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Abstract
Conventional quantum computing entails a geometry based on the description
of an n-qubit state using 2n infinite precision complex numbers denoting a
vector in a Hilbert space. Such numbers are in general uncomputable using any
real-world resources, and, if we have the idea of physical law as some kind of
computational algorithm of the universe, we would be compelled to alter our
descriptions of physics to be consistent with computable numbers. Our purpose
here is to examine the geometric implications of using finite fields Fp and finite
complexified fields Fp2 (based on primes p congruent to 3 (mod4)) as the basis
for computations in a theory of discrete quantum computing, which would
therefore become a computable theory. Because the states of a discrete n-qubit
system are in principle enumerable, we are able to determine the proportions
of entangled and unentangled states. In particular, we extend the Hopf fibration
that defines the irreducible state space of conventional continuous n-qubit
theories (which is the complex projective space CP2n−1) to an analogous
discrete geometry in which the Hopf circle for any n is found to be a discrete set
of p+ 1 points. The tally of unit-length n-qubit states is given, and reduced via
the generalized Hopf fibration to DCP2n−1, the discrete analogue of the complex
projective space, which has p2n−1(p − 1)

∏n−1
k=1(p2k + 1) irreducible states.

Using a measure of entanglement, the purity, we explore the entanglement
features of discrete quantum states and find that the n-qubit states based on the
complexified field Fp2 have pn(p − 1)n unentangled states (the product of the
tally for a single qubit) with purity 1, and they have pn+1(p − 1)(p + 1)n−1

maximally entangled states with purity zero.

PACS numbers: 03.67.−a, 03.67.Ac, 03.65.Ta, 02.10.De

(Some figures may appear in colour only in the online journal)

1. Introduction

Conventional quantum computing (CQC) is appealing because it expands our horizons on the
concepts of computing in general. The fundamental principles of CQC broadly influence
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computer science, physics, mathematics, and logic. Not only would Turing have been
fascinated by the implications of quantum computing for his own theory of computation, but
he would also have been intrigued by the apparent absence of any further possible extensions.
In this paper we go one step further, and study the beginnings of a fundamental consistent
framework for discrete quantum computing (DQC). Our basic results in this paper include a
detailed construction and analysis of the irreducible n-qubit states in DQC, a novel analysis of
the structure of the discrete generalized Bloch sphere for n-qubits and a study of entanglement
in the discrete domain.

Research on theoretical quantum computing focuses on two distinct aspects, algorithms
and geometry. Since quantum computing contains features and components quite different
from classical computational methods, the exploration of algorithms, computation, and the
theory of computational methods is essential, and includes the study of topics such as the
Deutsch–Jozsa algorithm whose task is to determine if a function is constant or balanced
with preternatural speed, and Grover’s algorithm for searching a database with the square
root of the number of queries needed classically. But another essential branch of quantum
computing research is the investigation of the nature of states themselves, the geometry of
the spaces describing the n-qubit states upon which algorithms eventually act; the properties
of such spaces are important in their own right, long before they are used in algorithms.
Understanding these properties serves, for example, to explicate the nature of irreducible
states (when all wave-function symmetries are eliminated), and exposes the nature of entangled
states, a phenomenon completely absent from any non-quantum geometrical framework. The
geometric aspects of conventional quantum theory and quantum computing are the subject
of a vast literature, and entire books (see, e.g., [1]) have been devoted to quantum geometry
and its relation to entanglement. An extensive picture of the geometry of CQC has emerged,
showing that the complex projective spaces CP2n−1 precisely embody the irreducible states of
an n-qubit quantum circuit element, and, in addition, permit the explicit study of the actual
paths in the irreducible state space that correspond to idealized quantum operations.

Our contribution, which involves issues possibly less familiar to readers of the algorithm-
centered literature, is to extend the path of the corpus of ‘conventional’ geometry-based
quantum computing research into the discrete domain. We start with a finite complexified
Galois field Fp2 replacing the complex fields used in the existing literature for the geometry
of quantum computing (e.g., [1, 2]) and examine the implications of calculating the geometric
properties of n-qubit states with coefficients defined in discrete Galois fields. Our work for
the first time explicates a rigorous approach to n-discrete-qubit complex geometry and the
resulting discretized complex projective spaces. We rederive some of the basic results of
discrete complex mathematics introduced by Arnold [3], and extend these to a discrete attack
on the entire spectrum of geometric problems appearing in the CQC literature. Among the new
insights that appear in our approach are explicit relative measures for counting the numbers of
unentangled, partially entangled, and maximally entangled states, along with the dependence
of these measures on the size of the chosen discrete fields. All of this structure is concealed
by the infinite precision of real numbers in CQC, and thus the discrete methods provide ways
of understanding the resources of quantum computing and isolating the relations between
resources and problem size that cannot be studied in any other fashion. These are significant
new results, whose ultimate implications cannot be trivially predicted.

This work is given impetus by the fact that the great majority of the laws of physics are
formulated as equalities (more appropriately, as isomorphisms) between different physical
observables. For instance, Newton’s second law of classical mechanics equates the force
acting on a system to its rate of change of momentum. Another type of law is the second
law of thermodynamics, which asserts that the entropy of a system increases as the system
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evolves in time, with a corresponding mathematical formulation in terms of an inequality. It
is certainly appealing to relate the laws of physics described in this way to computational
algorithms. However, an important observation is that the laws of physics are in general
implicitly formulated in terms of uncomputable numbers. We therefore concern ourselves
with the issue of whether conventional quantum mechanics is physical, or whether perhaps
extremely large discrete quantum theories that contain only computable numbers are at the heart
of our physical universe. Imagining that physical laws might ultimately require computable
numbers provides a compelling motivation for the research program in DQC to which this
paper is devoted.

Of specific relevance to our topic is the fact that the title of Turing’s seminal 1937 paper
[4] was ‘On Computable Numbers. . .’. The idea of computable numbers is of foundational
significance in computer science and has had a significant impact on logic. However, despite
arguments and challenges noted by prominent researchers [5–7], most mathematical models
depend completely on uncomputable numbers, that is, the continuum of real (or complex)
numbers; the mathematical framework of conventional quantum mechanics is based on
Hilbert spaces, which have uncomputable numbers as their underlying field. In the words of
Landauer [8],

. . . the real world is unlikely to supply us with unlimited memory of unlimited Turing
machine tapes. Therefore, continuum mathematics is not executable, and physical
laws which invoke that cannot really be satisfactory . . .

Here we explore a further plausible principle of quantum computing—the hypothesis that,
because of the finiteness of resources in the universe, the domain of physical computation (thus
including quantum mechanics) could be restricted to computable numbers and finite fields.

