whenever one of the points lies in the same (N - 4)-
dimensional hyperplane as the others, i.e., when .
the (N - 3)-dimensional volume vanishes. These
are the places at which the cross ratios vanish or

become infinite. Just as the ordinary cross ratio

(1.5) is an invariant description of length on the
projective line, the generalized cross ratio (2.13)
is a projective-invariant description of length in
(N - 3)-dimensional projective space.

Using the following identity for products of de-
terminants,

lirl (571 - [iellat) = (451 [R1], (2.15)
one can in fact show that
1 i i-2
Mg = mg+1 n};];lum" ) (2.16)

‘Since Eq. (2.16) is exactly the “duality condition”
which is obeyed by the Koba-Nielsen cross ratios,
the cross-ratio expression (1.1) for the dual N-
point function is equally correct when the u,;;’s are
defined by Eq. (2.13).

Our main point is that when By is written in the
form (1.11), the 3(N—1)(N - 2) singularities of
the integrand analogous to branch points in one
complex dimension coincide exactly with the
(N - 1)(N - 2) hyperplanes of complex dimension
(N - 4) determined by the possible combinations of
the (W - 1) coordinate-basis points (2.3) taken
(N-3) at a time. Since these particular hyper-
surfaces may be moved essentially anywhere in
complex projective (N - 3) space by the
PGL(N - 2, C) transformation, rewriting Eq. (1.11)
as a PGL(N - 2,C) invariant will make the inte-
grand completely independent of the absolute loca-
tion of the singularities. We remark that Eq.
(1.11) is the most condensed possible way to write

the integral since the integration volume is in each
case a simplex, the simplest nontrivial (N - 3)-di-
mensional solid, e.g., the line, the triangle, the
tetrahedron, etc.

In order to express Eq. (1.11) in terms of the
variables Z;, we may, of course, simply set x,
=z®, use Eq. (2.12), and proceed by brute force.
An easier way is to notice that Eq. (2.12) is pro-
jective-invariant and homogeneous of degree zero
in the z{®’s, or alternatively in the x{*?’s, I we
can find any projective-invariant integrand which
reducesto(1.11) in the standard basis and is homo-
geneous of degree zero, that is the answer. Mak-
ing use of Eq. (2.10), we arrive almost immediate-
ly at the correct result:

B,,,(pl,...,p,,,)=—fd21[21][31]---[Nl]g[ji]eif".
(2.17)

This is the PGL(N - 2, C)-invariant form of the
dual N-point function. Recalling Eq. (1.9), we see
that Eq. (2.17) requires the momentum p, to appear
in the exponents of all determinants which lack the
column vector Z;. We note that the integrand of
Eq. (2.17) may be separated into an invariant vol-
ume element

N
dv=dz,[21][31]-- - [N1]TI [k +2,E]"* (2.18)
k=1
and a PGL(N - 2, C)-invariant function
: N
f(-in e ’EN)= H [k+2, k] H[]Z] Oiy-1 =Huu-d”-1 .
k=1 i>i 1]

(2.19)

The invariance of dV and f(Z,,...,%y) under the

" transformation (2.5) is proven using

-> -> - - «2\2-N -
dzl-odzi=<2a” 28,(8) 4 gN 2N 2) Detd d,
B

(2.20)
and
[7] () = [27] (")
=kgj(zﬂ;a"-2-ﬂz,§ﬂ’ +a”‘2'”"2)-1 DetA [ij] (2)
(2.21)

along with the relation (1.8). Here [4j](z) means the
determinant (2.7) of matrices whose columns are
(2, ...,2%"9 1), The derivation of Eq. (2.20) is
aided by enlarging the dimension of the Jacobian
matrix resulting from the variable change.
Utilizing the symmetry (1.4) of By in its argu-
ments due to the cross-ratio variable changes,
we conclude that any (N - 1) of the Z; may be held
fixed while the Nth is integrated over. The inte-
gration region is fixed by requiring the u,’s to lie
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in the regions determined by the defining integral
(1.11). Translated into restrictions on the deter-
minants, these conditions become the analog of
the cyclic-ordered circle in the Koba-Nielsen no-
tation. We find that the boundary of the integration
in d Z, is given by the equations

[23]=0,
[34]=0,
(2.22)
[N-2,N-1]=0,
[N-1,N]=0.

