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Some background . . .

I am here for the Tohru Eguchi Memorial Workshop held last

week at the Tokyo Kashiwa Campus, remembering Eguchi and our

work together as postdocs in 1978 on the Eguchi-Hanson metric.

Nambu Memorial Symposium
University of Chicago, March 2016

Dinner at Sushi Masuda (⋆⋆)
Tokyo, April 2017

In memory of Tohru Eguchi: February 2, 1948 – January 30, 2019
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Other things I do — My Book: Visualizing Quaternions

Topics include visualizing the “Dirac

String Trick,” methods for interactive

graphics of quaternions, applications

to moving 3D coordinate frames, and

many other applications and topics

that could not have been imagined

by William Rowan Hamilton, who dis-

covered quaternions in 1843.
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Quaternion Proteomics Applications

A.J. Hanson and S. Thakur, ”Quaternion maps of global protein

structure,” Journal of Molecular Graphics and Modelling, Volume

38, September 2012, pp. 256–278.
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My 4D Intuition-Friendly User Interfaces:

4Dice 4DRoom 4D Explorer

Free on the App Store! || http://homes.sice.indiana.edu/hansona
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My Visualizations of Calabi-Yau Spaces

The Calabi-Yau quintic is a 6-manifold representing the hidden

dimensions of 10D String Theory, and can be written as a quintic

polynomial embedded in CP(4):

z0
5 + z1

5 + z2
5 + z3

5 + z4
5 = 0

My 4D interfaces can be used to visualize the 2D cross-section

in CP(2) of the Calabi-Yau quintic, a surface embedded in 4D,

satisfying the equation

z1
5 + z2

5 = 1
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Visualization of Calabi-Yau Quintic 2D Cross-Section
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The Big Picture: The 6D Calabi-Yau Quintic Structure

This is actually SIX dimensional: the partial space is sampled

on a 4D grid, and the remaining 2D cross-sections are shown

as they change across the grid.
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Cover art and logos for Shing-Tung Yau:
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Visualizing the Eguchi-Hanson Metric

• History of how the metric came about

• General principles of metric visualization task

• The metric itself

• Approach to finding an isometric embedding

• Solving the embedding

• Exploit embedding to produce a visualization
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The Eguchi-Hanson Metric: History

• 1975 – Yang-Mills Instanton: The discovery of a sim-

ple asymptotically flat self-dual solution to the highly nonlinear

SU(2) Yang-Mills equation was a surprise.

• Early 1977 – Hawking proposes a candidate grav-
itational instanton:. This looked promising due to its self-

dual nature, but its asymptotic behavior was a possible issue.

• 1977 – Meeting Eguchi at SLAC: I met Eguchi at

SLAC in the fall of 1977, he shared some elegant techniques

he had learned from Peter Freund while at the University of

Chicago, and I became interested in the Gravitational Instan-

ton, which Eguchi had already studied with Freund. Eguchi

and I eventually recognized Hawking’s proposed instanton as

having the wrong asymptotic behavior (it was 3D flat), and

started looking for a better solution with 4D flat asymptotics.
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History, contd.

• Very early 1978 – almost a solution: Using 4D po-

lar coordinates and the Maurer-Cartan differential forms, we

found a 4D-asymptotically-flat candidate, and wrote to Hawk-

ing that we thought we had a better way. But we did not publish

because there was something wrong, a puzzling singularity.

• January 1978 – meeting with Iz Singer: I was at

Berkeley at this time, and a very well-known mathematician,

Isadore Singer, had recently come to Berkeley from MIT. We

went to Singer, and he recognized our singularity as a stan-

dard problem with a standard solution in under a minute after

we showed him the solution on the blackboard!

• 6 February 1978 – Gravity Instanton paper sub-
mitted to Phys Lett B: We published our paper with the

Eguchi-Hanson metric on April 10, 1978.
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History, conclusion.

• 7 July 1978 – Gibbons and Hawking find the Multi-
Instanton: The story was completed half a year later when

Gibbons and Hawking discovered a 4D-asymptotically-flat grav-

itational multi-instanton solution, very close to Hawking’s 1977

3D-flat solution, labeled by an integer k, for which Eguchi-

Hanson was the k = 1 case.

