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We explore embeddings that lead to Ricci-flat metrics on T∗S2 corresponding
to the A1 (Eguchi-Hanson) self-dual, asymptotically locally Euclidean, gravita-
tional instanton. The variety of ways such embeddings appear reveals a spectrum
of intuitions about the geometric structure of such spaces. Our main result is a
Ricci-flat isometric embedding of T∗S2 in Euclidean R11, starting with an em-
bedded RP3 manifold and then interpolating in a radial variable to an S2 at
the origin via a Hopf fibration. We discover an interpolation yielding an embed-
ded 4-manifold whose induced metric is precisely the Eguchi-Hanson form. This
leads us to investigate other embeddings known from the theory of hyperkähler
moment maps that have deterministic relations to Ricci-flat metrics for A1, but
have less obvious identifications with T∗S2. A canonical approach suggested by
Hitchin starts with a set of three (real) moment-map constraints on C4 as the
basis for an A1 hyperkähler quotient. We exhibit an explicit vector in C4 with 4
real parameters that satisfies the three moment-map constraints but does not in-
duce a Ricci-flat metric. However, if we add a constraint-invariant gauge as a 5th
real parameter, the 5-dimensional metric pulled back from the gauged embedding
reduces to the desired 4D Ricci-flat metric on T∗S2 when we quotient by the
U(1) of the gauge parameter. Finally, we review the results of Alvarez-Gaumé
and Freedman, who use yet another embedding of the moment-map constraints
in holomorphic variables in C4 to produce a Kähler potential for a Ricci-flat A1

metric in the context of N = 2 supersymmetric σ models. Their method produces
a Kähler potential for a Ricci-flat metric without the using an explicit quotient
step. The constructions of solutions to slightly different embedding problems
that we have presented here all generate Ricci-flat metrics for the A1 instanton
on T∗S2, but depend in distinct ways on the underlying geometric properties of
the spaces employed.

1. Introduction

Our goal here is to explore embeddings of manifolds in Euclidean spaces related

to the metrics of the simplest so-called “gravitational instanton,” which is a Ricci-

flat, asymptotically locally Euclidean (ALE), Einstein metric on the topological

4-manifold T∗S2. This metric corresponds to the k = 1 case of the Ak (cyclic

group) gravitational instanton series, and has a self-dual Riemann tensor (we will

1



April 28, 2017 3:35 ws-rv961x669 Book Title ajh-chapter page 2

2 A.J. Hanson and J.-P. Sha

not distinguish here between self-dual and anti-self-dual). The first example is

the Eguchi-Hanson1 (1978) metric, which is also known to be the n = 1 case of

a family of 2n-complex-dimensional Ricci-flat spaces described by Calabi2 (1979).

Subsequently Gibbons and Hawking3 (1978) produced a series of ALE Einstein

metrics, parameterized by k + 1 3D points, that turned out to describe each of

the possible Ak instantons, with the k = 1 case corresponding precisely to the

Eguchi-Hanson metric (see, e.g., Prasad4).

The first realization that there could be a correspondence between all the dis-

crete groups of SU(2) acting on S2, characterized by the Kleinian (ADE) polyno-

mials,5 and the class of asymptotically locally Euclidean (ALE) self-dual Einstein

spaces was due to Hitchin, in his landmark “Polygons and Gravitons” paper6 (1979),

appearing immediately after the work of Eguchi-Hanson and Gibbons-Hawking.

Hitchin conjectured but could not prove that the association of Einstein manifolds

to the two infinite series of discrete SU(2) subgroups, Ak (cyclic) and Dk (dihe-

dral), along with the three discrete examples, E6 (tetrahedral), E7 (octahedral),

and E8 (icosahedral), exhausted the possible ALE gravitational instantons. After

some years of continuing interest based on the relationship discovered between the

ADE metrics and supersymmetry, Lindström and Roček7 introduced a basic ver-

sion of the hyperkähler quotient method in 1983. As further insights developed

that revealed associations among supersymmetry, hyperkähler quotients, Dynkin

diagrams, quiver diagrams, twistor methods, and the ADE spaces, Hitchin, Karl-

hede, Lindström, and Roček8 ultimately were able in 1986 to draw together the

various pieces into a coherent mathematical framework incorporating hyperkähler

quotient methods as well as twistor methods. Finally, in 1989, Kronheimer9 was

able to wrap things up and show, via twistor methods and the hyperkähler quotient

mechanism, that the ADE spaces indeed exhausted the possible ALE self-dual Ein-

stein spaces. Among subsequent investigations, Lindström, Roček, and von Unge10

showed how, starting directly with quiver diagrams and the implied moment-map

constraints, one could explicitly derive not just the Kleinian ADE algebraic vari-

eties, but also the more complicated singularity-resolved forms associated with du

Val.11–13

Within this elaborate context, we will explore embedded submanifolds in Eu-

clidean RN and CN that are related to the A1 gravitational instanton either via an

induced metric, or through hyperkähler moment map constraints. One may note

that the underlying manifold of the A1 gravitational instanton is diffeomorphic to

T∗S2 (the cotangent bundle of the 2-sphere S2), which is naturally embedded in R6.

