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Abstract
We explore finite-field frameworks for quantum theory and quantum
computation. The simplest theory, defined over unrestricted finite fields, is
unnaturally strong. A second framework employs only finite fields with no
solution to x2 + 1 = 0, and thus permits an elegant complex representation of
the extended field by adjoining i = √−1. Quantum theories over these fields
recover much of the structure of conventional quantum theory except for the
condition that vanishing inner products arise only from null states; unnaturally
strong computational power may still occur. Finally, we are led to consider one
more framework, with further restrictions on the finite fields, that recovers a
local transitive order and a locally-consistent notion of inner product with a
new notion of cardinal probability. In this framework, conventional quantum
mechanics and quantum computation emerge locally (though not globally)
as the size of the underlying field increases. Interestingly, the framework
allows one to choose separate finite fields for system description and for
measurement: the size of the first field quantifies the resources needed to
describe the system and the size of the second quantifies the resources used
by the observer. This resource-based perspective potentially provides insights
into quantitative measures for actual computational power, the complexity of
quantum system definition and evolution, and the independent question of the
cost of the measurement process.
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1. Introduction

The means by which quantum computing4 extends the capacity of classical computing
frameworks deeply involves both the laws of physics and the mathematical principles of
computation. Richard Feynman and Rolf Landauer [1, 2], among others, have strongly
advocated the careful study of quantum computation to understand its mechanisms and the
source of its computational features. Our purpose here is exploit the consequences of replacing
complex continuous numbers by finite complex fields in the quantum computation framework5;
in particular, we show how a number of subtle properties of quantum computing can be teased
apart, step by step, as we explore the implications of discrete quantum theories in a systematic
fashion.

We observe that the traditional mathematical framework of complex number fields in
quantum mechanics is, in principle, not amenable to numerical computation with finite
resources. Since theories based on finite fields are, in principle, always computable with finite
resources, a universe that was in some way a computational engine (a non-trivial philosophical
hypothesis) could actually have a fundamental basis in finite fields, with conventional quantum
mechanics emerging as a limiting case. This is another mechanism by which the frameworks we
present could conceivably be relevant to our understanding of the laws of physics. Specifically,
we can quantify the resources needed for problems of a given complexity by identifying the
size of the required discrete field. The cost of such resources, clearly exposed by using discrete
fields, is concealed by the properties of real numbers in conventional quantum computations.

After a review of finite fields in section 2, we proceed with a sequence of finite-field
approaches that lead more and more closely to the properties of conventional quantum
computing. In section 3, we examine previously-introduced quantum theories defined over
unrestricted finite fields and show in section 4 that this approach leads to theories with such
bizarre powers that they are probably unphysical. Although a version of quantum theory
defined over a two-valued field can express simple algorithms such as quantum teleportation,
it is so weak that it cannot express Deutsch’s algorithm. This quantum theory is, however,
also so powerful that it can be used to solve an unstructured database search of size N using
O(log(N)) steps, which outperforms the known asymptotic bound O(

√
N) in conventional

quantum computing.
Next, in section 5, we improve on this by showing that for finite fields of order p2,

with the prime p of the form 4� + 3 (� a non-negative integer), the complex numbers have
extremely compelling and natural discrete analogues that permit a great many of the standard
requirements of quantum computing to be preserved. Under suitable conditions, we have
amplitude-based partitions of unity, unitary transformations, and entanglement [4], as well as
solutions to deterministic quantum algorithms such as the algorithms of Deutsch, Simon, and
Bernstein–Vazirani [5, 6], though still with some bothersome shortcomings. Because of the
modular nature of arithmetic in the finite complex field, it is not possible to define an inner
product in the usual sense, and we show in section 6 that this leads to excessive computational
power for the unstructured database search problem for certain database sizes.

We are led, in sections 7 and 8, to develop a framework with further restrictions on p
that locally recovers the structure and expected properties of conventional quantum theory.
Section 7 locally recovers the inner product space and section 8 locally recovers a notion

4 We use the phrase ‘conventional quantum theory’ where necessary to distinguish the usual quantum theory
and quantum computing paradigm using (continuous) complex numbers from discrete quantum theory. Alternative
terminology in the literature includes ‘actual,’ ‘standard,’ and ‘ordinary’ quantum theory.
5 Our approach is complementary to other attempts to re-formulate quantum mechanics starting with alternative
number systems such as the p-adic numbers, See, for example, [3].
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of probability. The development in both sections exploits the fact that longer sequences of
ordered numbers appear in the quadratic residues (numbers with square roots in the field) as
the size of the field increases. Discrete quantum computations whose calculations are confined
to numbers in this ordered sequence resemble conventional quantum computations. The size
of the field p plays an important role in describing the resources needed for the computation as
larger problem sizes require a larger field size to represent all intermediate numerical values. A
significant feature of our framework is that the resources needed for the measurement process
can be separated from the resources needed by the evolution of the system being modeled.
This interplay between the resources used by the system under study and the resources used
for the observation process is a significant concept that is nonexistent in conventional quantum
computing and is exposed by our careful accounting of resources.

We note that the conventional mathematical framework based on the real numbers
allows one to distinguish states whose measurement outcomes differ by infinitesimally small
probabilities, e.g., 10−100 versus 0. In the proposed framework of discrete quantum computing,
the finite size of the field implies a maximum precision for measurement: a ‘small’ field
represents limited resources with which it becomes impossible to distinguish states whose
measurement outcomes differ by an amount less than the resolution afforded by the field.
It is possible, however, to discriminate between such states at the cost of moving to a
larger field, i.e., by investing more resources in the measurement process. We formalize this
approach to measurement using the novel notion of cardinal probability, with numerical labels
corresponding to ‘more probable, the same, or less probable,’ rather than a percentage-based
likelihood measure. In cardinal probability, relative outcomes are associated with intervals of
ambiguity that get smaller and more precise as the size of the field increases.

Finally, in section 9, we apply our discrete quantum theory to the study of two
representative algorithms, the deterministic Deutsch–Jozsa algorithm and the probabilistic
Grover algorithm [5, 6]. The first algorithm highlights the role played by the size of the
field p in determining the actual resources required for computation as the number of input
bits n increases, a concept nonexistent in conventional quantum computing. The second
algorithm highlights, in addition, the dependence of the precision of measurement (via cardinal
probabilities) on the size of the field, another nonexistent concept in conventional quantum
computing.

2. Fundamentals of finite fields

A field F is an algebraic structure consisting of a set of elements equipped with the operations
of addition, subtraction, multiplication, and division [7, 8]. Fields may contain an infinite or a
finite number of elements. The rational Q, real R, and complex numbers C are examples of
infinite fields, while the set F3 = {0, 1, 2}, under multiplication and addition modulo 3, is an
example of a finite field.