When we began this research program some years ago, our starting point, like that of
Schumacher and Westmoreland [9], was to investigate the properties of a version of quantum
mechanics obtained by instantiating the mathematical framework of Hilbert spaces with the
smallest finite field of Booleans instead of the field of complex numbers. That ‘toy model’ was
called modal quantum mechanics by Schumacher and Westmoreland. Our first result [10] was
to explicate the associated model of computing as a conventional classical model of relational
programming with one twist that is responsible for all the ‘quantum-ness’. More precisely,
we isolated the ‘quantum-ness’ in the model in one operation: that of merging sets of answers
computed by several alternative choices in the relational program. In the classical world, the
answers are merged using a plain union; in modal quantum computing, the answers are merged
using the exclusive union, which is responsible for creating quantum-like interference effects.

Despite the initial expectations that modal quantum computing would be a ‘toy’ version
of CQC, we showed—in a surprising development—that modal quantum computing exhibited
supernatural computational power. More precisely, we showed that the UNIQUE-SAT problem
(the question of deciding whether a given Boolean formula has a satisfying assignment,
assuming that it has at most one such assignment) can be solved deterministically and in
a constant number of black box evaluations in modal quantum computing. We traced this
supernatural power to the fact that general finite fields lack the geometrical structure necessary
to define unitary transformations, and proposed instead the framework of discrete quantum
theory [11]. This framework is based on complexified Galois fields (see, for example, [3]) with
characteristic p = 4� + 3 for � a non-negative integer (i.e., p ≡ 3(mod4))), which recover
enough geometric structure to define orthogonality and hence allow the definition of Hermitian
dot products and unitary transformations.

Discrete quantum theories eliminate the particular supernatural algorithm for
UNIQUE-SAT. They however still allow subtle supernatural algorithms that depend on the
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precise relation of the characteristic of the field p and the number of qubits used in the
calculation. In particular, we were able to show that supernatural behavior can happen in
versions of UNIQUE-SAT for a database of size N if the characteristic p of the field divides
(2N − 1) [11].

This paper explores the notions above in detail from first principles. We will focus
our attention on the specific challenge that confronts any attempt to build an n-qubit quantum
computing structure based on the classical mathematical domain of finite fields, and particularly
on the shift in the concepts of geometry as one transitions from the continuous case (CQC)
to the discrete case (DQC). The fundamental mathematical structure that we shall refer to
throughout is the finite field Fpr , where p is a prime number, with some possible restrictions,
and r � 1 is an integer. We shall see below that Fp2 in particular will give us a precise discrete
analogue to the continuous complex probability amplitude coefficients of conventional n-qubit
quantum states.

Our task is then to extract some minimal subset of the familiar geometric properties of
CQC in the context of the unfamiliar geometric properties of DQC. It does not take long to
discover a litany of issues such as the following.

• CQC is based on continuous (typically uncomputable) complex state coefficients in the
complex number field C, whose absolute squares are continuous (typically uncomputable)
real probabilities in R that are ordered: one can always answer the question asking whether
one probability is greater than another. In DQC, we still have (a discrete version of) complex
numbers in Fp2 , and their absolute squares still have real values in Fp; however, in Fp, there
is no transitive order—all real values repeat modulo p, and, without additional structure,
we cannot, even in principle, tell what the ordering should be (e.g., for p = 3, the label set
{−1, 0, 1} is just as good as {0, 1, 2}). There are ways to label ‘positives’ and ‘negatives’ in
the finite field Fp, and ways to assign ordered local neighborhoods under certain restrictive
conditions, but we still have no consistent way to order the numbers in an entire field.

• In CQC there is no distinction between geometric proximity of vectors and probability of
closeness. The calculation for the two concepts is the same. In DQC, there is no notion
of closeness of vectors that can be computed by inner products or probabilities, although
there are deep geometric structures on discrete lattices. One of our challenges is therefore
to tease out some meaning from this geometry despite its failure to support the expected
properties of such common operations as inner products that are compatible with our
intuitions from real continuous geometry.

• In ordinary real and complex geometry, we have continuous notions of trigonometry.
Additional notions implying continuous geometry for ordinary number fields include linear
equations whose solutions are continuous lines, quadratic equations whose solutions are
manifolds such as spheres, and continuous-valued measurable quantities such as lengths
of line segments, areas of triangles, volumes of tetrahedra, etc. In a discrete real or
complex lattice corresponding to Fp or Fp2 , analogues of many of these familiar geometric
structures exist, but they have unintuitive and unfamiliar properties. We will expand on
these geometric structures in a future publication.

We proceed in our exposition first by reviewing the underlying geometry of continuous
n-qubit states in CQC, including a discussion of the properties of entanglement. Our next step
is to review the often non-trivial technology of real and complex discrete finite fields. Finally,
we examine the features of discrete state geometry for n-qubits, including entanglement, as
they appear in the context of states with discrete complex ‘probability amplitude’ coefficients.
In particular, we extend the Hopf fibration of CQC (which is the complex projective space
CP2n−1) to a discrete geometry in which the Hopf circle contains p + 1 points. The resulting
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discrete complex projective space DCP2n−1 has p2n−1(p−1)
∏n−1

k=1(p2k +1) irreducible states,
pn(p − 1)n of which are unentangled and pn+1(p − 1)(p + 1)n−1 maximally entangled states.

2. Continuous quantum geometry

Conventional quantum computation is described by the following:

(i) D = 2n orthonormal basis vectors of an n-qubit state,
(ii) the normalized D complex probability amplitude coefficients describing the contribution

of each basis vector,
(iii) a set of probability-conserving unitary matrix operators that suffice to describe all required

state transformations of a quantum circuit,
(iv) and a measurement framework.

We remark that there are many things that are assumed in CQC, such as the absence of
zero norm states for non-zero vectors, and the decomposition of complex amplitudes into a
pair of ordinary real numbers. One also typically assumes the existence of a Hilbert space
with an orthonormal basis, allowing us to write n-qubit pure states in general as Hilbert space
vectors with an Hermitian inner product:

|�〉 =
D−1∑
i=0

αi|i〉. (1)

Here αi ∈ C are complex probability amplitudes, �α ∈ CD, and the {|i〉} is an orthonormal basis
of states obeying

〈i|k〉 = δik. (2)

The meaning of this is that any state |�〉 = ∑D−1
i=0 βi|i〉 can be projected onto another state

|�〉 by writing

〈�|�〉 =
D−1∑
i=0

β∗
i αi, (3)

thus quantifying the proximity of the two states. (Here ∗ denotes complex conjugation.) This
is one of many properties we take for granted in continuum quantum mechanics that challenge
us in defining a discrete quantum geometry.

In this paper, we focus on the discrete geometric issues raised by the properties (i) and (ii)
given above for CQC, and leave for another time the important issues of (iii), (iv), and such
conundrums as probabilities, zero norms, and dynamics in the theory of DQC.

To facilitate the transition to DQC carried out in later sections, we concern ourselves first
with the properties of the simplest possible abstract state object in CQC, the single qubit state.