However, in its standard form, the induced metric of this embedding is not Ricci-

flat. We resolve this by constructing an explicit smooth parametric embedding of

T∗S2 in R11. Then it is straightforward, by appropriately choosing the interpola-

tion functions in this embedding, to find an induced metric that corresponds exactly

to the Ricci-flat ALE Eguchi-Hanson metric.

Our treatment is organized as follows: After some introductory context material,
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we construct our new parametric embedding of T∗S2 in R11. The resulting induced

metric corresponds exactly to the form found by Eguchi-Hanson,1 and exposes the

interpolation functions to be identified with the Ricci-flat solution, explicitly solv-

ing the isometric embedding problem. This enables us to produce novel pictures

of the geometric features of this embedding. Next, we study the C4 (R8) space of

the A1 hyperkähler quotient framework suggested by Hitchin,14 and present a real

5-parameter solution of the three moment-map constraints, along with an explicit

quotient by U(1) down to a 4D Einstein metric, yielding an equivalent but dis-

tinct Ricci-flat metric on T∗S2. We conclude by reviewing an approach to the A1

solution due to Alvarez-Gaumé and Freedman,15 which uses an alternate 2-complex-

parameter holomorphic embedding of a different moment-map constraint condition

in C4 (R8) and leads to an elegant Kähler potential for the Ricci-flat A1 metric.

2. Features of the Eguchi-Hanson A1 metric

We begin with a review of some of the structures we will refer to in the process of

building an isometric embedding for the Ricci-flat A1 metric. We will be looking

for collections of coefficients of the Maurer-Cartan forms. We will write these in

terms of the generic quaternion element g parameterized by the point {w, x, y, z}/r
in SU(2) (or S3) as

g =
1

r
(wI2 − i Σ · [x, y, z])

=
1

r

[
w − i z −ix− y
y − ix w + i z

]
,

where Σ denotes the conventional Pauli matrices (we reserve the symbol σ for other

purposes below), and r2 = w2 + x2 + y2 + z2. The form of g is chosen to reproduce

precisely a standard right-handed quaternion algebra when two distinct matrices

are multiplied together. We then define the Maurer-Cartan forms in our Euclidean

coordinates as

g−1dg =

σxσy
σz

 = 1
r2

−x w z −y
−y −z w x

−z y −x w

 ·

dw

dx

dy

dz

 .

We note for reference the commonly used polar form (see Eq. (7)) for the Maurer-

Cartan forms: σxσy
σz

 =

 1
2 (cosψ dθ + sinψ sin θ dφ)

1
2 (− sinψ dθ + cosψ sin θ dφ)

1
2 (dψ + cos θ dφ)

 .

These forms obey the fundamental structure equations

dσx + 2σy ∧ σz = 0

dσy + 2σz ∧ σx = 0

dσz + 2σx ∧ σy = 0 .
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(This follows from taking the exterior derivative of I = g−1g and observing that

d(g−1dg) + g−1dg ∧ g−1dg = 0; the factor of 2, an algebraic identity in the 1-forms,

comes from the sum over Pauli matrices in the matrix form of g.) The attentive

reader will note that there are some alternate choices of signs and factors of 2 in

the literature;16,17 this is our chosen convention for this presentation.

2.1. Writing out the solution in an SU(2) basis

If one takes a Maurer-Cartan basis of 1-forms for SU(2) using the above form for

the σ’s, then the Eguchi-Hanson solution for the self-dual metric can be written as

dτ2 = (e0)2 + (e1)2 + (e2)2 + (e3)2 with the following vierbeins,

e =

 1√
1−

(
s
r

)4 dr, rσx, rσy,
√

1−
(s
r

)4
rσz

 , (1)

and s a constant. The connection 1-forms ωab are the solutions to the Levi-Civita

torsion-free conditions dea + ωab ∧ eb = 0. In this gauge, the solutions for the

connections themselves take the self-dual form

ωx = ω23 = ω01 = −
√

1−
(s
r

)4
σx

ωy = ω31 = ω02 = −
√

1−
(s
r

)4
σy (2)

ωz = ω12 = ω03 = −
(

1 +
(s
r

)4)
σz ,

while the Riemann curvature 2-forms Rab = dωab + ωacω
c
b take the form

Rx = R23 = R01 = −2s4

r6
(
e2 ∧ e3 + e0 ∧ e1

)
Ry = R31 = R02 = −2s4

r6
(
e3 ∧ e1 + e0 ∧ e2

)
(3)

Rz = R12 = R03 = +
4s4

r6
(
e1 ∧ e2 + e0 ∧ e3

)
.