There are two distinguished elements in a field, the addition identity 0, and the
multiplication identity 1. Given the field F, the closed operations of addition, ‘+,’ and
multiplication, ‘∗,’ satisfy the following set of axioms:

(i) F is an Abelian group under the addition operation + (additive group);
(ii) The multiplication operation ∗ is associative and commutative. The field has a multiplica-

tive identity and the property that every non-zero element has a multiplicative inverse;
(iii) Distributive laws: For all a, b, c ∈ F

a ∗ (b + c) = a ∗ b + a ∗ c (1)

(b + c) ∗ a = b ∗ a + c ∗ a. (2)
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From now on, unless specified, we will omit the symbol ∗ whenever we multiply two elements
of a field.

Finite fields of q elements, Fq = {0, . . . , q − 1}, will play a special role in this work. A
simple explicit example is F3 with the following addition and multiplication tables:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

∗ 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

The characteristic of a field is the least positive integer m such that m = 1+1+1+· · ·+1 =
0, and if no such m exists we say that the field has characteristic zero (which is the case for R

for example). It turns out that if the characteristic is non-zero it must be a prime p. For every
prime p and positive integer r there is a finite field Fpr of size q = pr and characteristic p
(Lagrange’s theorem), which is unique up to field isomorphism. The exponent r is known as
the degree of the field over its prime subfield [9]6. If the characteristic p is an arbitrary prime
number, we call the field unrestricted.

For every a ∈ Fq, a �= 0, then aq−1 = 1, implying the Frobenius endomorphism
(also a consequence of Fermat’s little theorem) aq = a, which in turn permits us to
write the multiplicative inverse of any non-zero element in the field as a−1 = aq−2, since
aq−2a = aq−1 = 1. Every subfield of the field Fq, of size q = pr, has pr′

elements with some
r′ dividing r, and for a given r′ it is unique. Notice that a fundamental difference between
finite fields and infinite fields with characteristic 0 is one of topology: finite fields induce a
compact structure because of their modular arithmetic, permitting wrapping around, while that
is not the case for fields of characteristic zero. This feature may lead to fundamental physical
consequences.

3. Modal quantum theory

Recently, Schumacher and Westmoreland [10] and Chang et al [11] defined versions of
quantum theory over unrestricted finite fields, which they call modal quantum theories
or Galois field quantum theories. Such theories retain several key quantum characteristics
including notions of superposition, interference, entanglement, and mixed states, along with
time evolution using invertible linear operators, complementarity of incompatible observables,
exclusion of local hidden variable theories, impossibility of cloning quantum states, and the
presence of natural counterparts of quantum information protocols such as superdense coding
and teleportation. These modal theories are obtained by collapsing the Hilbert space structure
over the field of complex numbers to that of a vector space over an unrestricted finite field. In
the resulting structure, all non-zero vectors represent valid quantum states, and the evolution
of a closed quantum system is described by arbitrary invertible linear maps.

Specifically, consider a 1-qubit system with basis vectors |0〉 and |1〉. In conventional
quantum theory, there exists an infinite number of states for a qubit of the form α0|0〉 + α1|1〉,
with α0 and α1 elements of the underlying field of complex numbers subject to the
normalization condition |α0|2 + |α1|2 = 1. Moving to a finite field immediately limits the
set of possible states as the coefficients α0 and α1 are now drawn from a finite set. In particular,
in the field F2 = {0, 1} of Booleans, there are exactly four possible vectors: the zero vector, the
vector |0〉, the vector |1〉, and the vector |0〉 + |1〉 = |+〉. Since the zero vector is considered
non-physical, a 1-qubit system can be in one of only three states. The dynamics of these

6 Fields Fq where q is a power of a prime p, i.e., q = pr , are known as Galois fields.
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1-qubit states is realized by any invertible linear map, i.e., by any linear map that is guaranteed
never to produce the zero vector from a valid state. There are exactly six such maps:

X0 =
(

1 0
0 1

)
, X1 =

(
0 1
1 0

)
,

S=
(

1 0
1 1

)
, S† =

(
1 1
0 1

)
, D1 =

(
0 1
1 1

)
, D2 =

(
1 1
1 0

)
.

This set of maps is clearly quite impoverished compared to the full set of 1-qubit unitary maps in
conventional quantum theory. In particular, it does not include the Hadamard transformation.
However, this set also includes non-unitary maps such as S and S† that are not allowed in
conventional quantum computation.

Measurement in the standard basis is fairly straightforward: measuring |0〉 or |1〉
deterministically produces the same state while measuring |+〉 nondeterministically produces
|0〉 or |1〉 with no assigned probability distribution. In other bases, the measurement process
is complicated by the fact that the correspondence between |�〉 and its dual 〈�| is basis-
dependent, and that the underlying finite field is necessarily cyclic. For example, in F2,
addition (+) and multiplication (∗) are modulo 2: 〈+|+〉 = (1 ∗ 1) + (1 ∗ 1) = 1 + 1 = 0.
Hence, the dual of |+〉 is not 〈+| if |+〉 is part of the basis.

4. Modal quantum computing

To understand the computational implications of the modal quantum theory defined over
the field F2 of Booleans, we developed a quantum computing model and established its
correspondence to a classical model of logical programming with a feature that has quantum-
like behavior [12]. In a conventional logic program, answers produced by different execution
paths are collected in a sequence with no interference. However, in this modal quantum
computing model over F2, these answers may interfere destructively with one another.

Our computations with this ‘toy’ modal quantum theory showed that it possesses
‘supernatural’ computational power. For example, one can solve a black box version of the
UNIQUE-SAT problem [13] in a way that outperforms conventional quantum computing. The
classical UNIQUE-SAT problem (also known as USAT or UNAMBIGUOUS-SAT) is the problem
of deciding whether a given Boolean formula has a satisfying assignment, assuming that it
has at most one such assignment [14]. This problem is, in a precise sense [15], just as hard
as the general satisfiability problem and hence all problems in the NP complexity class. Our
black box version of the UNIQUE-SAT problem replaces the Boolean formula with an arbitrary
black box. Solutions to this generalized problem can be used to solve an unstructured database
search of size N using O(log N) black box evaluations by binary search on the database. This
algorithm then outperforms the known asymptotic bound O(

√
N) for unstructured database

search in conventional quantum computing.
We can prove the unreasonable power of the arbitrary-function UNIQUE-SAT starting with

a classical function f : Booln → Bool that takes n bits and returns at most one true result.
Then we can give an algorithm (see figure 1) taking as input such a classical function that
decides, deterministically and in a constant number of black box evaluations, whether f is
satisfiable or not:

Case I: f is unsatisfiable; the measurement deterministically produces |0〉|0〉. The state is
initialized to |0〉|0〉, with |0〉 = |0〉|0〉 · · · |0〉, i.e., the tensor product of n |0〉 states. Applying
the map S (defined in the previous section) to each qubit in the second component of the state
produces |0〉|+〉 where |+〉 denotes the sequence |+〉 . . . |+〉 of length n. Applying Uf to the
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y = |0〉

Uf

S† • S†

measure
x1 = |0〉

⊗S ⊗S. . .

xn = |0〉

Figure 1. Circuit for black box UNIQUE-SAT in modal quantum theory over the field F2.
Uf is a Deutsch quantum black box [5] with Uf |y〉|x〉 = |y + f (x)〉|x〉, where x denotes
a sequence x1, x2, . . . , xn of n bits. For further notation see text.

entire state has no effect since Uf is the identity when f is unsatisfiable. Applying S to each
qubit in the second component of the state produces |0〉|0〉. Applying S† to the first component
leaves the state unchanged. As the first component of the state is 0, applying the map X0 (which
is the identity) leaves the state unchanged. Applying S† to the first component leaves the state
unchanged. Measuring the state will deterministically produce |0〉|0〉.

Case II: f is satisfiable; the measurement produces some state other than |0〉|0〉.
Assume the function f is satisfiable at some input a1, a2, . . . , an denoted a, and where
|a〉 = |a1〉 . . . |an〉. In the second step, the state becomes |0〉|+〉 as above. We can write this state
as |0〉|a〉+�x �=a|0〉|x〉. Applying Uf produces |1〉|a〉+�x �=a|0〉|x〉. We can rewrite this state as
|+〉|a〉+�x|0〉|x〉 = |+〉|a〉+|0〉|+〉, where the summation is now over all vectors (notice that
|0〉|a〉+ |0〉|a〉 is the zero vector). Applying S to each qubit in the second component produces
|+〉∣∣S(a)

〉 + |0〉|0〉. Applying S† to the first component produces: |1〉∣∣S(a)
〉 + |0〉|0〉. Applying

Xb, where b is the first component of the state, to each qubit in the second component produces
|1〉|not(S(a))〉+ |0〉|0〉. Applying S† to the first component produces |+〉|not(S(a))〉+ |0〉|0〉.
For the measurement of|+〉|not(S(a))〉 + |0〉|0〉 to be guaranteed to never be |0〉|0〉, we need
to verify that |+〉|not(S(a))〉 has one occurrence |0〉|0〉. This can be easily proved as follows.
Since each ai is either 0 or 1, then each S(ai) is either + or 1, and hence each not(S(ai))

is either + or 0. The result follows since any state with a combination of + and 0, when
expressed in the standard basis, would consist of a superposition containing the state |0 . . .〉.

5. Discrete quantum theory (I)

Our next objective is to develop more realistic discrete quantum theory variants that exclude
‘supernatural’ algorithms such as the one presented above. Our first such plausible framework
[16] is based on complexifiable finite fields. To incorporate complex numbers for quantum
amplitudes, we exploit the fact that the polynomial x2 + 1 = 0 is irreducible (has no solution)
over a prime field Fp with p odd if and only if p is of the form 4� + 3, with � a non-negative
integer. In other words, x2 + 1 = 0 is irreducible over F3, F7, F11, F19, . . .. We achieve our
goal by observing that any field in this family is extensible to a field Fp2 whose elements can be
viewed as discrete complex numbers with the real and imaginary parts in Fp. In the field Fp2 ,
the Frobenius automorphism of an element α (defined as αp) represents the usual definition of
complex conjugation7.

7 The simplest example is the field F32 with nine elements,

0, 1,−1, i, 1 + i, −1 + i, −i, 1 − i, −1 − i.

(These are all the complex numbers one can form using the integers modulo 3 as real and imaginary coefficients.)
Similarly, the field F72 has 49 elements of the form α = a + i b where a, b are integers in the range [−3, 3] and
addition and multiplication are modulo 7.
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The next task is to examine the consequences when we attempt to construct
d-dimensional vector spaces over the complexified fields Fp2 [4]. (For readability, instead
of writing column vectors, we will often use the vector notation |�〉 = (α0α1 . . . αd−1)

T and
|�〉 = (β0β1 . . . βd−1)

T , where (.)T is the transpose of the row vector (.).) It can be shown
[17] that, given two vectors

|�〉 =
d−1∑
i=0

αi|i〉 , |�〉 =
d−1∑
i=0

βi|i〉, (3)

with scalars αi and βi drawn from the field elements, and orthonormal basis {|i〉}, the Hermitian
dot product is always reducible to the form

〈�|�〉 =
d−1∑
i=0

β
p
i αi . (4)

This product satisfies conditions A and B below, but not C, because in a finite field,
addition can ‘wrap around,’ making the concepts of positive and negative meaningless and
allowing the sum of non-zero elements to be zero:

(A) 〈�|�〉 is the complex conjugate of 〈�|�〉;
(B) 〈�|�〉 is conjugate linear in its first argument and linear in its second argument;
(C) 〈�|�〉 is always non-negative and is equal to 0 only if |�〉 is the zero vector.

With just conditions A and B, it is possible to recover unitary operators, and thus recover
much of the relevant structure of Hilbert spaces over the field of complex numbers. The failure
of condition C, however, plays havoc with the traditional notions of ordered probabilities as
well as the geometric notions of ordered distances and angles, whose lengths and cosines,
respectively, are normally expressed using the inner product [18]. In a separate development,
we explore the geometry of these finite fields and define a discrete version of the Hopf fibration
extending the Bloch sphere to n-qubits, as well as determining discrete measures for the relative
sizes of the entangled, maximally entangled, and unentangled discrete states [4].

6. Discrete quantum computing (I)

Given a complexified finite field Fp2 and its Hermitian dot product (equation (4)) much of the
structure of conventional quantum computing can be recovered. For example, the smallest field
F32 is already rich enough to express the standard Deutsch–Jozsa [5] algorithm, which requires
only normalized versions of vectors or matrices with the scalars 0, 1, and −1. Similarly, other
deterministic quantum algorithms (algorithms for which we may determine the outcome with
certainty), such as Simon’s and Bernstein–Vazirani, perform as desired [19]. Algorithms such
as Grover’s search will not work in the usual way because we lack (the notion of) ordered
angles and probability in general.

It is possible, in some situations, to exploit the cyclic behavior of the field to creatively
cancel probability amplitudes and solve problems with what again appears to be ‘supernatural’
efficiency. We illustrate this behavior with the algorithm in figure 2, which is a variant of the
one in figure 1. Unlike the modal quantum theory algorithm, the new algorithm does not always
succeed deterministically using a constant number of black box evaluations. We can, however,
show that supernatural behavior occurs if the characteristic p of the field divides 2N − 1. For
a database of fixed size N, matching the conditions becomes less likely as the size of the
field increases. Nevertheless, for a given field, it is always possible to expand any database
with dummy records to satisfy the divisibility property. Physically, we are taking advantage of
additional interference processes that happen because of the possibility of ‘wrapping around’
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y = |0〉

Uf measure
x1 = |0〉

H H. . .

xn = |0〉

Figure 2. Circuit for black box UNIQUE-SAT in discrete quantum computing.

due to modular arithmetic. We do not know, in general, whether this version of discrete
quantum computing actually enables the rapid solution of NP-complete problems.