2.1. The single qubit problem

A single qubit already provides access to a wealth of geometric information and context. We
write the single qubit state as

|ψ1〉 = α0|0〉 + α1|1〉 α0, α1 ∈ C. (4)

A convenience for probability calculations and a necessity for computing relative state
properties is the normalization condition

‖ψ1‖2 = |α0|2 + |α1|2 = α∗
0α0 + α∗

1α1 = 1, (5)
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which identifies α0 and α1 as (complex) probability amplitudes and implies the conservation
of probability in the closed world spanned by {|0〉, |1〉}. Note that we distinguish for future
use the norm ‖ · ‖ of a vector from the modulus | · | of a complex number. Continuing, we
see that if we want only the irreducible state descriptions, we must supplement the process of
computing equation (5) by finding a way to remove the distinction between states that differ
only by an overall phase transformation eiφ , that is,

(α0, α1) ∼ (eiφα0, eiφα1). (6)

This can be accomplished by the Hopf fibration, which we can write down as follows: let

α0 = x0 + iy0, α1 = x1 + iy1. (7)

Then equation (5) becomes the condition that the four real variables describing a qubit denote
a point on the three-sphere S3 (a 3-manifold) embedded in R4:

x 2
0 + y 2

0 + x 2
1 + y 2

1 = 1. (8)

There is a family of six equivalence classes of quadratic maps that take the remaining three
degrees of freedom in equation (8) and reduce them to two degrees of freedom by effectively
removing eiφ (‘fibering out by the circle S1’). The standard form of this class of maps (‘the
Hopf fibration’) is

X = 2 Re α0α
∗
1 = 2x0x1 + 2y0y1

Y = 2 Im α0α
∗
1 = 2x1y0 − 2x0y1 (9)

Z = |α0|2 − |α1|2 = x 2
0 + y 2

0 − x 2
1 − y 2

1 .

These transformed coordinates obey

‖X‖2 = X2 + Y 2 + Z2 = (|α0|2 + |α1|2)2 = 1 (10)

and therefore have only two remaining degrees of freedom describing all possible distinct
one-qubit quantum states. In figure 1 we illustrate schematically the family of circles each one
of which is collapsed to a point (θ, φ) on the surface X2 + Y 2 + Z2 = 1 by the Hopf map.

The resulting manifold is the 2-sphere S2 (a 2-manifold) embedded in R3. If we choose
one of many possible coordinate systems describing S3 via equation (8) such as

(x0, y0, x1, y1) =
(

cos
θ + φ

2
cos

ψ

2
, sin

θ + φ

2
cos

ψ

2
, cos

θ − φ

2
sin

ψ

2
, sin

θ − φ

2
sin

ψ

2

)
,

(11)

where 0 � ψ � π , with 0 � θ+φ

2 < 2π and 0 � θ−φ

2 < 2π , we see that

(X,Y, Z) = (cos φ sin ψ, sin φ sin ψ, cos ψ). (12)

Thus the one-qubit state is independent of θ , and we can choose θ = φ without loss of
generality, reducing the form of the unique one-qubit states to

|ψ1〉 = eiφ cos
ψ

2
|0〉 + sin

ψ

2
|1〉, (13)

and an irreducible state can be represented as a point on a sphere, as shown in figure 2(a).
Thus the geometry of a single qubit reduces to transformations among points on S2, which

can be parametrized in an infinite one-parameter family of transformations, one of which is
the geodesic or minimal-length transformation. Explicitly, given two one-qubit states denoted
by points a and b on S2, the shortest rotation carrying the unit normal â to the unit normal b̂
is the SLERP (spherical linear interpolation)

S(â, b̂, t) = â
sin((1 − t)θ )

sin θ
+ b̂

sin(tθ )

sin θ
, (14)
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(b)(a)

Figure 1. (a) The sphere represented by equation (10), which is the irreducible space of one-qubit
states, along with a representative set of points on the sphere. (b) Representation of the Hopf
fibration as a family of circles (the paths of eiφ ), each corresponding to a single point on the sphere
in (a). Points in (a) are color coded corresponding to circles in (b), e.g., one pole contains the red
elliptical circle that would become an infinite-radius circle in a slightly different projection, and
the opposite pole corresponds to the large perfectly round red circle at the equator.

(b)(a)

Figure 2. (a) The conventional Bloch sphere with a unique state represented by the point at the red
sphere. (b) The geodesic shortest-distance arc connecting two one-qubit quantum states.

where â · b̂ = cos θ . Figure 2(b) illustrates the path traced by a SLERP between two irreducible
one-qubit states on the Bloch sphere. Because states in CQC are defined by infinite precision
real numbers, it is not possible, even in principle, to make an exact state transition as implied
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by figure 2(b). In practice, one has to be content with approximate, typically exponentially
expensive, transitions from state to state.

2.2. The n-qubit problem

For n qubits, the irreducible states are encoded in a similar family of geometric structures
known technically as the complex projective space CPD−1. We obtain these structures starting
with the D = 2n initially unnormalized complex coefficients of the n-qubit state basis

|�〉 =
D−1∑
i=0

αi|i〉. (15)

We then follow the analogue of the one-qubit procedure: conservation of probability requires
that the norm of the vector �α be normalized to unity:

〈�|�〉 = ‖�α‖2 =
D−1∑
i=0

|αi|2 = 1. (16)

Thus the initial equation for the geometry of a quantum state describes a topological sphere
S2D−1 embedded in R2D. To see this, remember that we can write the real and imaginary parts
of αi as αi = xi + iyi, so

D−1∑
i=0

|αi|2 =
D−1∑
i=0

(
x 2

i + y 2
i

) = 1 (17)

describes the locus of a 2D-dimensional real unit vector in R2D, which is by definition S2D−1,
the (2D − 1)-sphere, with D = 2n for an n-qubit state.

This S2D−1 in turn is ambiguous up to the usual overall phase, inducing an S1 symmetry
action, and identifying S2D−1 as an S1 bundle, whose base space is the (D − 1)-complex-
dimensional projective space CPD−1. There are thus 2D − 2 irreducible real degrees of
freedom (D − 1 complex degrees of freedom) for a quantum state with a D-dimensional
basis, {|i〉 | i = 0, . . . , D − 1}.

In summary, the full space of a D = 2n-dimensional n-qubit quantum state, including
its overall phase defining its relationship to other quantum states, is the topological space
S2D−1. For an isolated system, the overall phase is not measurable, and eliminating the phase
dependence in turn corresponds to identifying S2D−1 as a circle bundle over the base space
CPD−1, and therefore CPD−1 = CP2n−1 defines the 2D − 2 intrinsic, irreducible, degrees
of freedom of the isolated n-qubit state’s dynamics. In mathematical notation, this would be
written

S1 ↪→ S2D−1 → CPD−1,

with D = 2n as usual. For n = 1, the single qubit, we have 2n − 1 = 2 − 1 = 1, and the base
space of the circle bundle is CP1 = S2, the usual Bloch sphere. Note that only for n = 1 is
this actually a sphere-like geometry due to an accident of low-dimensional topology.