The explicit self-duality of the connection 1-forms ωab produces an automatically

self-dual Riemann curvature 2-form, and that in turn implies the vanishing of the

Ricci tensor, so this is a Ricci-flat Einstein space in four Euclidean dimensions.

Observe that changing the order of {w, x, y, z} or the sign of {σx, σy, σz} can change

various signs in Eq. (2) and Eq. (3) and can interchange self-dual and anti-self-dual

labeling. Restricting the parameters to RP3 instead of a Euclidean S3 at infinity

removes the cone singularity at the core S2 as r → s, and one can verify by explicit

integration that, with that choice of integration volume, the Euler integral of the

volume is 3/2, while the Chern surface term is 1/2, giving the total Euler number

χ = 2 as required by the topology of T∗S2; the signature, which has no surface

correction, can similarly be shown to be τ = −1.
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2.2. The Eguchi-Hanson template form

For the purposes of interpreting our embedding in the next section, we now rewrite

the Eguchi-Hanson solution Eq. (1) as an abstraction (which in fact is a general

Bianchi type IX metric) of the form

e =
{√

f(r)dr, r
√
g(r)σx, r

√
g(r)σy, r

√
h(r)σz

}
, (4)

where

f(r) =
(

1−
(
s
r

)4)−1
g(r) = 1 h(r) =

(
1−

(
s
r

)4)
. (5)

From dτ2 = e · e = dxµgµνdx
ν , we can extract a convenient Cartesian form of the

metric that we will be able to match with the Cartesian form of our anticipated

embedding, with coordinates xµ = {w, x, y, z} and r2 = w2 + x2 + y2 + z2:

gµν =

1
r2


w2f(r) +

(
x2 + y2

)
g(r) + z2h(r) wxf(r) + (−wx+ yz) g(r)− yzh(r)

wxf(r) + (−wx+ yz) g(r)− yzh(r) x2f(r) +
(
w2 + z2

)
g(r) + y2h(r)

wyf(r)− (wy + xz) g(r) + xzh(r) xy(f(r)− h(r))

wz(f(r)− h(r)) xzf(r)− (wy + xz) g(r) + wyh(r)

wyf(r)− (wy + xz) g(r) + xzh(r) wz(f(r)− h(r))

xy(f(r)− h(r)) xzf(r)− (wy + xz) g(r) + wyh(r)

y2f(r) +
(
w2 + z2

)
g(r) + x2h(r) yzf(r) + (wx− yz) g(r)− wxh(r)

yzf(r) + (wx− yz) g(r)− wxh(r) z2f(r) +
(
x2 + y2

)
g(r) + w2h(r)

 .

(6)

Using the polar coordinates

w = r cos
θ

2
cos

φ+ ψ

2

x = r sin
θ

2
cos

φ− ψ
2

(7)

y = r sin
θ

2
sin

φ− ψ
2

z = r cos
θ

2
sin

φ+ ψ

2

with the order {r, θ, φ, ψ}, 0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 2π (for S3, we would

have 0 ≤ ψ < 4π), we can write the metric in polar form as
f(r) 0 0 0

0 1
4r

2g(r) 0 0

0 0 1
4r

2
(
h(r) cos2 θ + g(r) sin2 θ

)
1
4r

2h(r) cos θ

0 0 1
4r

2h(r) cos θ 1
4r

2h(r)

 . (8)
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3. Embedding T∗S2 (the A1 Manifold) in R11

We now are ready to begin the process of deriving the metric of the A1 member

of the ADE family of Ricci-flat Euclidean Einstein spaces via an embedding in 11-

dimensional Euclidean space. Our result corresponds exactly to the Eguchi-Hanson1

form for the A1 metric, which has properties quite different from the k = 1 form of

the Gibbons-Hawking3,4 (k + 1)-point parameterized solution for the whole family

that has subsequently become known as the Ak gravitational instanton metrics.

Starting out with only the topological space T∗S2, using no other knowledge, we

now show how to derive an isometric embedding of T∗S2 in the Euclidean space

R11 that corresponds to the Ricci-flat metric.