Finally, we note that the (N - 3)-dimensional
surfaces containing the real parts of the branch
singularities of the PGL(N - 2, C)-invariant inte-
grand (2.17) and of the Koba-Nielsen integrand
(1.6) are completely different. The former has
the topology of real projective (N —3)-space. The
latter is an (N - 3)-dimensional torus,” which is
equivalent to a direct product of (N~ 3) one-dimen-
sional projective spaces and quite unlike real pro-
jective (N - 3)-space. The difference is essentially
due to the nature of the variable changes leading
from Eq. (1.1) to each of the two invariant inte-
grands. This phenomenon is illustrated in the
Appendix for the case N=5.

III. CONCLUSION

In conclusion, we emphasize that the relevance
of PGL(N-2,C) to the dual N-point functions lies
in the fact that the group has precisely the number
of parameters needed to describe all the (N - 4)-
dimensional complex hyperplanes which appear as
singularities in the integrand of Eq. (1.11) when
viewed as a function on (N - 3)-dimensional com-
plex projective space. The Koba-Nielsen formal-
ism, in contrast, effectively treats the integrand
of (1.11) as a function on a direct product of (N - 3)
one-dimensional complex projective spaces. Mak-
ing the B, integrand invariant under PGL(N -2, C)
permits greater freedom in the placement of the
branch singularities, allows transformations which
mix the (N - 3) integration variables, and yet main-
tains a simple hyperplane structure for the sin-
gularities.
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(1,0)— (O,l)l (x,y) (L,D - (1,0)
° - Re:
Z3=0= z4=0 z;=u 22=| —z3=
=x/y

FIG. 1. The real projective line determined by the
homogeneous coordinate system (x,y)= (0,1), (1,1),
(1,0) corresponding to the points z = 0,1,«, Under a
projective transformation, these three points may be
moved to any three distinct points in the complex z
plane without changing the value of the cross ratio
U=UR,Z9,23,24).

APPENDIX: EXAMPLES B, AND B,

We now work out some familiar examples to
illustrate the concepts we have introduced. First,
we analyze the integrand of the Euler beta function
in one-dimensional projective space. We define

Ba,)= [ (1 - )P (A1)
4 ’ o ¢

In the complex « plane, this has singularities at
u=(0,1,). Letting u =x/y be a general point, we
see that (2.2) specifies the following homogeneous
coordinate system for N=4:

§1=(x,y), i2=(171)) }?3:(1;0)5 -}24:(0)1)’
(A2)

or inhomogeneous coordinates
zZy=u, 2,=1, z3=», 2z,=0. (A3)

This means that the usual definition (Al) of B,
places the singularities at precisely the conven-
tional coordinatizing points of projective one-
space, as shown in Fig. 1. What is significant is
that there are no other singularities. Rewriting
(A1) in PGL(2, C)-invariant format then lets us put
the singularities anywhere we please. We now ob-
serve that the projective transformation

s _23(2y =202 +2,(25 ~ 2,)
(25— 24)z +(25 — 2,)

z2—2 (A4)

maps z =(1,,0) into the arbitrary points z’
=(z,,24,2,). Letting 2’ =2z, be the transformed
value of # and solving for #, we find the cross
ratio

=%§L}Z—%{§i:—:—; =u(2,, 2 5, 23, 24) - (A5)

Recalling that z; =x{"/x®, we see that Eq. (A5)
may be expressed completely in terms of homo-
geneous coordinates,
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(0 (1 (D
% X, Xg
Det @ xzz) Det sz) o
U= (O] [E W)
X5 X, % X
Det| %, "4,| Det| "%, 3
xﬁ(lz) xgz) x§2) xgz)
[23][14]

= =[13H(“[24]) SUas s (A6)

in agreement with Eq. (2.12). From Eq. (2.15),
we find

[12][34]
1-2 =m—u12 .

The differential is

_dz,(z, = 25)(25 — 2,)(2, - 2,)
R Py
1 1 1

dz,
TGzl ozl DY Fa, Ba Za |
(23 = 29%(2; - 25) (220 (23)* (2,)?

which is the x(® =1 version of the homogeneous
differential

[12][13][14]

du = 13724 Det

The final expression is thus®

dx{P dx®
MO

[34]=0

By(a,b)=- f[ | dzi[21][31][a1] 21 [32]0-e->-

x[41]a-1[32]a-1[42](1-a-b)-1[43]b—1 ,
(A7)

where [23]=0 when z, =z, and [34] =0 when z, =z,.
The integration is along the arc of the circle in
the complex z, plane determined by (z,, 23, 2,).
Only along this arc is the integrand real and non-
singular.