2.3. Explicit n-qubit generalization of the Hopf fibration construction

For one qubit, we could easily solve the problem of reducing the full unit-norm space to its
irreducible components X = (X,Y, Z) characterizing the Bloch sphere. We have just argued
that essentially the same process is possible for n-qubits: in the abstract argument, we simply
identify the family of coefficients {αi} as being the same if they differ only by an overall
phase eiφ . However, in practice this is not a construction that is easy to realize in a practical
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computation. We now outline an explicit algorithm for accomplishing the reduction to the
irreducible n-qubit state space CPD−1; this construction will turn out to be useful for the
validation of our discrete results to follow below.

We begin by noting that a natural quantity characterizing an n-qubit system is its density
matrix, ρ =

[
αiα

∗
j

]
, or

ρ =

⎡
⎢⎢⎢⎢⎣

|α0|2 α0α
∗
1 · · · α0α

∗
D−1

α1α
∗
0 |α1|2 · · · α1α

∗
D−1

...
...

. . .
...

αD−1α
∗
0 · · · αD−1α

∗
D−2 |αD−1|2

⎤
⎥⎥⎥⎥⎦ . (18)

We can now use the complex generalization of the classical Veronese coordinate system for
projective geometry to remove the overall phase ambiguity eiφ from the n-qubit states. If we
take a particular weighting of the elements of the density matrix ρ, we can construct a unit
vector of real dimension D2 with the form:

X = (|αi|2, . . . ,
√

2 Re αiα
∗
j , . . . ,

√
2 Im αiα

∗
j , . . .

)
, (19)

where

X · X =
(

D−1∑
i=0

|αi|2
)2

= 1. (20)

This construction gives an explicit embedding of the (D − 1)-dimensional complex, or
(2D − 2) = (2n+1 − 2)-dimensional real, object in a real space of dimension D2 = 22n.
However, this is somewhat subtle because the vector is of unit length, so technically the
embedding space is a sphere of dimension D2 − 1 = 22n − 1 embedded in RD2

; the one-
qubit irreducible states could be represented in a 4D embedding, but the magnitude of every
coordinate would be one; furthermore, the object embedded in the resulting S3 is indeed S2

because we can fix one complex coordinate to be unity, and let one vary, giving a total of two
irreducible dimensions. In fact one must choose two coordinate patches, one covering one pole
of S2 with coordinates

α0 = 1 + 0i
α1 = x1 + iy1

(21)

and the other patch covering the other pole of S2 with coordinates

α0 = x0 + iy0

α1 = 1 + 0i.
(22)

We finally see that the irreducible n-qubit state space CPD−1 is described by D projectively
equivalent coordinates, one of which can always be scaled out to leave (D−1) actual (complex)
degrees of freedom. We must choose, in turn, D different local sets of complex variables defined
by taking the value αk = 1, with k = 0, . . . , D−1, and allowing the remaining D−1 complex
(or 2D − 2 real) variables to run free. No single set of coordinates will work, since the
submanifold including αk = 0 is undefined and another coordinate system must be chosen to
cover that coordinate patch. This is a standard feature of the topology of non-trivial manifolds
such as CPD−1 (see any textbook on geometry [12]).

2.4. The geometry of entanglement

Entanglement may be regarded as one of the main characteristics distinguishing quantum from
classical mechanics. Entanglement involves quantum correlations such that the measurement

9



J. Phys. A: Math. Theor. 46 (2013) 185301 A J Hanson et al

outcomes in one subsystem are related to the measurement outcomes in another one. Within
the standard framework, given a quantum system composed of n qubit subsystems, a pure state
of the total system |�〉 is said to be entangled if it cannot be written as a product of states of
each subsystem. That is, a state |�〉 is entangled if

|�〉 �= |ψ1〉 ⊗ · · · ⊗ |ψ j〉 ⊗ · · · ⊗ |ψn〉, (23)

where |ψ j〉 refers to an arbitrary state of the jth qubit, and ⊗ represents the tensor product.
This is equivalent to saying that if one calculates the reduced density operator ρ j of the jth
subsystem by tracing out all the other subsystems, ρ j = tr{1,..., j−1, j+1,...,n}(ρ), with j = 1, . . . , n
and ρ = |�〉〈�|, the normalized state |�〉, 〈�|�〉 = 1, is entangled if and only if at least one
subsystem state is mixed; i.e., tr j

(
ρ2

j

)
< 1. For example, consider

ρ j = 1

2

(
1 +

∑
μ=x,y,z

〈
σ j

μ

〉
σ j

μ

)
, (24)

where σ
j

μ, μ = x, y, z, are the Pauli operators acting on the jth spin,

σ j
μ =

n factors︷ ︸︸ ︷
1 ⊗ 1 ⊗ · · · ⊗ σμ︸︷︷︸

jth factor

⊗ · · · ⊗ 1, (25)

with

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (26)

and
〈
σ

j
μ

〉 = 〈�|σ j
μ|�〉 denotes the corresponding expectation value. The vectors X j =

(〈σ j
x 〉, 〈σ j

y 〉, 〈σ j
y 〉), X j ∈ R3, allow a geometric representation of each reduced state in R3,

satisfying 0 � ‖X j‖ � 1. Since tr j
(
ρ2

j

) = 1
2 (1+‖X j‖2), the state |�〉 is entangled if ‖X j‖ < 1

for at least one j, represented by a point inside the corresponding local Bloch sphere. One may
therefore consider |�〉 to be maximally entangled if ‖X j‖ = 0 for all j. On the other hand, the
state |�〉 is unentangled (i.e., a product state) if ‖X j‖ = 1 for all j, corresponding to points
lying on the surface of the Bloch sphere.

A natural geometric measure of multipartite entanglement is obtained by defining the
purity of a state relative to a set of observables [15, 16]. If the set is chosen to be the
set of all local observables, i.e., corresponding to each of the subsystems that compose
the actual system, one recovers the standard notion of entanglement for multipartite systems.
For example, if the system consists of n qubits, we obtain a measure of conventional
entanglement by calculating the purity relative to the set h = {σ 1

x , σ 1
y , σ 1

z , . . . , σ n
x , σ n

y , σ n
z },

Ph = 1

n

n∑
j=1

∑
μ=x,y,z

〈
σ j

μ

〉2
, 0 � Ph � 1. (27)

Since h is a semi-simple Lie algebra, its generalized unentangled states are the generalized
coherent states obtained by applying any group operation to a reference state such as
|0〉 = |0〉 ⊗ · · · ⊗ |0〉. For the algebra h of local observables, such group operations are
simply local rotations on each qubit. In other words, the group orbit describing the generalized
coherent states of h comprises all the product states of the form |�〉 = |ψ1〉⊗· · ·⊗|ψn〉, which
have maximum purity (i.e., Ph = 1). Other states such as the Greenberger–Horne–Zeilinger
state |�〉 = |GHZn〉 = 1√

2
(|0〉⊗· · ·⊗ |0〉+|1〉⊗· · ·⊗ |1〉) are (maximally) entangled relative

to the set of local observables (i.e., Ph = 0).
Different entanglement measures are obtained when a set h different from the local

observables is chosen. An obvious example, in particular, is given by the set of all observables.