3.1. Construction of the map

We first need to find an embedding of RP3, or equivalently SO(3), which is the

asymptotic boundary of T∗S2, along with some way of expressing the fact that

T∗S2 collapses topologically to S2 at the origin. One example of an embedding of

SO(3) is the standard quadratic form mapping the unit quaternions parameterizing

S3 to an SO(3) rotation matrix. A standard form for this matrix is a rotation by

an angle θ about a fixed unit-norm axis n̂ = [n1, n2, n3],

R(θ, n̂) =

 c+ (n1)2(1− c) n1n2(1− c)− sn3 n1n3(1− c) + sn2
n2n1(1− c) + sn3 c+ (n2)2(1− c) n2n3(1− c)− sn1
n3n1(1− c)− sn2 n3n2(1− c) + sn1 c+ (n3)2(1− c)

 , (9)

where c = cos θ, s = sin θ, and n̂ · n̂ = 1 by definition. This is exactly equivalent to

a quadratic quaternion form constructed from the unit quaternion q = {w, x, y, z}
obeying q · q = 1 (q ∈ S3), which takes the form

R(q) =

w2 + x2 − y2 − z2 2xy − 2wz 2xz + 2wy

2xy + 2wz w2 − x2 + y2 − z2 2yz − 2wx

2xz − 2wy 2yz + 2wx w2 − x2 − y2 + z2

 , (10)

as one can confirm by substituting

q = {cos(θ/2), n1 sin(θ/2), n2 sin(θ/2), n3 sin(θ/2)} . (11)

We could of course use any convenient parameterization of S3 in place of Eq. (11); we

will start with the Cartesian coordinates q = {w, x, y, z} for notational convenience.

Since R(q) is an orthogonal matrix, each row and each column has unit length

when q · q = 1 is imposed, and all pairs of rows as well as pairs of columns are or-

thogonal. The important fact is that, since topologically R(q) is just RP3, the nine

quadratic expressions that make up R(q) are precisely a parameterized embedding

mapping S3 to RP3 in R9, or, more generally, in R10 if we relax q · q = 1 → r2 to

allow scaling. (Note that S3 double covers RP3, so we must ultimately restrict the

parameter domain of S3 accordingly.)
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Next we untangle the combinations of quadratic forms in R(q) in the style of a

Veronese map, and use the 10 individual quadratic forms to define an initial map

from S3 to RP3 embedded in R10 as follows:

p(w, x, y, z) =



w2

x2

y2

z2

wx

wy

wz

yz

zx

xy


p̂(w, x, y, z) =



w2

x2

y2

z2√
2wx√
2wy√
2wz√
2yz√
2zx√
2xy


, (12)

The scaled version p̂ is constructed to define a radius of constant length, p̂ · p̂ =(
w2 + x2 + y2 + z2

)2
= r4, so it is explicitly a point on a round S9.

Now that we have RP3 embedded to define the asymptotic boundary of T∗S2,

as well as the ability to scale it into the interior, we must find a way to terminate

that ingoing mapping smoothly on the “origin,” which is topologically S2. That

should be easy, considering the fact that we know another very nice map, the Hopf

fibration, from S3 to either R3 or R4, whose image is an embedded S2. In fact

we have six explicit such maps embodied in Eq. (10), since each column and each

row has unit length and hence is a map from the three Euler angles of S3 to a

two-parameter S2. We choose our map from the elements of the last column of

Eq. (10),

(last column) m(w, x, y, z) =


√

2(w2 + z2)√
2(x2 + y2)

2(wx− yz)
2(wy + xz)

 , (13)

where (1/2)m ·m =
(
w2 + x2 + y2 + z2

)2
= r4, defining an S2 of radius R = q · q =

r2. For reasons that will become clear, we have used the 4D version of the Hopf

fibration that corresponds to the last column of Eq. (10) after a rotation by 45◦ to

the desired axis component w2 + z2 − (x2 + y2) of the 3D column’s subspace (the

remaining, orthogonal, direction is just w2 + x2 + y2 + z2). We check that this is

indeed the fibration corresponding to fibering out the ψ angular variable in Eq. (7)

by explicit substitution:

R4(
π

4
, 1-2 plane) ·m(r, θ, φ, ψ) = r2


cos θ

1

cosφ sin θ

sinφ sin θ

 . (14)

These are the standard S2 spherical coordinates {cos θ, cosφ sin θ, sinφ sin θ},
which we need at the “origin” of T∗S2 in the embedding.
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We now proceed to generate a parameterized interpolation from Eq. (12) to

Eq. (13) that will become the sought-for isometric embedding of T∗S2. However,

it turns out that 10 dimensions is actually just slightly too rigid to get an isometric

embedding of the metric in this context, and we will have to add an eleventh di-

mension that we take to be parameterized by the scaling radius r. We thus consider

this map, interpolating from RP3 to S2 at the “origin” r = s, which we will use to

pull back a metric on the 4-dimensional manifold parameterized by {w, x, y, z}:

p(w, x, y, z) =
1

r2



1√
2
(a(r)w2 + b(r)z2)