• December 1980: Eguchi/Gilkey/Hanson: In late 1979,

Roman Jackiw invited us to write a review of the combina-

tion of ideas from Gravitation, Yang-Mills Gauge theories, and

modern Differential Geometry and the relation to fiber bun-

dles. This 181-page article was published in Physics Reports

at the end of 1980, the last time that I published with Eguchi.

The EGH paper has been cited well over 2000 times.
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11D Nash embedding of self-dual Einstein metric

• For any given solution of Einstein’s equations (in 4D Euclidean

space for the ADE metrics, with Eguchi-Hanson being the A1

metric), one wonders can we visualize the actual geome-

try?

• This question is often answered by searching for a Nash em-

bedding, since Nash’s theorem tells us that an isometric em-

bedding exists for any Riemannian metric and its topological

space, but Nash gave NO INFORMATION on how to FIND this

embedding.

• So, with my collaborator, mathematician Ji-Ping Sha, we set

out to investigate the possibility of a Nash embedding with a

space whose induced metric was exactly the Eguchi-Hanson

metric. In the following, we discuss the solution we found

in 11 Euclidean dimensions.
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The Eguchi-Hanson Metric Itself

• Metric Ansatz: We begin by assuming a 4D metric whose

line element is of the form

(ds)2 = f(r)2dr2 + r2(σx
2 + σy

2) + r2g(r)2σz
2

where the one-forms {σx, σy, σz} form a basis for the Maurer-

Cartan algebra, obeying

dσx +2σy ∧ σz (cyclic).

In the limit f(r) = g(r) = 1, this is simply the polar form of

a flat Euclidean metric on R4.

• Vierbein Decomposition: Thus the metric can be written as

(ds)2 = dxµgµνdx
ν = eaδabe

b,

where the vierbein one-forms ea = eaµdx
µ take the form

ea = {f(r)dr, rσx, rσy, rg(r)σz} .
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Eguchi-Hanson Metric, contd.

• Connection 1-forms: In the vierbein form, Riemannian ge-

ometry is very simple: we simply compute the torsion 2-form,

set it to zero for the Levi-Civita connection condition, and solve

for the connection 1-form ωab:

dea + ωa
b ∧ eb = 0

• Self-dual Connection Condition:. Then it can be shown that

the Ricci tensor of the curvature 2-form

Rab = dωab + ωac ∧ ωc
b

will vanish, solving Einstein’s equations, if ωab itself (which is

a 4D Euclidean antisymmetric object, not requiring upper and

lower index distinction) is self-dual:

ωab = ǫabcd ωcd ,

that is ω01 = ω23, cyclic.
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Eguchi-Hanson Metric, contd.

• Eguchi-Hanson Solution: The self-duality condition gives

fg = 1 and a simple 1st-order differential equation for f(r),

rf ′(r) + 2f(r)
(

f(r)2 − 1
)

= 0

whose solution is

f(r)2 =
1

1−
(

a
r

)4
.

The resulting connection 1-forms ωab are self-dual, the curva-

ture 2-form Rab is self-dual, and thus Einstein’s equations are

solved with an asymptotically flat metric.

• Vierbein Solution for Metric:

ea =



















1
√

1−
(

a
r

)4
dr, rσx, rσy,

√

1−
(

a

r

)4
rσz


















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Eguchi-Hanson Metric, contd.

• Removing Singularity at origin: If the full angular

range of S3 is used for this metric at constant r, there is a cone

singularity at r = a. This can be removed by restricting the

volume measure to one half the range of S3, giving asymptotic

topology at infinity of the Projective Space RP(3), which is

isomorphic to the 3D rotations SO(3).

• Topology is T∗S2: It can then be shown that the topol-

ogy of the nonsingular Eguchi-Hanson Einstein manifold is the

cotangent space of the 2D sphere S2, which is S2 at the “ori-

gin” r = a, and asymptotically RP(3) = SO(3) as r → ∞.