10
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In this case, the purity takes its maximum value independently of the pure quantum state
[15, 16], expressing the fact that any state is a generalized coherent state of the Lie algebra of
all observables.

3. Vector spaces over complexified finite fields

In order to address the intrinsic problems induced by the notion of the continuum calculations
of the previous section, one is led to replace the infinite fields of CQC by discrete
computable fields. Accomplishing this while maintaining the essential elements of addition
and multiplication requires a brief excursion into the theory of fields, and particularly the
theory of finite fields.

3.1. Background

Abstract algebra deals with various kinds of algebraic structures, such as groups, rings, and
fields, each defined by a different system of axioms. A field F is an algebraic structure consisting
of a set of elements equipped with the operations of addition, subtraction, multiplication, and
division [13]. Fields may contain an infinite or a finite number of elements. The rational Q,
real R, and complex numbers C are examples of infinite fields, while the set F3 = {0, 1, 2}
under the usual multiplication and modular addition is an example of a finite field. Finite fields
are also known as Galois fields [14].

There are two distinguished elements in a field, the addition identity 0, and the
multiplication identity 1. Given the field F, the closed operations of addition, ‘+’, and
multiplication, ‘∗’, satisfy the following set of axioms.

(i) F is an Abelian group under the addition operation + (additive group).
(ii) The multiplication operation ∗ is associative and commutative. The field has a

multiplicative identity and the property that every nonzero element has a multiplicative
inverse.

(iii) Distributive laws: for all a, b, c ∈ F

a ∗ (b + c) = a ∗ b + a ∗ c (28)

(b + c) ∗ a = b ∗ a + c ∗ a. (29)

From now on, unless specified, we will omit the symbol ∗ whenever we multiply two
elements of a field.

Finite fields of q elements, Fq = {0, . . . , q − 1}, will play a special role in this work. A
simple explicit example is the following addition and multiplication tables for F3:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

∗ 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

3.2. Cyclic properties of finite fields

Finite fields are classified by size. The characteristic of a field is the least positive integer
m such that m = 1 + 1 + 1 + · · · + 1 ≡ 0, and if no such m exists we say that the field
has characteristic zero (which is the case for infinite fields such as R). It turns out that if the
characteristic is non-zero it must be a prime p. For every prime p and positive integer r there is a

11
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finite field Fpr of cardinality q = pr and characteristic p (Lagrange’s theorem), which is unique
up to field isomorphisms. For every a ∈ Fq, a �= 0, then aq−1 = 1, implying the Frobenius
endomorphism (also a consequence of Fermat’s little theorem) aq = a, which in turn permits
us to write the multiplicative inverse of any non-zero element in the field as a−1 = aq−2, since
aq−2a = aq−1 = 1. Every subfield of the field Fq, of cardinality q = pr, has pr′

elements with
some r′ dividing r, and for a given r′ it is unique. Notice that a fundamental difference between
finite and infinite fields is one of topology: finite fields induce a compact structure because of
their modular arithmetic, permitting wrapping around, while that is not the case for fields of
characteristic zero. This feature may lead to fundamental physical consequences.

3.3. Complexified finite fields

Consider the polynomial x2 + 1 = 0 over a finite field Fp. It is known that this polynomial
does not have solutions in the field precisely when the prime p is congruent to 3(mod4) (see,
e.g., [13]).

For such primes, it is therefore possible to construct an extended field Fp2 whose elements
are of the form α = a + ib with a ∈ Fp, b ∈ Fp, and i the root of the polynomial x2 + 1 = 0.
Since the field elements a + ib behave like discrete versions of the complex numbers, we
will refer to fields Fp with prime p congruent to 3(mod4) as complexifiable finite fields, and
i-extended fields Fp2 with p congruent to 3(mod4) as complexified finite fields.

In a complexified finite field Fp2 , the Frobenius automorphism that maps α ∈ Fp2

to αp ∈ Fp2 acts like complex conjugation. For example, in F32 , we have (2 + i)3 =
8 + 12i − 6 − i = 2 + 11i which, in the field, is equal to 2 − i since 11 ≡ −1(mod3).

We define the field norm N(·) as the map from (a + ib) ∈ Fp2 to a2 + b2 ∈ Fp,

N(α = a + ib) = a2 + b2. (30)

We avoid the square root in the discrete field framework because, unlike the continuous case,
the square root does not always exist.

3.4. Vector spaces

In this section we want to build a theory of discrete vector spaces that approximates as closely
as possible the features of conventional quantum theory. Such a structure would ideally consist
of the following: (i) a vector space over the field of complex numbers, and (ii) an inner product
〈�|�〉 associating to each pair of vectors a complex number, and satisfying the following
properties:

(A) 〈�|�〉 is the complex conjugate of 〈�|�〉;
(B) 〈�|�〉 is conjugate linear in its first argument and linear in its second argument;
(C) 〈�|�〉 is always non-negative and is equal to 0 only if |�〉 is the zero vector.

It turns out that a vector space defined over a finite field cannot have an inner product
satisfying the properties above. However, we will introduce an Hermitian ‘dot product’
satisfying some of those properties.

We are interested in the n-qubit vector space H of dimension D = 2n defined over the
complexified field Fp2 . Let |�〉 = (α0α1 . . . αD−1)

T and |�〉 = (β0β1 . . . βD−1)
T represent

vectors in H, with numbers αi and βi drawn from Fp2 , and where (·)T is the transpose.

Definition 3.1 (Hermitian dot product). Given vectors |�〉 and |�〉 ∈ H, the Hermitian dot
product of these vectors is:

〈�|�〉 =
D−1∑
i=0

β
p
i αi . (31)

12
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Two vectors |�〉 and |�〉 ∈ H are said to be orthogonal if 〈�|�〉 = 0. This product satisfies
conditions A and B for inner products but violates condition C since in every finite field there
always exists a non-zero vector |�〉 such that 〈�|�〉 = 0. The reason is that addition in finite
fields eventually ‘wraps around’ (because of their cyclic or modular structure), allowing the
sum of non-zero elements to be zero. The fraction of non-zero vectors satisfying 〈�|�〉 = 0
decreases with the order p.