1√
2
(a(r)x2 + b(r)y2)

1√
2
(a(r)y2 + b(r)x2)

1√
2
(a(r)z2 + b(r)w2)

a(r)wx− b(r)yz
a(r)yz − b(r)wx
a(r)wy + b(r)xz

a(r)xz + b(r)wy

(a(r)− b(r))wz
(a(r)− b(r))xy

1√
2
c(r)



. (15)

If a(r) and b(r) are two monotonic positive smooth functions defined for s ≤ r <∞
with the properties that a(s) = b(s), a(r → ∞) → r, and b(r → ∞) → 0, then

we should have a smooth embedding of T∗S2 incorporating interpolation functions

in r that could permit deformation of the path in a way that produces a Ricci-flat

induced metric.

As r → ∞ (with a(r) → r and b(r) → 0), the entire column corresponds to

the RP3 boundary. In the S2 limit, a(s) = b(s), we can check using our polar

coordinates from Eq. (7) that we have a Hopf fibered S2 embedded in the 11 vector

components,{
1√
2

cos2 θ2 ,
1√
2

sin2 θ
2 ,

1√
2

sin2 θ
2 ,

1√
2

cos2 θ2 ,

1
2 cosφ sin θ, − 1

2 cosφ sin θ, 1
2 sinφ sin θ, 1

2 sinφ sin θ, 0, 0, 1√
2
c(s)

}
.

3.2. Identifying the interpolation functions

Employing the Cartesian parameterization vµ = {w, x, y, z} and Eq. (15) for the

vector pi(w, x, y, z), i = 1 . . . 11 in R11, we can now compute the induced metric

from the usual formula

gµν =

11∑
i=1

∂pi(w, x, y, z)

∂vµ
∂pi(w, x, y, z)

∂vν
. (16)

Using r2 = w2 + x2 + y2 + z2 to simplify the notation, we find for the first column,
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1

2r4


w2 r2

(
a′(r)2 + b′(r)2 + c′(r)2

)
+ 2

(
r2 − w2

) (
a(r)2 + b(r)2

)
− 4z2a(r)b(r)

−2wx
(
a(r)2 + b(r)2

)
+ 4yz a(r)b(r) + wx r2

(
a′(r)2 + b′(r)2 + c′(r)2

)
−2wy(a(r)2 + b(r)2)− 4xz a(r)b(r) + wy r2

(
a′(r)2 + b′(r)2 + c′(r)2

)
wz r2

(
a′(r)2 + b′(r)2 + c′(r)2

)
− 2wz(a(r)− b(r))2

 ,

and the other three columns follow this pattern. We can already see the groupings

of the unknown interpolation terms into factors identifiable with f, g, h in Eq. (6).

The algebraic forms become clearer if we go to polar coordinates and compare with

Eq. (8):
1
2

(
a′ 2 + b′ 2 + c′ 2

)
0 0 0

0 1
4

(
a2 + b2

)
0 0

0 0 1
4

(
a2 + b2 − 2ab cos2 θ

)
1
4 (a− b)2 cos θ

0 0 1
4 (a− b)2 cos θ 1

4 (a− b)2

 . (17)

Collecting corresponding terms, we discover exactly three groups of the embedding

interpolation functions a(r), b(r), and c(r) and their first derivatives that correspond

to f(r), g(r), and h(r) in Eqs. (6) and (8),

a′(r)2 + b′(r)2 + c′(r)2 → 2f(r) (18)

a(r)2 + b(r)2 → r2g(r) (19)

(a(r)− b(r))2 → r2h(r) . (20)

If we solve Eqs. (19) and (20) for a(r) and b(r) using Eq. (5), we find

a(r) =

√
r4 +

√
r8 − s8√

2r
(21)

b(r) =
s4

√
2r
√
r4 +

√
r8 − s8

, (22)

with a(s) = s/
√

2, a(r → ∞) → r and b(s) = s/
√

2, b(r → ∞) → 0. From Eqs.

(18), (21), and (22), we can define c(r) by its differential equation:

c′(r) =

√
3s4 + r4

s4 + r4
. (23)

We can then solve Eq. (23) for c(r) with an interpolating function or use the explicit

form

c(r) =
√

3rF1

(
1

4
;

1

2
,−1

2
;

5

4
;−r

4

s4
,− r4

3s4

)
, (24)

where F1 is the first Appell function. c(r) has the properties:

c(s) = 1.65069s

c(r →∞) = r + const(s)

c′(s) =
√

2

c′(∞) = 1 .
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These same expressions can be obtained without reference to Eqs. (18, 19, 20),

with some effort, by computing the Ricci tensor directly and solving the resulting

differential equations for a(r), b(r), and c(r).