7. Discrete quantum theory (II): inner product space

We next discuss an approach using finite complexifiable fields that conditionally resolves
the inner product condition (C), which is violated by the theory just presented. A possible
path is suggested by the work of Reisler and Smith [20]. The general idea is that while the
cyclic properties of arithmetic in finite fields make it impossible to globally obtain the desired
properties of the conventional Hilbert space inner product, it is possible to recover them
locally, thereby restoring, with some restrictions, all the usual properties of the inner product
needed for conventional quantum mechanics and conventional quantum computing. As the
size of the discrete field becomes large, the size of the locally valid computational framework
grows as well, leading to the effective emergence of conventional quantum theory. We next
briefly outline such a context for local orderable subspaces of a finite field, and introduce an
improvement on the original method [20] suggested by recent number theory resources [21].

Let us first note that the range of the quadratic map, {x2 modulo p|x ∈ Fp}, is always one-
half of the non-zero elements of Fp, and is the set of elements with square roots in the field.
This is the set of quadratic residues, and the complementary set (the other half of the non-zero
field elements) is the set of quadratic non-residues. For example, in F7, the elements {1, 2, 4}
are considered positive as they have the square roots {1, 3, 2} respectively; the remaining
elements {3, 5, 6} do not have square roots in the field. What is interesting is that if we have
an uninterrupted sequence of numbers that are all quadratic residues, then we can define a
transitive order, with a > c if a > b and b > c, provided a − b, b − c, and a − c are all
quadratic residues.

As a concrete example, consider a finite field in which the sequential elements
0, 1, 2, 3, . . . , k − 1 are all quadratic residues (including 0). Then any sequence of odd length
k and centered around an arbitrary x ∈ Fp, i.e., Sx(k) = x − (k − 1)/2, . . . , x − 2, x − 1, x, x +
1, x + 2, . . . , x + (k − 1)/2, is transitively ordered. Indeed, we have (x + 1) − x = 1 which is
a quadratic residue and hence (x + 1) > x. Similarly, x − (x − 1) = 1 and hence x > (x − 1).
Also (x + 1) − (x − 1) = 2 which is a quadratic residue and hence (x + 1) > (x − 1). Clearly
this process may be continued to show that the sequence Sx(k) is transitively ordered. We
can construct examples using the sequence A000229 in the encyclopedia of integer sequences
[21]8. The nth element of that sequence (which must be prime) is the least number such that

8 For computational purposes, this sequence is preferable to the one proposed by Reisler and Smith [20] because
it produces smaller primes. Their work showed that a sufficient condition on finite fields to produce sequences of
quadratic residues is to further constrain the underlying prime numbers to be of the form 8�m

i=1qi − 1, where qi is
the ith odd prime. While all such primes are of the form 4� + 3, the set is severely restricted to astronomical numbers
because the first few such primes are 7, 23, 839, 9239, 2 042 039, . . . .
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Table 1. Number k of transitively ordered elements for a given field Fp.

p 3 7 23 71 311 479 1559 5711 10 559 18 191 . . .
k 2 3 5 7 11 13 17 19 23 29 . . .
π (k) 1 2 3 4 5 6 7 8 9 10 . . .

Table 2. Allowed probability amplitudes for different vector space dimensions d and
k = 11.

Allowed probability amplitudes Fd (k)

d = 1 F1(11) = {0, ±1, ±2, ±i, ±2i, (±1 ± i), (±1 ± 2i), (±2 ± i)}
d = 2 F2(11) = {0, ±1, ±i, (±1 ± i)}
d = 3 F3(11) = {0, ±1, ±i}
d = 4 F4(11) = {0, ±1, ±i}
d = 5 F5(11) = {0, ±1, ±i}
d � 6 Fd (11) = {0}

the nth prime is the least quadratic non-residue for the given element. The first few elements of
this sequence are listed in the top row of table 1. The next row lists the number k of transitively
ordered consecutive elements in that field, and π(k) in the bottom row is the prime counting
function (the number of primes up to k).

As an example, consider the field F23. Looking at the squares of the numbers F23 =
{0, . . . , 22} modulo 23, we find the 2-centered uninterrupted sequence S2(5) = {0, 1, 2, 3, 4},
followed by 5, which is both the smallest quadratic non-residue and the size of the uninterrupted
sequence of quadratic residues (including 0) of interest. In particular, it is possible to construct
a total order for the elements S0(5) = {−2,−1, 0, 1, 2} in the fields F23, F71, F311, etc, but not
in the smaller fields F3 and F7.

Given a d-dimensional vector space over Fp2 where p is one of the primes above, it is
possible to define a region over which an inner product and norm can be identified. Let the
length of the sequence of quadratic residues be k. The region of interest includes all vectors
|�〉 = ∑d−1

i=0 αi|i〉 = (α0α1 . . . αd−1)
T , for which d < p − k−1

2 and each αi satisfies

d |αi|2 = d
(
a2

i + b2
i

)
� k − 1

2
, (5)

with ai and bi drawn from the set S0(k). Consider, for example, F3112 (p = 311, k = 11). We
find the following situation in which we can trade off the dimension d of the vector space
against the range of probability amplitudes available for each αi.

We can now verify, by using table 2, that for any vector |�〉 in the selected region the
value of 〈�|�〉 is � 0 and vanishes precisely when |�〉 is the zero vector. Thus, in the selected
region, condition (C) is established. Although the set of vectors defined over that region is not
closed under addition, and hence the set is not a vector subspace, we can still have a theory
by restricting our computations. In other words, as long as our computation remains within
the selected region, we may pretend to have an inner product space. The salient properties of
conventional quantum mechanics emerge, but the price to be paid is that the state space is no
longer a vector space. This is basically a rigorous formulation of Schwinger’s intuition [22].

Readers with backgrounds in computer science or numerical analysis will notice,
significantly, that this model for discrete quantum computing is reminiscent of practical
computing with a classic microprocessor having only integer arithmetic and a limited word
length. We cannot perform a division having a fractional result at all, since there are no
fractional representations; we do have the basic constants zero and one, as well as positive
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and negative numbers, but multiplications or additions producing results outside the integer
range wrap around modulo the word length and typically yield nonsense. This implies that,
for the local discrete model, we must accept an operational world view that has no awareness
of the value of p, and depends on having set up in advance an environment with a field size,
analogous to the word size of a microprocessor, that happily processes any calculation we
are prepared to perform. This is the key step, though it may seem strange because we are
accustomed to arithmetic with real numbers: we list the calculations that must be performed in
our theory, discover an adequate size of the processor word—implying a possibly ridiculously
large value of p chosen as described above—and from that point on, we calculate necessarily
valid values within that processor, never referring in any way to p itself in the sequel.