For any vector |�〉 = (α0α1 . . . αD−1)
T , the Hermitian dot product 〈�|�〉 is equal to∑D−1

i=0 N(αi), which is the sum of the field norms for the complex coefficients. For convenience,
we now extend the field norm to include vector arguments by defining

N(|�〉) = 〈�|�〉 =
D−1∑
i=0

N(αi). (32)

The field norm of a vector can vanish for non-vanishing vectors.
For vectors |�〉 such that 〈�|�〉 = ∑D−1

i=0 α
p
i αi = ∑D−1

i=0 α
p+1
i = ∑D−1

i=0 |αi|2 has a square
root in the field, one can define the following ‘norm’:

||�|| =
√

〈�|�〉, (33)

which is valid only on a subspace of the field norm for finite fields.

4. Irreducible discrete n-qubit states: generalized discrete Bloch sphere

In the one-qubit state with coefficients in Fp2 , the discrete analogue of the Bloch sphere is
constructed by exact analogy to the continuous case: we first require that the coefficients of
the single qubit basis obey

‖ψ1‖2 = |α0|2 + |α1|2 = 1 (34)

in the discrete field. In section A.2 in the appendix, we show that there are p(p2 − 1) such
values. Given this requirement, which is similar in form to the conservation of probability, but
not as useful due to the lack of orderable probability values, we can immediately conclude
that the discrete analogue of the Hopf fibration is again

X = 2 Re α0α
∗
1 = 2x0x1 + 2y0y1

Y = 2 Im α0α
∗
1 = 2x1y0 − 2x0y1 (35)

Z = |α0|2 − |α1|2 = x 2
0 + y 2

0 − x 2
1 − y 2

1 ,

but now with all computations in (mod p). At this point one simply writes down all possible
discrete values for the complex numbers {α0, α1} satisfying equation (34) and enumerates those
that project to the same value of {X,Y, Z}. This equivalence class is the discrete analogue of
the circle in the complex plane that was eliminated in the continuous case. In section A.1 in the
appendix, we show that p+ 1 discrete values of {α0, α1} with unit norm map to the same point
under the Hopf map equation (35); we may think of these as discrete circles or projective lines
of equivalent, physically indistinguishable, complex phase. The surviving p(p − 1) values of
{α0, α1} correspond to irreducible physical states of the discrete single qubit system. Thus, for
example, choosing the underlying field to be F32 , there are exactly six single-qubit state vectors
to populate the Bloch sphere; the four equivalent phase-multiples mapping to each of the six
points on the F32 Bloch sphere are collapsed and regarded as physically indistinguishable. In
figure 3, we plot the irreducible states on the Bloch sphere for p = 3, 7, and 11. Note that
the Cartesian lengths of the real vectors corresponding to the points on the Bloch sphere vary
considerably due to the nature of discrete fields; we have artificially normalized them to a
‘continuous world’ unit radius sphere for conceptual clarity.
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Figure 3. Schematically normalized plots of the elements of the discrete Bloch sphere, the
irreducible single-qubit (two-dimensional) state vectors with unit norm over the field Fp2 . We
show the results for p = 3, 7, and 11. For example, in F32 , there are 24 vectors of unit norm, but
only the 6 inequivalent classes appear in the plot. The p + 1 = 4 equivalent vectors in each class
differ only by a complex discrete phase.

4.1. Counting states on the n-qubit Bloch sphere

We have the unique opportunity in the finite-field approach to quantum computing to precisely
identify and enumerate the physical states. In the conventional theory, as we have seen, we
employ a generalized Hopf fibration on the normalized states to project out a circle of phase-
equivalent states, yielding the generalized Bloch sphere.

In the introduction to this section, we sketched the counting of the irreducible single-
qubit discrete states. To count the number of inequivalent discrete states for the general
n-qubit case with coefficients in Fp2 , we first must find the set of unit-norm states, and then
determine the equivalence classes of unit-norm states under discrete phase transformations;
we can then enumerate the list of states on the discrete generalized Bloch sphere. By executing
computer searches of these spaces, we discovered an hypothesis for a closed-form solution
for the counting of the states, and were then able to find a rigorous inductive proof of the
enumeration, which is presented in the appendix.

This process of describing the discrete n-qubit irreducible states can again be understood
geometrically by following the discrete analogue of the Hopf fibration. First, we construct the
discrete version of the quadratic unit-length form that automatically annihilates the distinction
among states differing only by a discrete phase,

X = (|αi|2, . . . ,
√

2 Re αiα
∗
j , . . . ,

√
2 Im αiα

∗
j , . . .

)
, (36)

where

X · X =
(

D−1∑
i=0

|αi|2
)2

= 1. (37)

From section A.1 in the appendix, we know that p + 1 elements of this discrete S2×2n−1

structure map to the same point in X. Each set of (p + 1) redundant points is, geometrically
speaking, the discrete Hopf fibration circle living above each irreducible point of the n-qubit
state description. These p+1 points are interpretable as the p finite points plus the single point
at infinity of the projective discrete line (see, e.g., [3]).

The next part of this argument is the determination of the unit-norm states, effectively
the space of allowed discrete partitions of unity; we cannot exactly call these ‘probability-
conserving’ sectors of the state coefficients since we do not have a well defined notion of
probability, but we do have a well-defined notion of partition of unity. The tally of unit-norm
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states is p2n−1(p2n − 1) (see section A.2 in the appendix) compared to the total number p2×2n

of possible complex integer state vectors that could be chosen. This unit-norm state structure
is the discrete analogue of S2×2n−1.

Finally, we repeat the last step of the n-qubit continuous Hopf fibration process for discrete
n-qubit states, eliminating the discrete set of p+1 equivalent points that map to the same point
X on the generalized n-qubit Bloch sphere. Dividing the tally p2n−1(p2n − 1) of unit norm
states by the p + 1 elements of each phase-equivalent discrete circle, we find

p2n−1(p2n − 1)

p + 1
= p2n−1(p − 1)

n−1∏
k=1

(p2k + 1)

as the total count of unique irreducible states in a discrete n-qubit configuration (see section A.3
in the appendix). The resulting object is precisely the discrete version of CPD−1, which we
might call a discrete complex projective space or DCPD−1, where D = 2n as usual.

5. Geometry of entangled states

Without regard to uniqueness, an n-qubit state with discrete complex coefficients in Fp2 will
have the total possible space of coefficients with dimension p2×2n

(including the null state).
Imposing the condition of a length-one norm in Fp, this number is reduced to p2n−1(p2n − 1).
The ratio of all the states to the unit-norm states is asymptotically p:

p2n+1

p2n − 1
→ p, (38)

so there are roughly p sets of coefficients, for any number of qubits n, that are discarded for
each retained unit-length state vector. A factor of p + 1 more states are discarded in forming
the discrete Bloch sphere of irreducible states. Selected plots of the full space compared to
both the unit-norm space and the irreducible space for a selection of complexified finite fields
are shown in figure 4 for one, two, three, and four qubits.