Now we turn to the five-point function, which
exhibits several new properties. Starting from
Eq. (1.11), we may write B; as

1 1
Bg(abcde) = f duf dv(v—u)* Y1 —u)b-e-°
0 u

X (1 =)=yt 17", (A8)

Let us now examine the integrand as a function on
a two-dimensional projective space. If u=x/z and
v=9v/z, we may write the general point X, and the
homogeneous coordinate system as

X =(x9,2), %=(1,1,1), %,=(1,0,0),
§4=(0’1,0), i5=(0’0’1)-

The inhomogeneous coordinates are

(A9)

[on

(0,1,0)

s (4_,9,0)

—

Z4

FIG. 2. The real part of the two-dimensional complex
projective space determined by the homogeneous coordi-
nate system (x,y,2)=(1,1,1), (1,0,0), (0,1,0), (0,0,1).
These four points determine the paths of the six branch
lines appearing in the integrand of Eq. (A8). Diametri-
cally opposite points in the figure are understood to be
continuously connected so that the surface shown rep-
resents the one-sided projective plane.

->

Z,=(u,v), Z,=(1,1), Zg=(,),

7,=(=,), %=(0,0). (410)

Remembering that infinity is [(N - 4) =1]-dimension-
al and that parallel lines through two finite points
like (0,0) and (1,1) meet on the line at infinity, we
depict in Fig. 2 the points of Eqs. (A9) and (A10).
Since any two points determine a line, we also
draw the six lines determined by the four coordi-
natizing points. We observe that the line at in-
finity which joins the points («,) and («,) is placed
on a completely equal footing with the other five
lines if we require diametrically opposite points
to be continuously connected to one another. The
surface shown in Fig. 2 then becomes the topologi-
cal structure known as the projective plane. We
caution the reader that Fig. 2 shows only the 7eal
part of the two-dimensional complex projective
space, i.e., the part analogous to the real line of
Fig. 1.

One might ask how Fig. 2 compares with the
picture implied by the Koba-Nielsen formula for
the B, integrand:

23 25
B,(12345) = f dzzf dz (z, = 23)(25 — 25)(25 — 2;)
21 3

X H (z, —zi)eij'l,
i>i
Let us place the z,’s on the unit circle, z,=exp(i¢,).
The integrand then returns to its original value
when ¢, or ¢, varies from 0 to 27 provided the
singularities are properly avoided. For example,
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Zs
Z3

i A

Z2 1Y
Zy
Zs -

Zs Zy Z3 Zs

24—>

FIG. 3. The surface containing the singularities of the
Koba-Nielsen form of the B; integrand when (,,23,25)
are fixed. The structure is the product of two one-
dimensional projective spaces, i.e., a torus. Thus the
top horizontal line is to be identified with the bottom line
and the left-hand vertical line is identified with the
right-hand line. B;(12345) is given by the integral over
the cross-hatched region.

as ¢, varies with ¢;< ¢,< ¢, 2, meets singularities
at z,, 24, 25,2,, and then again z;. The integrand is
thus periodic in each variable separately and sug-
gests the torus shown in Fig. 3. The lines in Fig.
3 represent all the singularities which are en-
countered as ¢, and ¢, vary. The value of
B,(12345) is given by the two-dimensional integral
over the square hatched region bounded by the
singularities at z, =(z,, z;) and z,=(z,, z5).