8. Discrete quantum theory (II): cardinal probability

The final issue that must be addressed in the discrete theory put forward in section 7 concerns
measurement. To recap, within the theory, states are d-dimensional vectors with complex
discrete-valued amplitudes drawn from a totally-ordered range, Fd(k), in the underlying finite
field. These states possess, by construction, absolute squares having values in the positive
integers, and squared projections on the bases in the non-negative integers, all in the ordered
range of equation (5), and hence potentially produce probabilities that can be ordered. We start
by applying the measurement framework of conventional quantum computing to these states;
we then systematically expose and isolate the parts that rely on infinite precision real numbers
and replace them by finite approximations. Our point is that, although the mathematical
framework of conventional quantum mechanics relies on infinite precision probabilities, it
is impossible in practice to measure exact equality of real numbers—we can only achieve
an approximation within measurement accuracy. Significantly, when we use finite fields, this
measurement accuracy will be encoded in the size of the finite field used for measurements.

8.1. Theory

In conventional quantum theory, given an observable O with eigenvalues λi, i = 0, . . . , d − 1,
and orthonormal eigenvectors |i〉 (i.e., O |i〉 = λi|i〉), the probability of measuring the (non-
degenerate) eigenvalue λi in a system characterized by the state |�〉 is given by:

P�(λi) ≡ P�(i) = |〈i|�〉|2
〈�|�〉 = |αi|2

〈�|�〉 , (6)

where |�〉 = (α0α1 . . . αd−1)
T in the eigenbasis ofO, that is the measurement basis. Hereafter,

we will simplify by calling P�(i) the probability of measuring λi.
The fundamental property of conventional quantum theory is that a complete set of states

such as {|i〉} induces a partition of unity in the (real-valued) probabilities, so that
d−1∑
i=0

P�(i) = 1 , (7)

and, more importantly for our treatment, for any given system, there is a precise ordering
of the set {P�(i)}. In general, this ordering can be expressed as a sequence of equalities and
inequalities of the following form,

P�(a) � P�(b) � · · · � P�(y) � P�(z) , (8)

where we adopt the symbol ‘�’ to denote either equal (=) or less-than (<), but never less-
than-or-equal (�). We observe that in practical measurements, these formal properties are
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meaningless, since, statistically, a poor measurement could reverse the apparent order of the
strictly increasing theoretical inequalities; more significantly, distinguishing formally equal
probabilities from a (>) or (<) ordering is impossible with an observer that has only finite
resources.

We now show that, while formal achievement of the conventional quantum probability
ordering of equation (8) is not possible in a world with finite resources modeled by our discrete
quantum theory, we can define a context for the definition of probabilities, cardinal probability,
that is consistent with the just-noted properties of probability measurement in conventional
quantum theory. That is, in a theory with cardinal probability, inequalities in the conventional
probability relations equation (8) can be preserved with appropriate resources (in the form of
a sufficiently large choice of the field), while equalities cannot be guaranteed in the theory,
and in fact can be represented as inequalities of any order. The set of discrete theories obeying
these properties is defined as a single equivalence class of cardinal probability theories.

In order to study the explicit properties of a discrete theory, we examine states of the form

|�m〉 = (
αm

0 αm
1 . . . αm

d−1

)T
,

where the coefficients must be discrete complex numbers αm
i in the field representing the

resources needed by the computation, and the label m is the ‘starting value’ of the discrete
norm-squared,

m = 〈�m|�m〉 =
d−1∑
i=0

∣∣αm
i

∣∣2
.

(We drop the superscript m on the coefficients when there is no ambiguity.)
One might hope to construct a probability object corresponding exactly to the conventional

quantum theory by finding a common factor that eliminated the diverse denominators
√

m that
would be used to normalize all the states to unity in the conventional theory. This would require
rescaling

〈�m1 |�m1〉
m1

= 〈�m2 |�m2〉
m2

= 1 ,

for any two vectors |�m1〉 and |�m2〉, to the form

〈�m1 |�m1〉
∏
i�=1

mi = 〈�m2 |�m2〉
∏
i�=2

mi =
∏

i

mi ≡ μ. (9)

Can we succeed in imposing such a restriction? To determine the answer, let us define an
integer-valued normalization for each of a set of states we wish to compare: let

|�m〉 → ∣∣�m
〉 = νm|�m〉 = (xm + i ym)|�m〉,

where, from equation (9), we would like to have

〈�m|�m〉 =
∏

i

mi = μ ,

or

|�m〉 =
⎛
⎝ ∏

mi �=m

√
mi

⎞
⎠ |�m〉

for any value of m.
(Remark: We will take ym = 0 in general; replacing a square by a sum of squares in the

norm-squared value of |�m〉 adds a few more cases with exact solutions, but fails to make a
difference in the general case.)
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Then we need to show that

〈�m|�m〉 = m (xm)2 = μ (10)

either does or does not have a solution for all m in any chosen set {∣∣�m
〉}. The resulting

condition is obviously

m1 (x1)
2 = m2 (x2)

2 = m3 (x3)
2 = · · · . (11)

Since every m is a sum of at least four squares, even for a single qubit state, by Lagrange’s
four-square theorem there is some complexified integer field that can produce any arbitrary
integer as the value of m. Assume m1 = 2 and m2 = 3. Then x2/x1 = √

2/3; but there are
no integer values of (x1, x2) that can satisfy that equation, so it is impossible in the integer
domain to satisfy equation (11) in general.

This no-go theorem leads us inevitably to consider a set of values of μm = m (xm)2 that
defines approximate norm-squared values that are close enough so that the values of the scaled
probabilities based on the set {∣∣�m

〉} obey the cardinal order of equation (8) with the following
variant of equation (6):

P̄�m
(i) = (xm)2|αi|2.

We notice that m itself does not appear, and that, since each αi → xmαi, the original expression
is now re-weighted by (xm)2. The important point is now that as long as the inequalities of
equation (8) are preserved, and the violation of exact equalities does not violate the inequalities,
we have a valid instance of a cardinal probability theory.

Since the ordering requirements typically refer to sets of comparisons, possibly with
different states, we introduce the notation

P̄(i) = {P̄�m
(i)}//{μm} (12)

that expands to

{(xm1 )
2|αm1

i |2, (xm2 )
2|αm2

i |2, . . .}//{μm1 , μm2 , . . .}.
This expression represents a realization of the set of cardinal probabilities P̄�m

(i) with respect
to the approximate normalizations μm = 〈�m|�m〉 = m (xm)2.