5.1. Unentangled versus entangled discrete states

For a given p and the corresponding complexified field Fp2 , the n-qubit discrete quantum states
with coefficients in Fp2 can be classified by their degree of entanglement to a level of precision
that is unavailable in the continuous theory. We look first at the unentangled n-qubit states,
which are direct product states of the form

|�〉 = |ψ1〉 ⊗ · · · ⊗ |ψ j〉 ⊗ · · · ⊗ |ψn〉. (39)

Without regard to normalization, there are (p4)n possible unentangled states out of the total of
p2×2n

states noted above. When we normalize the individual product states to unit norm, the
norm of the entire n-qubit state becomes the product of those unit norms, and is automatically
normalized to one. We have already seen that each single-qubit normalized state in the tensor
product equation (39) has precisely p(p − 1) irreducible components.

5.2. Completely unentangled states and the discrete Bloch sphere

In effect, the irreducible states for unentangled n-qubit configurations reduce to a single Bloch
sphere for each one-qubit component |ψ j〉, and thus the whole set of states is defined by an
n-tuple of discrete Bloch sphere coordinates. Since each Bloch sphere in Fp2 has p(p − 1)

distinct irreducible components, we have

Count of unentangled states = pn(p − 1)n.
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Figure 4. Logarithmic plot of the number of discrete unnormalized states (top, in red), versus the
number of normalized discrete states (middle, in blue), versus the irreducible states (bottom, in
green) for the first six Fp2 -compatible primes, (3, 7, 11, 19, 23, 31), for the number of qubits 1, 2,
3 and 4.

We know that the total number of irreducible states (points in the generalized DCP2n−1 Bloch
sphere) for an n-qubit state is p2n−1(p2n − 1)/(p + 1), and so the number of states containing
some measure of entanglement is

Count of entangled states = p2n−1(p2n − 1)

p + 1
− pn(p − 1)n.

Therefore a very small fraction of the unit norm states are unentangled.

5.3. Partial entanglement

A partially entangled state can be constructed by taking individual component states to enter as
direct products, starting by picking n distinct single qubits to be unentangled (n = 2 exhausts
its freedom with one pick). Then we can choose n(n − 1)/2 pairs of distinct qubits as product
states (n = 3 exhausts its freedom with one pick), and so on. Then, starting with n = 3, we
can pick fully entangled 2-qubit subspaces as product spaces, combining them with single-
qubit product components (n = 3 has no single-qubit freedom left after picking any of its
three 2-qubit subspaces), and so on. Precise measures of entanglement such as that given in
equation (27) can then be applied just as in the continuous case.

5.4. Maximal entanglement

Numerical and analytic calculations of the entanglement measure equation (27), taken (modp),
extend to the best of our knowledge to the discrete case, so that the unentangled states
constructed above have Ph = 1. This leads us to study one final aspect of the discrete n-qubit
states, namely the maximally entangled states with Ph = 0.
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Computing some examples for various n and small values of p, one can verify explicitly
that unit-norm unentangled states for n = 2, p = {3, 7, 11, 19, . . .} occur with frequency

(p + 1)p2(p − 1)2 = {144, 14 112, 145 200, 2339 280, . . .},
and for general n, (p + 1)pn(p − 1)n.

The irreducible state counts are reduced by (p + 1), giving

p2(p − 1)2 = {36, 1764, 12 100, 116 964, . . .},
and in general for n-qubits, pn(p − 1)n instances of pure states with Ph = 1.

Repeating the computation to discover the frequency of maximally entangled (purity
Ph = 0 states), we find pn+1(p − 1)(p + 1)n maximally entangled states, with example
frequencies for two qubits of

p3(p − 1)(p + 1)2 = {864, 131 712, 1916 640, 49 384 800, . . .}.
The irreducible state counts for maximal entanglement are reduced by (p + 1), giving for
n = 2

p3(p2 − 1) = {216, 16 464, 159 720, 2469 240, . . .},
and in general for n-qubits, pn+1(p − 1)(p + 1)n−1 instances of pure states with Ph = 0.

Therefore, the ratio of maximally entangled to unentangled states is

Max entangled/unentangled = p

(
p + 1

p − 1

)n−1

.

6. Summary

Given a discrete basis for the complex coefficients of an n-qubit quantum state, DQC permits
us in principle to explicitly determine the relative frequencies of phases and to determine
exactly the generalized Bloch sphere coordinates of the irreducible states. The size of
the set of states that must be taken as equivalent to get irreducibility is the size of the
‘circle’ or phase group, and this is p + 1 for any p and for any n (related to the size of
the finite projective line, see [3]). Exploring the discrete manifestation of the purity measure
equation (27), our DQC approach can determine not only the size of the irreducible space
of states, but also the relative sizes of the unentangled and entangled states for n discrete
qubits.

Appendix. Proofs

In this appendix, we prove the state-counting formulas for discrete n-qubit states labeled by
a prime p satisfying p = 4� + 3 for integer � � 0. We show that: (1) the number of points
on a discrete complex unit circle, (the discrete complex phase equivalence) is p + 1; (2) the
number of unit-length D-dimensional vectors with coefficients in Fp2 is pD−1(pD − (−1)D);
for n-qubit states, D = 2n and the result becomes p2n−1

(
p2n − 1

)
; and (3) the number of

irreducible n-qubit states is p2n−1(p − 1)
∏n−1

k=1(p2k + 1).
We will carry out an inductive proof starting with an hypothesis for the number of

zero-norm D-dimensional vectors suggested by computing representative examples. We will
accomplish this by exploring the properties of finite fields using the one-dimensional and
n-dimensional field norms over Fp2 defined in equations (30) and (32), that is,

N(α = a + ib) = a2 + b2
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and

N(α0, . . . , αD−1) ≡ N(D) =
D−1∑
k=0

N(αk),

where we will specify real discrete values using roman letters such as (a, b, c) and complex
discrete values using Greek letters such as α, which stands for α = a + ib. We carry out the
calculations for arbitrary D, and then specialize at the end to the even-D, n-qubit case D = 2n.
For additional general background, see, e.g., chapter 6 in [13] and section 18.4 in [14].

A.1. Counting of the quadratic map

Proposition A.1. The discrete analogue of phase-equivalence under z → eiφz is a set of
(p + 1) discrete points α ∈ Fp2 that map to unity in Fp under the action of N(α).

Method. To prove proposition 1, we start by defining a special case of the field norm N(.),
namely the real quadratic map Q(e) = e2 taking an arbitrary element e ∈ Fp to its square
in the field. We exploit the fact that the image of Q(e) has (p + 1)/2 unique elements in Fp,
including the zero element; the map Q∗(e) excluding the zero element produces (p − 1)/2
elements (the quadratic residues); the (p − 1)/2 remaining elements of Fp (the quadratic
non-residues) are analogous to negative numbers, having no square roots in the field Fp.

Proof. We let A be the image of the map Q(e) in Fp, and note that the set Ac resulting from
displacing an element x = b2 of A to c − x = c − b2 with c ∈ Fp also has (p + 1)/2 unique
elements because the result is simply a cyclic shift of element labels. We now observe that for
any non-zero c ∈ Fp, the join of the two sets A and Ac has size p+ 1, which is greater than the
size p of Fp, and so there must be at least one common element such that

a2 = c − b2.