• Infinity is SO(3): So now we know that any embed-

ding must reduce to the topology of the 3D rotation group

at infinity.
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Approach to Finding an Isometric Embedding

• Write down SO(3): Using the quaternion q = (w, x, y, z)

with q ·q = r2, any element of the rotation group, topologically

RP(3), can be written

1

r2







w2 + x2 − y2 − z2 2xy − 2wz 2xz +2wy

2xy +2wz w2 − x2 + y2 − z2 2yz − 2wx

2xz − 2wy 2yz +2wx w2 − x2 − y2 + z2







• Columns are Hopf Fibrations = S2: Every column

and row is a 3D unit vector, with v · v = 1, and thus a two-

sphere. We exploit this to create the S2 at the origin r = a

of T∗S2.
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Solving the Embedding Constraint Equations

• Column Vector of RP(3): Just map the elements of q =

(w, x, y, z), now with q · q = r2, to the entire 3D rotation ma-

trix, first in R10, then extend to an R11 interpolation p(w, x, y, z)

between RP(3) and the Hopf fibration to S2:

RP(3) Hopf S2
Interpolation
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→ 1
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1√
2
(w2 + z2)

1√
2
(x2 + y2)

1√
2
(y2 + x2)

1√
2
(z2 + w2)

wx− yz

wy + xz
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xz + wy
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
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Solving the Embedding Constraint Equations

• Interpolation Limits: origin: α(a) = β(a) is the S2

topology as r → a.

• Interpolation Limits: infinity: As r → ∞, α(r) → r,

and β(r) → 0 gives the RP(3) topology at ∞.

• Rigidity in R10 requires an extra dimension: We

find that the R10 Ansatz, with γ(r) = 0 fails, as the geometry

is too rigid for a successful Nash embedding. Adding one

more dimension, to embed in R11 with a third interpolation

function γ(r) is sufficient for a successful Nash embedding!
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The Hopf fiber S2 limit in R11

• Column Vector of RP(3): At q · q = a2, where α(a) =
β(a), we have a map from RP(3) to the S2 Hopf fibration:

p(r = a) =
1

r2
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


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

• A degenerate pair of spheres: The result at r =
a is just a single sphere echoed in the (1,3,5,7) and the

(2,4,6,8) coordinates of R11.
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Identify Induced Metric with the Known Metric:

• Induced metric:. Using the 4D q = (w, x, y, z) , q · q =

r2, coordinates to compute the induced metric from the inter-

polation,

gµν =
11
∑

i=1

∂pi(w, x, y, z)

∂qµ
∂pi(w, x, y, z)

∂qν

and extracting the correspondence with (α(r), β(r), γ(r)),

we find

α(r) =

√

r4+
√

r8−a8√
2r

β(r) = a4

√
2r

√

r4+
√

r8−a8

γ′(r) =

√

√

√

√

3a4 + r4

a4 + r4
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Visualization of the Eguchi-Hanson Space

• The Nash Embedding p(w, x, y, z): The 4-manifold in R11

parameterized by the vector q = (w, x, y, z) with |q| = r is

analogous to a round sphere with a metric of constant curva-

ture: the induced metric with the solutions for
(

α(r), β(r), γ′(r)
)

given above is the shape of the space on which the metric

lives, our Nash embedding for the Eguchi-Hanson Space.

• Pick 2D × 2D samplings from p(w, x, y, z) in R11 to sub-

spaces in R3: We can make computer graphics images of the

embedding p(w, x, y, z) by first choosing a 2D family of sam-

ple points, e.g., on the S2 at the origin r = a, then plotting the

remaining 2D subsurface coordinates at each sample point.

• Pick projections from p(w, x, y, z) subspaces to plot in

R3: Now we have surfaces to plot, and we choose 11 × 3

matrices to project each 11D point to computer-graphics com-

patible 3D point for rendering. These results, for carefully

chosen projection matrices, are given next.
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Visualizations of T∗S2 Projected 11D → 3D
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. . . more Visualizations of T∗S2 Projected 11D → 3D
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Conclusion of our Journey:

• Introduction: my work, from Einstein metrics to Quater-

nions to 4D visualization to Calabi-Yau space images.

• History of the Eguchi-Hanson Metric.

• Solving the Isometric Embedding Problem for Eguchi-

Hanson Space.

• Exploiting the Embedding to Produce Exact Computer

Graphics Images of the 4D Manifold Whose Induced Metric

is the Eguchi-Hanson A1 Einstein Metric.
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Thank you!

For more information on my work, see my web page

http://homes.sice.indiana.edu/hansona
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