The set {μm} represents the scale with respect to which we are going to compare cardinal
probabilities of states {∣∣�m

〉} during the measurement process. The number of resources
required by the observer corresponds precisely to the characteristic of the field used to define
the scale via the set {μm}. One can intuitively picture the elements of {μm} as a set of rulers
that are ‘equal’ to within a certain precision; to get more precision, one needs to buy a
more expensive set of rulers. Alternatively, one can visualize the precision of the rulers to be
controlled by a set of interactive dials or sliders, with the precision (as well as the cost of the
resources) increasing progressively as the values are increased.

8.2. Scale determination

We begin with some simple examples of scale determination. Let p = 311, k = 11,
and d = 2. The permitted range of coefficients is S0(11) = {−5, . . . ,−1, 0, 1, . . . , 5};
given the dimension d = 2, the allowed probability amplitude coefficients are F2(11) =
{0,±1,±i, (±1 ± i)} (see table 2 above). Consider a single state |�3〉 = 1|0〉 + (1 + i)|1〉. In
this case there is no need to scale the state, i.e., we can take xm = 1 and calculate |1|2 = 1,
|(1 + i)|2 = 2 and the norm-squared 〈�3|�3〉 = 3 (which is in the allowed range). The
probability of measuring λ0 is 1//3 and that of measuring λ1 is 2//3. These results can be used
to infer that the probability of measuring λ1 is greater than the probability of measuring λ0 but
they cannot be used to conclude that the former event is exactly twice as likely as the second.

12



J. Phys. A: Math. Theor. 47 (2014) 115305 A J Hanson et al

Table 3. Norms-squared and probabilities for 1-qubit states |�m〉 in F2(11).

Norm2 = m 〈�1|�1〉 = 1 〈�2|�2〉 = 2 〈�3|�3〉 = 3 〈�4|�4〉 = 4
Prob. of λ0 |〈0|�1〉|2 = 1//1 |〈0|�2〉|2 = 1//2 |〈0|�3〉|2 = 1//3 |〈0|�4〉|2 = 2//4
Prob. of λ1 |〈1|�1〉|2 = 0//1 |〈1|�2〉|2 = 1//2 |〈1|�3〉|2 = 2//3 |〈1|�4〉|2 = 2//4

Table 4. A failing choice (left) and a successful choice (right) for the rescaling of the
system {|�1〉, |�2〉, |�3〉, |�4〉} to realize a cardinal probability system consistent with
conventional quantum mechanical probabilities.

Failing choice Successful choice

Actual {P�m (0), P�m (1)} m x μ = mx2 {P̄�m
(0), P̄�m

(1)} m x μ = mx2 {P̄�m
(0), P̄�m

(1)}
{1, 0} 1 4 16 {16, 0} 1 16 256 {256, 0}
{1/2, 1/2} 2 3 18 {9, 9} 2 12 288 {144, 144}
{1/3, 2/3} 3 2 12 {4, 8} 3 9 243 {81, 162}
{1/2, 1/2} 4 2 16 {8, 8} 4 8 256 {128, 128}

Now let us consider a more interesting example that involves several representative 1-qubit
states,

|�1〉 = 1|0〉
|�2〉 = 1|0〉 + 1|1〉
|�3〉 = 1|0〉 + (1 + i)|1〉
|�4〉 = (1 − i)|0〉 + (1 + i)|1〉,

as explicit examples of each m. (There are of course many equivalent vectors representing
the same physical state, a miniature local version of the traditional Bloch sphere mapping
[4].) Table 3 presents the bare analogues of norms-squared and probabilities for the |�m〉
representing the properties of the four unique norms, m = 1, 2, 3, and 4. (In larger fields,
these numbers do not necessarily form a sequence.)

We will introduce a deterministic construction to identify approximate choices for
{μ1, μ2, μ3, μ4} in a moment. But first let us give a clear heuristic example of the nature
of the problem and the process by which we can converge towards solutions. In table 4, we
show two guesses for the values of {x1, x2, x3, x4}. The first is extremely simple, but the numbers
do not quite have enough power to avoid a conflict with the required order corresponding to the
real-valued probabilities P�m (0) = (1, 1/2, 1/3, 1/2) and P�m (1) = (0, 1/2, 2/3, 1/2). The
second choice, still constructed from integers that are quite small, achieves the required
ordering and is our first example of an instance of a cardinal probability system for
{|�1〉, |�2〉, |�3〉, |�4〉}.

To extend this heuristic framework toward a deterministic computation, we now propose
specific criteria to select the set of normalizations {μ1, μ2, μ3, μ4} with respect to which we
can compare cardinal probabilities. The method relies on introducing the notion of square root
of a number drawn from a finite field. In conventional quantum computing, it is possible to
re-weight the four states above so that all have a norm-squared of 24 as follows:

|�1〉 = 2
√

6 (1|0〉)
|�2〉 = 2

√
3 (1|0〉 + 1|1〉)

|�3〉 = 2
√

2 (1|0〉 + (1 + i)|1〉)
|�4〉 = √

6 ((1 − i)|0〉 + (1 + i)|1〉).
However, it is impossible to achieve this re-weighting precisely in a discrete theory because the
square roots cannot be calculated exactly in finite fields. We can, however, produce successively
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more accurate approximations of square roots with bigger and bigger fields using a prescription
suggested by Reisler and Smith [20].

We denote the approximate square root of m > 0 in a finite field Fp by ′√m. This
approximate square root is calculated by taking the usual square root of the smallest element
in the ordered range S0(k) that is greater than m and that is a quadratic residue. For example,
in a field with more than 8 positive ordered elements, S0(k � 19), we have:

′√2 = √
4 = 2

′√3 = √
4 = 2

′√6 = √
9 = 3.

Even though these approximations are crude, they can be used to re-weight the vectors
above to get probabilities P̄�m

(i) whose relationships approximate the ideal mathematical (but
uncomputable using finite resources) probabilities. In more detail, the re-weighted vectors
become: ∣∣�1

〉 = 6(1|0〉)∣∣�2
〉 = 4(1|0〉 + 1|1〉)∣∣�3
〉 = 4(1|0〉 + (1 + i)|1〉)∣∣�4
〉 = 3((1 − i)|0〉 + (1 + i)|1〉),

with {μm} = {36, 32, 48, 36}, and the probabilities become:

P̄�1
(0) = 36 P̄�1

(1) = 0
P̄�2

(0) = 16 P̄�2
(1) = 16

P̄�3
(0) = 16 P̄�3

(1) = 32
P̄�4

(0) = 18 P̄�4
(1) = 18,

which we express as

P̄(0) = {36, 16, 16, 18}//{36, 32, 48, 36}
P̄(1) = {0, 16, 32, 18}//{36, 32, 48, 36}.