Thus some element c ∈ Fp is the field norm of some element α = a + ib ∈ Fp2 ,

N(α) = a2 + b2 = c.

Since we required c to be non-zero, and N(α = a + ib) = 0 only for a = b = 0, the
corresponding element α ∈ Fp2 must be non-vanishing.

This shows that for any non-zero element c ∈ Fp, there exists a non-vanishing element
α ∈ Fp2 with N(α) = c, and thus we find that the map N(α) : α ∈ Fp2 → c ∈ Fp is onto;
in addition, since we could displace c to any element of Fp, each non-zero element in the
range Fp of the map N(α) must correspond to the same number of non-zero domain elements
α ∈ Fp2 . Restoring the zero-element case, we see also that no elements of the full set of Fp

are missed in the range of N(α).
We can now compute the size of the equivalence class of complex unit-modulus phases

corresponding to the Hopf fibration circle. Since Fp2 has p2 − 1 non-zero values, and the map
N(α) distributes these equally across the domain of p − 1 non-zero elements c ∈ Fp, there
are (p2 − 1)/(p − 1) = p + 1 (non-zero) domain elements in Fp2 for each (non-zero) image
element in Fp. We illustrate this graphically in figure A1. Thus the Hopf circle always has
size p + 1, corresponding essentially to a discrete projective line, and that is the size of each
equivalence class of the map N(α) for non-vanishing α, including in particular the map to the
unit norm value c = 1 ∈ Fp. �
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Figure A1. Sketch of the map from Fp2 to Fp using N(α), showing the decomposition of Fp2 into
the zero element (0, 0) and the p2 − 1 = (p + 1)(p − 1) non-zero elements that map onto the
(p − 1) non-zero elements of Fp with multiplicity (p + 1).

A.2. Counting of unit-norm states

Proposition A.2. The number of unit-norm states described by a D-dimensional vector
(α0, . . . , αD−1) with coefficients αi ∈ Fp2 is ω(D, p) = pD−1(pD − (−1)D).

Method. We generalize proposition 2 to also provide the count of the zero-norm states
ζ (D, p) = pD−1(pD + (−1)D(p − 1)) and prove both formulas simultaneously by induction
on D.

Proof. The field-norm map N(α0, . . . , αD−1) = N(D) : (Fp2 )D → Fp takes the domain of
D-dimensional vectors, with total number of possible cases (p2)D = p2D, to an image of
discrete size p in Fp, which we can think of either as a zero-origin set {0, 1, . . . , p − 1} or
as a zero-centered set {(−(p − 1)/2, . . . ,−1, 0, 1, . . . , (p − 1)/2}. The latter is useful for
considering pairings of numbers that sum to zero in the field Fp.

Zero-norm case. We begin with our experimentally generated hypothesis for the number
of zero-norm vectors with no restriction on the parity of D, allowing D + 1 to be odd as well
as even:

ζ (D, p) = pD−1(pD + (−1)D(p − 1)). (A.1)

This is the proposed number of values of (α0, . . . , αD−1) ∈ (Fp2 )D for which N(D) = 0.
Unit-norm case. Next, we observe that, since there are p2 elements α ∈ Fp2 , we must

have (p2)D = p2D possible values of a D-dimensional vector (α0, . . . , αD−1). There are p2 −1
non-zero values of α ∈ Fp2 , and we showed in proposition 1 that N(α) maps exactly p + 1
values in that set to each of the p − 1 non-zero values in Fp. Therefore, we can propose that
the unit-norm case has a count of domain elements that is 1/(p − 1) of the total number of
non-zero-norm cases. The proposed number of unit-norm cases following from the hypothesis
equation (A.1) would then be

ω(D, p) = p2D − ζ (D, p)

p − 1
. (A.2)

Proof by induction on D. Since, by equation (A.2), the proposed unit-norm counting
formula ω(D, p) for a given D follows immediately from the proposed zero-norm counting
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formula ζ (D, p) for the same D, it is sufficient to perform our inductive proof on the zero-norm
counting formula implicitly using the statement for the one-norm counting formula. We thus
assume that we are given ζ (D, p), and proceed to examine the relation between the vanishing
domains of N(D) and N(D + 1), which can be written for generic α = αD as

N(D + 1) = N(D) + N(α). (A.3)

The counting of elements in the domain of the N(D + 1) map whose image in Fp is zero
consists of two parts.

• Simple zeros. If α = 0, the only possible zeros of N(D + 1) are the zeros of N(D), counted
by one instance of ζ (D, p).

• Compound zeros. If α �= 0, then N(α) = c for non-zero c ∈ Fp. As we noted, the values
of c can be written as (p − 1)/2 pairs of matched positive and negative numbers that sum
pairwise to zero in the field Fp. However, we know that N(D) maps its domain to each
value of non-zero c ∈ Fp exactly p + 1 times. Assuming that ζ (D, p) is true, we may
use the resulting hypothesis for the formula of equation (A.2) expressing ω(D, p), the
unit-norm counting hypothesis, directly in terms of ζ (D, p). The compound zero counts
then follow from using ω(D, p) as the number of times that the negated value, that is −c,
is encountered to match each non-zero value of N(α) = c. Therefore we find that p2 − 1
instances of the count ω(D, p) would contribute to the final hypothesized tally of zeros of
N(D + 1).

The inductive proof of equation (A.1) then proceeds by verifying the validity of the base
case

ζ (1, p) = 1

combined with the following verification of the counting of the zeros ζ (D + 1, p) of N(D + 1)

in terms of ζ (D, p):

ζ (D + 1, p) = ζ (D, p) + (p2 − 1) ω(D, p)

(A.2)= ζ (D, p) + (p2 − 1)
p2D − ζ (D, p)

p − 1

= p2D+1 + p2D − p ζ (D, p)
(A.1)= pD(pD+1 + (−1)D+1(p − 1)). (A.4)

The result follows from observing that this is the required form of equation (A.1) for
D → D + 1. Since equation (A.1) is the zero-norm count for all (D, p), a corollary is
that equation (A.2) is the count of unit-norm discrete states for all (D, p). �

A.3. n-qubit formulas

Moving to the case of interest where D = 2n is the (even) state-vector length for an n-qubit
state, we have proven that the number of unit-norm states of an n-qubit vector |�〉 is

ω(2n, p) = p2n−1(p2n − 1).

Since the multiplicity of points α ∈ Fp2 mapping to the same point, in particular the unit value,
under the action of N(α) is p + 1, the number of irreducible discrete n-qubit states on the
generalized discrete Bloch sphere is simply the quotient

Irreducible n-qubit states = p2n−1(p2n − 1)

p + 1
= p2n−1(p − 1)

n−1∏
k=1

(p2k + 1).
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