With these results, Eq. (15) now defines a smooth map from T∗S2 into R11

whose induced metric is Ricci-flat.

3.3. Visual Representations of the R11 Embedding

Now that we have explicit forms for the interpolation functions that create an

isometric embedding of the Ricci-flat geometry with the topology of T∗S2, we can

examine the shapes of these functions. In Figure 1, we plot the forms of a(r), b(r),

and c(r) as well as c′(r). We see that for the purposes of the embedding, the 11th

dimension described by c(r) is almost a straight line with unit slope, although it

plays a critical role in the behavior of f(r) near the origin to enforce the Ricci-flat

condition in that neighborhood. Past a radius of about twice the radius s of the S2

at the origin, the shape of the constant-r cross-section is already essentially in the

asymptotic form of a canonical RP3 corresponding to the quadratic Veronese map

of the underlying S3. This RP3 embodies the ALE property of our manifold.

Next, we present some 2D cross-sections of our isometrically embedded 4-

manifold projected somewhat arbitrarily from R11 to 3D to give an impression

of the shape. In Figure 2a, we show a cutaway of surfaces sampled in r moving

out from the S2 “core” at r = s. The full shape that is swept out becomes quite

complex even with r sampled near to s, as shown in Figure 2b. Figure 3a picks

a selection of latitude-longitude samples on the surface of S2, and shows the disks

formed by sweeping out a segment in r in the collapsed Hopf variable ψ (see Eqs. (7)

and (14)). As the maximum disk radius r moves outward from the S2 surface, we

see in Figure 3b that the boundary circles of the disks begin to delineate a sampling

of the ALE boundary 3-manifold RP3 parameterized by ψ and the S2 variables θ

and φ.

Finally, in Figure 4a, we present just the sampled RP3 described by the bound-

ary circles for large radius r with origin at sampled latitude-longitude pairs on the

S2. These are essentially Z2 identifications of the more familiar Hopf fiber rings

embedded in S3, which we show in Figure 4b for comparison. All this follows from

the fact that our Veronese map of Eq. (12) is quadratic in the coordinates of S3,

and hence double covered in RP3, so each boundary circle in Figure 4a corresponds

in parameter space to one half of the corresponding circle in Figure 4b.

4. A Direct Hyperkähler Quotient Embedding for A1

We next turn to an alternative method of embedding a Ricci-flat metric for the A1

Einstein space that depends on the hyperkähler constructions, but has a much less

obvious geometric origin than the one we have presented in Section 3.

The hyperkähler moment map constraints for A1 are expressed by Hitchin14 in
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terms of a pair of 2D complex variables, z = {z1, z2} ∈ C2 and w = {w1, w2} ∈ C2

obeying

µ1 = ‖z‖2 − ‖w‖2 = 1 (25)

µc = z ·w = 0 . (26)

Note that these constraints are invariant under a U(1) phase transformation

z → e+iφz (27)

w → e−iφw . (28)

The construction of a metric starts with the eight real variables of {z, w} and

applies the three real constraints (one real, one complex) of Eqs. (25) and (26),

thus defining an embedding of a five-manifold in R8. However, from Eqs. (27) and

(28) it is clear that if the phase φ is included properly as the fifth variable, we can

perform a quotient in φ, and, according to hyperkähler theory, the induced metric

in 5D will then collapse in the quotient to the desired Ricci-flat metric on the A1

4-manifold T∗S2.

4.1. Ansatz for the A1 hyperkähler quotient

We will proceed to solve the constraint equations in two steps, allowing us to expose

some interesting details. We note that this process appears to be straightforward

for A1, but that at this time we have discovered no similar approach to solving Ak
with k > 1; although there are alternative quotienting procedures in the twistor lit-

erature8 that can in principle produce the Ak solutions, these are very cumbersome

for k > 1. However, there do exist related twistor methods that convert the nonlin-

ear Monge-Ampère equations into a linearized Laplacian-based Gibbons-Hawking

system that has solutions for all k.7,8

By inspection, we can find a parametric solution of both moment map constraints

Eqs. (25) and (26) in C4 (R8) with a combination of trigonometric and hyperbolic

expressions in four real variables {x, t, a, b} as follows:

z01 = eia cos(t) cosh(x)

z02 = eib sin(t) cosh(x)

w0
1 = −eib sin(t) sinh(x)

w0
2 = eia cos(t) sinh(x) . (29)

If we compute the induced metric and curvature of the 4-manifold embedded in

R8 defined by Eq. (29) and parameterized by {x, t, a, b}, we find that it is not Ricci-

flat (in fact, there is exactly one non-zero Ricci component, R11 = 6/ cosh2(2x)).