In comparison with the exact probabilities, we see that P̄�3
(0) and P̄�2

(0) collapse to a single
value and P̄�4

(0) is approximated in a way that makes it larger than P̄�2
(1). If we only

concern ourselves with how the actual probabilities are related by the � relation, then our
approximation is adequate.

If we desire an even more accurate approximation, we can proceed as follows: we choose
a larger field for measurement in which the ordered ranged is scaled by 100 so that the square
roots get one additional digit of precision. Specifically, in a field with more than 625 positive
ordered elements, we have

′√200 = √
225 = 15

′√300 = √
324 = 18

′√600 = √
625 = 25 ,

giving a better approximation of the square roots (scaled by 10). Using these approximations,
the four vectors become:∣∣�1

〉 = 50(1|0〉)∣∣�2
〉 = 36(1|0〉 + 1|1〉)∣∣�3
〉 = 30(1|0〉 + (1 + i)|1〉)∣∣�4
〉 = 25((1 − i)|0〉 + (1 + i)|1〉)
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with {μm} = {2500, 2592, 2700, 2500}, and the probabilities become:

P̄�1
(0) = 2500 P̄�1

(1) = 0
P̄�2

(0) = 1296 P̄�2
(1) = 1296

P̄�3
(0) = 900 P̄�3

(1) = 1800
P̄�4

(0) = 1250 P̄�4
(1) = 1250.

In comparison with the exact probabilities, we see that the increase in precision has
reestablished the distinction between P̄�3

(0) and P̄�2
(0). The two probabilities P̄�4

(0) and
P̄�2

(1) are now relatively closer but they are still, however, not equal. A moment’s reflection
shows that these two values can never be equal as (

′√2)2 can never be precisely 2 no matter
how many digits of the actual

√
2 we maintain.

9. Discrete quantum computing (II)

We now examine two particularly important types of examples within the discrete theory of the
previous section: the first is the deterministic Deutsch–Jozsa algorithm [5, 6], which determines
the balanced or unbalanced nature of an unknown function with a single measurement step
(O(1)), and the second is the (normally) probabilistic Grover algorithm [5, 6, 23], determining
the result of an unstructured search in O(

√
N) time. In the following, we use k to denote the

upper bound of the ordered range of integers needed to perform a given calculation; this in
turn is assumed to be implemented using a choice of a finite prime number p that supports
calculation in the range of k.

9.1. Discrete Deutsch–Jozsa algorithm: deterministic

To examine the Deutsch–Jozsa algorithm in the discrete theory of the previous section, we
assume we are given a classical function f : Booln → Bool, and are told that f is either
constant or balanced [5, 6]. The algorithm is expressed in a space of dimension d = 2n+1: it
begins with the n + 1 qubit state |1〉|0〉 where the overline denotes a sequence of length n, as
in section 4. A straightforward calculation [5] shows that the final state is9∑

z∈{0,1}n

∑
x∈{0,1}n

(−1) f (x)+x·z (|0〉|z〉 − |1〉|z〉),

and that its norm-squared is 2n+1. To make sure that the algorithm works properly, we note
that all the probability amplitudes involved in the calculation are in the range −2n, . . . , 2n and
therefore, by equation (5), we get the following constraint on the size of the ordered region in
the finite field:

2n+1 (2n)
2 � k − 1

2
⇔ k � 23n+2 + 1.

Now we need to choose a prime number p that supports calculation in the range of k.
Assume that k is the least prime satisfying k � 23n+2 +1, and let p be the π(k)th element of the
sequence A000229 [21]. We argue that no prime less than this value of p can support calculation
in the ordered range of k, and that this p is sufficient to support such calculation. In particular,
since k is the least quadratic non-residue of p, every number less than k is a quadratic residue,
and thus 0, 1, 2, 3, . . . , 23n+2 are all quadratic residues. Hence the numbers −2n, . . . , 2n are
all inside the ordered range S0(k). On the other hand, if we choose any prime smaller than

9 Note that the algorithm in [5] makes use of the Hadamard matrix. We have eliminated the factor 1/
√

2 to ensure
that all quantities are expressed in terms of integers. Also notice that the positioning of the initial qubit state |1〉 is
reversed from [5].
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Table 5. Extension of transitively ordered elements.

p . . . 422 231 . . . 196 265 095 009 . . . . . . . . .
k . . . 37 . . . 131 . . . 257 . . . 32 771 . . .
π (k) . . . 12 . . . 32 . . . 55 . . . 3513 . . .

p, there is a quadratic non-residue smaller than k, and we also know that the least quadratic
non-residue is a prime [8]. Thus, there is a quadratic non-residue in 0, 1, 2, 3, . . . , 23n+2 , and
therefore, for this smaller p, there would be a number in −2n, . . . , 2n that is not in the ordered
range S0(k).

When f is constant, the cardinal probability of measuring |0〉|0〉 or |1〉|0〉 is (2n)2+(2n)2 =
22n+1//22n+1; i.e., the cardinal probability of measuring any other state is 0//22n+1. When f is
balanced, the cardinal probability of measuring |0〉|0〉 or |1〉|0〉 is 0//22n+1. Therefore, if we
find that the post-measurement state is either |0〉|0〉 or |1〉|0〉, we know f is constant; otherwise,
f is balanced.

For a single qubit Deutsch problem, the absolute maximum probability amplitude is 2 and
d = 21+1 = 4, so we want to have

k � 23×1+2 + 1 = 25 + 1 = 33.

The least prime satisfying the above condition is k = 37, and thus

π (37) = 12

p = 422 231,

where the prime counting function π(k) is taken from the extended elements in table 5.
For the 2-qubit Deutsch–Jozsa, the computation is already quite challenging. Now the

absolute maximum probability amplitude is 4 and d = 22+1 = 8, so we need

k � 23×2+2 + 1 = 28 + 1 = 257.

Because 257 is a prime, we can pick

k = 257

π (257) = 55.

The actual value of p is already outside the range of the published tables.
These examples illustrate that the value of p plays an essential role: its size grows with

the numerical range of the intermediate and final results of the algorithms being implemented.
Therefore, we naturally recover a deterministic measure of the intrinsic resources required for
a given level of complexity; this measure is normally completely hidden in computations with
real numbers, and explicitly exposing it is one of the significant achievements of our discrete
field analysis of quantum computation. This solves the conundrum that the conventional
Deutsch–Jozsa algorithm mysteriously continues to work for larger and larger input functions
without any apparent increase in resources. Our analysis of this problem reveals that as the
size of the input increases, it is necessary to increase the size of p and hence the size of the
underlying available numeric coefficients. This observation does not fully explain the power
of quantum computing over classical computing, but at least it explains that some of the power
of quantum computing depends on increasingly larger precision in the underlying field of
numbers.