We now continue with our derivation of the
PGL(3, C)-invariant form of the B, integrand
(A8). The explicit form of the PGL(3, C) matrix
lla®8|| which takes the standard coordinate basis
(A10) into the arbitrary points Z} =(x;, y;) via the
transformation (2.5) is easily found to be

x,(245) x,(253) x,(234)
la®® | =|v5(245) v,(253) v,(234)|. (A11)
(245) (253) (234)

Here we have defined the determinants

X3 x, Xp
(¢jk) =Det |y, Vi Ve|>
111
which obey the relation
%y (nif) + x,(njk) + x,(nki) = x,(ijk) . (A12)

If we now let Z] be the new value of the arbitrary
point Z, after it has undergone a projective trans-
formation (2.5) with the matrix (A11), we may

DUAL N-POINT FUNCTIONS IN PGL(N-2, C)... 1955

solvefor Z, as an explicit function of Z}, %5, Zi, Zj,
and Z,. Writing %, =(u, v), we find the result
_(234)(145) =[15] [23] -
¥ (245)(134) [13][25] “=tes

_(135)(234) _[24][15]
“(134)(235) [25][14] "2+’

(A13)

v

which agrees of course with Eq. (2.12). Using the

identity (2.15), we may show

[12][35]
l—u—[%- 131’
[12][45
1- 0= Tra] (A14)
_[15][12][34]
v=%=T25][13][14]"

The Jacobian of the transformation from (u, v) to
(%y,9,) is

[51]%[21]*

J=~Ta][31][2]

so we may write Eq. (A8) in the form

Bg(abcde)
=-ffdxldy1[21][31][41][51][21]b-l[31]c-b-d

% [41]d—c-e[51] e-1 [32]d-1[42] e-d-a

x [52]2-¢-*[43] 2 4[53] p=a-<[54] o1
Making the identification

a=-034, b=-ay, c=-a,,

d=—ay3, e=—0y,,

we write B, in the format of Eq. (2.17):
Bﬁ(pl’pz’p3?P4?p5)

= —ffdxldyl[m][:}l][ 41][51] TT [ ] %+
7t (A15)

In the standard basis, Eq. (A15) becomes identi-
cal to Eq. (A8) and the variables u« and v are inte-
grated over the triangle shown in Fig. 2. In gener-
al, the determinant (ijk) gives the area of the tri-
angle whose verticesareZ;, Z;, and Z,. The vari-
able # in Eq. (A13) is then a cross ratio of areas,
just as (A6) is a cross ratio of lengths. Since u is
proportional to (145), u vanishes in any basis when
Z, becomes collinear with Z, and Z;, i.e., when the
area of their triangle vanishes. The boundaries of
the triangle of integration in Fig. 2 may then be
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described in any basis by the conditions
(145)=[28]=0-u=0,
(215)=[43]=0~v=u,
(213)=[54]=0-v=1.

(A16)

Note that in a general basis where (Z,, Z;, Z,, Z;) are
complex, at least one point of the real projective
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plane shown in Fig. 2 is mapped to a point on the
surface at infinity. Finally, we observe that, just
as integrating the beta function integrand along the
three intervals [-=,0], [0,1], and [1,«] in Fig. 1
gives the three permutations of four external lines,
integrating the B, integrand over the twelve tri-
angles of Fig. 2 gives the 12 distinct permutations
of the five-point function’s external lines.®
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We discuss and generalize to arbitrary spin the kind of single-particle spin states which
have appeared naturally in field theories in the infinite-momentum frame. These states
transform simply under the Galilean symmetry group which is important in the infinite-
momentum frame, rather than under the rotation group. We also find that the spinors
U(P, ) representing these states are very simple.

1. INTRODUCTION

The states of a single particle with mass M, spin
s are generally represented by a state vector
|P,)\), where P is the momentum of the particle
and X labels its spin state. Many definitions of
spin state are available —the most popular being
the Jacob and Wick helicity states.?!

The presently common kinds of spin states trans-
form simply under rotations. They are thus par-
ticularly useful for the description of low-energy
phenomena, in which rotational symmetry is im-
portant (for instance, two-body scattering in the
resonance region). In this paper, we will define
and discuss a set of spin states which transform
simply under the “Galilean” transformations®®
which are useful in the description of particles

moving in the +z direction with high energy. These
spin states have previously been found to emerge
naturally in discussions of field theories in the in-
finite-momentum frame,?~" at least for the cases
s=%+and s=1.

We begin with a brief review of the infinite-mo-
mentum coordinate system,

T=2"2(t+z), 8=2713(t-2),

paying particular attention to the Galilean subgroup
of the Poincaré group, which leaves the planes 7
=constant invariant. We use this Galilean structure
to define a convenient “spin” or “internal angular
momentum” operator. It is then a simple matter

to construct single-particle eigenstates of this
operator. We also show that these “infinite-mo-
mentum helicity” states look like ordinary Jacob