But of course we still have the invariance under Eqs. (27) and (28), and so we can

extend this to a 5D manifold that, due to the opposite phases of the transformations
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of z and w, is distinct from multiplication by a pure global phase:

z1 = ei(a+φ) cos(t) cosh(x)

z2 = ei(b+φ) sin(t) cosh(x)

w1 = −ei(b−φ) sin(t) sinh(x)

w2 = ei(a−φ) cos(t) sinh(x) . (30)

Considering z and w as a Euclidean space of eight parameterized functions

fi(x, t, a, b, φ), i = 1 . . . 8 in R8, we can compute the induced metric on the 5D

submanifold with parameters vµ = {x, t, a, b, φ} as

gµν =

8∑
i=1

∂fi(x, t, a, b, φ)

∂vµ
∂fi(x, t, a, b, φ)

∂vν
. (31)

The initial 5-dimensional induced metric with no quotienting is

gµν =


cosh(2x) 0 0 0 0

0 cosh(2x) 0 0 0

0 0 cos2(t) cosh(2x) 0 cos2(t)

0 0 0 sin2(t) cosh(2x) sin2(t)

0 0 cos2(t) sin2(t) cosh(2x)

 . (32)

While this again is not Ricci-flat, the 4×4 Ricci-flat metric follows from the quotient

formula that eliminates the 5th gauge variable φ by projection,

hij = gij −
1

g55
gi5gj5 . (33)

The final result in coordinates {x, t, a, b} becomes

hij =


cosh(2x) 0 0 0

0 cosh(2x) 0 0

0 0 cos2(t) cosh2(2x)−cos4(t)
cosh(2x) − cos2(t) sin2(t)

cosh(2x)

0 0 − cos2(t) sin2(t)
cosh(2x)

(cos(2t)+cosh(4x)) sin2(t)
2 cosh(2x)

 . (34)

Direct computation verifies that the Riemannian curvature is nontrivial but the

Ricci tensor vanishes identically,

Rij (hij) = 0 .

This is of course known to be true from the hyperkähler quotient by construction,

but nevertheless any given instance of a Ricci flat hyperkähler quotient metric is not

necessarily trivial to express explicitly. In fact, at this writing, no ADE metrics have

been successfully computed by any means, including explicit quotienting, except

members of the Ak series.
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5. Embedding Corresponding to A1 Kähler Potential

In Section 4, we presented an explicit parametric solution of the C4 moment map

constraints for the k = 1 gravitational instanton system combined with a U(1)

quotient down to a 4D Ricci-flat metric. However, it turns out that there is a

way to avoid , or, at least, sidestep, the explicit quotient process that we employed.

One example using holomorphic coordinates and Kähler potential methods was

known as early as 1980 in the physics supersymmetry literaturea from the work of

Alvarez-Gaumé and Freedman (AGF).15 Here we include an outline of this alter-

native moment map constraint solution worked out in holomorphic coordinates to

produce a Kähler potential, thus exposing another aspect of our story about ways

to exploit embeddings to calculate the metric on T∗S2. (We remark that there

is in fact yet another Kähler potential for the T∗S2 metric given by Gibbons and

Pope17 that produces a metric essentially in the coordinates used by Eguchi and

Hanson; further details about the origins and form of that potential can be found

in Lindström and Roček.7)

The fields of the non-linear σ model in the AGF formulation are the four com-

plex (8 real) coordinates {z,w} in our approach, and the starting point of their

parameterization is the homogeneous coordinate system U = {u0, u1} on CP1. A

solution of the hyperkähler moment map constraints can be extracted starting with

a complex normalized coordinate system (resembling the approach one would take

to construct the Kähler potential for a Fubini-Study metric) with an overall weight

factor f(u, v, ū, v̄):

z = f(u, v, ū, v̄)
U

‖U‖
= f(u, v, ū, v̄)

{1, u}√
(1 + uū)

(35)

w = f(u, v, ū, v̄)
V

‖V‖
= f(u, v, ū, v̄)

{1, v}√
(1 + vv̄)

, (36)

where we scale from homogeneous to inhomogeneous coordinates on CP1, and note

that it is essential for the complex 2-vector z to transform under the gauge action

as exp(+iθ) while the complex 2-vector w transforms as exp(−iθ). We see that

these definitions of z(u, v, ū, v̄) and w(u, v, ū, v̄) facilitate satisfying the moment map

constraints in the form of Eqs. (25) and (26), but with a distinct set of constants,

µ1 = ‖z‖2 − ‖w‖2 = 0 (37)