9.2. Discrete Grover search: nondeterministic

As an example of how to apply our cardinal probability framework to a nondeterministic
algorithm, consider the N × N ‘diffusion’ and ‘phase rotation’ matrices for searching an
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unstructured database of size N = 2n using Grover’s algorithm [23]:

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − N

2
1 1 . . . 1

1 1 − N

2
1 . . . 1

1 1 1 − N

2
. . . 1

...
...

...
...

...

1 1 1 . . . 1 − N

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R =

⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

,

where we have eliminated, in matrix D, the scaling factor 2/N to enforce the requirement
that all matrix coefficients in our framework are integer-valued. Note that we have chosen
the ‘marked’ element in matrix R to be in the first position. In the standard algorithm, the
transformation DR is repeated j times, where

j = round

⎛
⎝ π

4 arccos
√

1 − 1
N

− 1

2

⎞
⎠ ≈ round

(π

4

√
N

)
.

In our context, we must choose a prime number that is large enough to ensure that all the
numbers that occur during the calculation and after measurement are within the transitively-
ordered subrange.

Let f be the function we want to search, and let t be the target, i.e., f (x) = 1 if and
only if x = t. Because the probability amplitudes of |x〉 are all the same for x �= t, we can let
al be the probability amplitude of |t〉, with bl the probability amplitude of each of the other
possibilities, which are all the same. We begin at l = 0 with the information-less state, the
normalization scaled to integer values as usual, which we can write as⎛

⎜⎜⎜⎝
a0

b0
...

b0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎟⎠ .

Applying the operators DR, and denoting by al and bl the two unique elements of the N-
dimensional column vector describing the evolving process, we find the following recurrence
relation for the successive coefficients:

a0 = 1

b0 = 1

al+1 =
(

N

2
− 1

)
al + (N − 1)bl

bl+1 = (−1)al +
(

N

2
− 1

)
bl .
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We also know that
∣∣a j

∣∣ >
∣∣b j

∣∣, so we can estimate an upper bound for the maximum cardinal
probability as

max
∣∣a j

∣∣2 � 2

(
N

2

)2 j+1

.

By applying equation (5) with d = N = 2n, we can estimate k using

k � 8

(
N

2

)2 j+2

+ 1 .

If we pick a prime k satisfying the above condition, then choosing the π(k)th prime in the
sequence represented by table 1 guarantees that every number we need for the computation is
within the transitively ordered range Fd(k).

For the 2-qubit Grover search, we have N = d = 4 and j = 1, with the maximum cardinal
probability

max
∣∣a j

∣∣2 � 2

(
4

2

)2+1

= 16 ,

so we need

k � 8

(
4

2

)2×1+2

+ 1 = 8 × 24 + 1 = 129.

The least prime k satisfying the above condition is k = 131, and so

π (131) = 32

p = 196 265 095 009.

When p = 196 265 095 009, we assume that f (x) = 1 if and only if |x〉 = |0〉|0〉, and
so the final state is (4, 0, . . . , 0)T with norm-squared of 16. Then, the cardinal probability of
obtaining |0〉|0〉 as the post-measurement state is 16//16, and it is 0//16 for the rest of the states.

For the 3-qubit Grover search, we have N = d = 8 and j = 2, with an upper bound
max

∣∣aj

∣∣2 � 2
(

8
2

)4+1 = 2048 on the cardinal probability. Thus

k � 8

(
8

2

)6

+ 1 = 32 769.

The nearest prime greater than this number is 32 771, so we can pick

k = 32 771

π(32 771) = 3513 ,

and so if we use the 3513th prime, we can implement Grover’s algorithm for a database of
size 8.

Continuing with the 3-qubit Grover example, we show how the cardinal probabilities
evolve to single out the target state. First, assume that f (x) = 1 if and only if |x〉 = |0〉|0〉|0〉.
The initial information-less eight-dimensional state vector evolves under the application of
DR as follows:⎛

⎜⎜⎜⎝
1
1
...
1

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

10
2
...
2

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

44
−4

...
−4

⎞
⎟⎟⎟⎠ .
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These states have differing norm-squared, so we multiply the first and second states by 16 and
4, respectively, to force them to have the same value of 2048. The now-consistently-normalized
states become ⎛

⎜⎜⎜⎝
16
16
...

16

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

40
8
...
8

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

44
−4

...
−4

⎞
⎟⎟⎟⎠ .

Therefore, the cardinal probabilities of measuring |0〉|0〉|0〉 in each state are

256//2048 1600//2048 1936//2048 ,

while the cardinal probabilities of measuring the other states become

256//2048 64//2048 16//2048.

We may thus conclude that the cardinal probability of measuring the satisfying assignment of
f increases as we apply the diffusion D and phase rotation R matrices repeatedly.

Clearly, the required size of k increases systematically with the problem size, and the
corresponding size of the required prime number p defining the discrete field increases in the
fashion illustrated in tables 1 and 5.

10. Conclusions

Since conventional quantum theory is defined over uncomputable complex numbers, it is
natural to explore alternative versions of quantum theory based on finite fields. Examining
the computational and physical consequences of such computable frameworks can yield new
insights into the power and capacity of quantum computing. We have described a path through
several variants of discrete quantum theories, starting with unrestricted discrete fields (modal
theories), then advancing to a more reasonable framework based on complexifiable discrete
fields (discrete quantum theory I), which supports unnaturally efficient deterministic quantum
algorithms. We conclude with a still more plausible discrete theory (discrete quantum theory
II), from which conventional quantum computing and conventional quantum theory emerge in a
local sense. Note that as the number of restrictions on the discrete fields increases, the frequency
of possibly unreasonable efficiency decreases. As long as we do not perform measurements
or the quantum algorithm is of a deterministic nature, as in Deutsch’s problem, we do not
need to invoke any statistical postulates. This situation is an exception, since conventional
quantum mechanics requires probabilistic components describing information extracted by
measurement from the systems being studied. This measurement process is problematic in
any discrete quantum theory. To resolve the measurement problem in our nondeterministic
situations, we have introduced the notion of cardinal probability. With this approach, we
see that the issues surrounding transitively-ordered probability, intrinsically troublesome in
quantum theory for discrete fields, show signs of being resolvable locally. Interestingly, our
framework allows us to define distinct finite fields for system description and for measurement.
These finite fields distinguish the resources needed to describe the system from the resources
used by the observer. Additional work is in progress on the interaction between the geometrical
properties of finite fields and discrete quantum computing, and we hope to be able to make more
definitive statements about probability measures based on the properties of discrete geometry.
Our investigation leaves open the question of whether conventional quantum mechanics is
physical, or whether perhaps extremely large discrete quantum theories that contain only
computable numbers are at the heart of our physical universe.
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