µc = z ·w = 1 . (38)

With the ansatz of Eqs. (35) and (36), we see that Eq. (37)) is satisfied trivially,

and Eq. (38) is satisfied if

f(u, v, ū, v̄) =

[
(1 + uū)(1 + vv̄)

(1 + uv)2

]1/4
. (39)

aWe thank Martin Roček for pointing this out.
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Although the constraint solution following from Eqs. (37) and (38) with the

weight function Eq. (39) is not an isometric embedding, it leads directly to a metric

through its associated Kähler potential,

K(u, v, ū, v̄) = f(u, v, ū, v̄)f̄(u, v, ū, v̄)

=

(
(1 + uū)(1 + vv̄)

(1 + uv)(1 + ūv̄)

)1/2

. (40)

When we compute the Kähler metric G = ∂∂̄K and take the log of the determinant,

we find the Ricci potential Γ = log detG, from which one obtains the complex Ricci

tensor via R = ∂∂̄Γ. The explicit value of Γ is easily computed to be

Γ(u, v, ū, v̄) = −2 log(1 + uv)− 2 log(1 + ūv̄) , (41)

so all mixed conjugation partials vanish, and thus G appears to be a Ricci flat metric

on A1. This is believed to yield a metric on T∗S2 from general arguments presented

in AGF,15 but the authors did not demonstrate that explicitly. We observe that

someplace in the process of working directly with the Kähler potential instead of the

induced metric on the embedded constraint solution, the need to quotient out of the

5D embedding has disappeared, and the Ricci-flat Kähler potential has presented

itself immediately in 4D holomorphic coordinates.

6. Concluding Remarks

The metrics on the ADE manifolds have been extensively studied since Hitchin6

originally introduced the concept that all the possible 4D asymptotically locally

Euclidean (ALE) self-dual solutions to Einstein’s equations could be identified with

the Kleinian groups, or, equivalently, to the corresponding lens spaces S3/G of S3.

At this moment, only the Ak metrics have explicit solutions, and embedding-based

treatments are very difficult for k > 1. We have presented here three distinct

ways of solving the k = 1 case, each giving Ricci-flat metrics on the topological

space T∗S2 of the A1 gravitational instanton. Our first result was a novel approach

based on embedding RP3 in R11 and interpolating while continuously enforcing

Ricci-flatness through to a Hopf fibration on the S2 “core” at the origin of T∗S2,

resulting in an isometric embedding giving precisely the Eguchi-Hanson form of the

metric. Our second example was an explicit hyperkähler quotient of the induced

metric of an embedded 5-manifold defined by a three parameter set of moment

map constraints in a flat R8, which, combined with a U(1) quotient, reduced to

a Ricci-flat four-dimensional metric. While this form of the metric is technically

known, our presentation working out all the steps in detail seems useful. Finally,

for completeness, we reviewed the the quotient-free constraint solution leading to

the Kähler potential of Alvarez-Gaumé and Freedman, which provides yet another

example of an embedding procedure that leads to a Ricci-flat metric for the A1

gravitational instanton.
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Fig. 1. The interpolation functions for the Ricci-flat R11 isometric embedding of T∗S2 for S2

radius s = 1. (red) a(r); (green) b(r); (blue) c(r); (cyan) c′(r).

(a) (b)

Fig. 2. The S2 “core” at r = s of the isometric embedding of T∗S2 and its behavior for sampled

values s ≤ r < 2s. (a) View with several cutaway layers at sampled values with small r. (b) View
of the entire layers deforming away from S2 at sampled r.
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(a) (b)

Fig. 3. The A1 4-manifold represented by disks in the radial and Hopf-fibration variables, sampled

at values of the S2 latitude and longitude. (a) The nascent disks close to the S2 samples. (b)

Expanding the disks away from the S2 “core” for larger values of sampled latitude/longitude,
beginning to show the shape of RP3 in the circles bounding the disks.

(a) (b)

Fig. 4. (a) Far away from the sampled latitude-longitude points on S2, we tessellate the asymp-
totic RP3 ALE boundary 3-manifold at a fixed large value of r, using rings in the fiber variable ψ

that collapses and disappears on S2. (b) For comparison, these are the corresponding Hopf fiber

rings tessellating S3 using similar S2 samples. These are essentially the double-covers of the rings
in (a).
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2. E. Calabi, Ann. Éc. Norm. Sup. 12, 269 (1979).
3. G. Gibbons and S. Hawking, Physics Letters 78B, 430 (1978).
4. M. K. Prasad, Physics Letters B 83, 310 (May 1979).
5. F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom

fünften Grade (Teubner, Leipzig, 1884). Reprinted Birkhäuser, Basel, 1993 (edited by
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