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In an attempt to find gravitational analogs of Yang Mills pseudoparticles, we obtain two classes of self-dual solutions 
to the eucfidean Einstein equations. These metrics are free from singularities and approach a flat metric at infinity. 

The discovery of pseudoparticle solutions to the 
euclidean SU(2) Yang-Mills theory [1 ] has suggested 
the possibility that analogous solutions might occur in 
Einstein's theory of  gravitation. The existence of  such 
solutions would have a profound effect on the quan- 
tum theory of  gravitation [2,3]. Since fire Yang-Mills 
pseudoparticles possess self-dual field strengths, one 
likely possibility is that gravitational pseudoparticles 
are characterized by self-dual curvature. 

In fact it has been pointed out by Hawking [3] 
that the Taub-NUT metric [4],  when appropriately 
continued to euclidean space-t ime, produces a self- 
dual curvature and hence is a possible candidate for a 
gravitational pseudoparticle. He has also given a gener- 
alized multi-Taub-NUT metric. However, these metrics 
do not approach a fiat metric at infinity [5].  To see 
this, let us write the euclidean Taub-NUT solution as 

(ds) 2 = [(R + m ) / ( R  - m)l dR 2 
( l )  

+ 4 ( R 2 - m 2 ) { o 2  x + 02 + ( 2 m / ( R  +m))2o2},  

where ex, Oy, o z form a standard Caftan basis, 

1 
o x = ~ ( - c o s  f dO - s i n  0 sin ~ d~b), 

1 • 
Oy =~(sm ~ dO - s i n  0 cos ~ de), (2) 

o z = } ( - d ~  - cos 0 d~b), 

obeying the structure equations of  the exterior algebra 

[6],  

do x = 2Oy A o z, (3) 

etc. Here O, ~ and ~ are Euler angles on S 3 with 
ranges 0 ~< 0 ~ rr, 0 ~< ¢ ~< 2rr, 0 ~< ~ ~< 4rr. Then it is 
easy to see that the above metric describes a distorted 
3-dimensional hypersphere S 3 for any fixed value of  
R > m .  

Since a Yang-Mills pseudoparticle approaches a 
pure gauge at infinity and is interpreted as inducing 
transitions between topologically inequivalent vacua, 
one might require that gravitational analogs have a 
similar asymptotic behavior. In this letter we explore 
the possibility of gravitational pseudoparticles which 
possess a self-dual curvature and approach a fiat met- 
ric at infinity. In the following we present two classes 
of  such solutions. They are both singularity-free in the 
entire spacetime and their manifolds have a simple 
topological structure. 

In deriving these solutions we exploit a particularly 
useful choice of  gauge (local Lorentz frame). First we 
define a local orthonormal frame using the vierbeins 
eau, and take 

e a dx~'. (4) = ea 

In terms of  the e a, the metric is expressed as ds 2 
= (e0) 2 + (el)  2 + (e2) 2 + (e3) 2. Then the connection 

one-form coa b is defined by 
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dea = -coabA eb, coab = --c°ba" (5) 

Latin indices are raised and lowered by a fiat metric. 
Then we define the curvature two-form by 

Ra b = dooa b + coacA coC b. (6) 

Now we note that if coa b is self-dual, 

COO 1 = --(.o23, (7) 

etc., then Ra b is self-dual. This follows directly from 
the definition (6) ofRa b. Since any self-dual curvature 
gives a vanishing Ricci tensor, any metric yielding a 
self-dual connection is a solution to the Einstein equa- 
tion. On the other hand, it is easy to show that any 
self-dual curvature can be obtained, by a suitable 
change of  gauge, from a metric yielding a self-dual con- 
nection ~ 1. In this "self-dual gauge", the problem of 
finding a self-dual solution to the Einstein equation 
[7] is therefore reduced to one of finding self-dual 
connections and hence solving first-order differential 
equations generated by eq. (5). This is quite analogous 
to the Yang-Mil ls  case [1].  

In the following we consider two types of metrics 
having axial symmetry as in the Taub-NUT case +2: 

I: (ds) 2 = f2( r )  dr  2 +r2g2(r)(a 2 + 0 2) + r2a 2, (8) y 

n: (ds)2 =f2(r) dr2 + r2(o2 + o 2) + r2g2(r)% 2. (9) 

Here we consider these metrics directly in the euclidean 
space and do not regard them as a result of  some con- 
tinuation from the Minkowski regime. Asymptot ic  flat- 
ness requires that 

lim f(r) = lim g(r) = 1. 
r - - + ~  r - - + ~  

Taking as our orthonormal frames 

I: e a = (f(r) dr, rg(r)Ox, rg(r)Oy, rOz), 

(10) 

(11) 

II: e a : (f(r) dr, ro x, roy, rg(r)Oz), (12) 

,1 The proof involves decomposing any given spin connection 
toa b into self-dual and anti-self-dual parts, if Rab is self- 
dual, the anti-self-dual part of coa b is a pure 0(4) gauge 
transformation, Aac(dA -1 )Cb, and can be gauged away. 

+2 
The spherically symmetric ansatz, ds z =f2dr2 + r2g2(o2x 
+ o 3 + Oz~), leads to a trivially flat metric when we impose 
self-duality. 

we find after some simple algebra that the self-duality 
of  the connection implies 

I: g2 = f (2g2  _ 1), f = g ( g  +rg'), (13) 

I I : f g  = 1, f ( 2 - g 2 ) = g + r g ' .  (14) 

Asymptotical ly flat solutions are given, respectively, 
by 

I: f(r)  = ½(1 + [1 - (a/r) 4 ] -1/2),  (15) 

g(r) = (½(1 + [1 - (a/r) 41 1/2)}1/2, (16) 

11: g(r) = f - l ( r )  = [1 - (a/r)4l 1/2, (17) 

where a is an integration constant. The curvature com- 
ponents of  case II are given by 

R01 = - R 2 3  = -(2a4/r6)(eO A e 1 _ e2A e3), 

R0 2 = - R 3 1  = --(2a4/r6)(eOA e 2 - e3A e l ) ,  (18) 

RO 3 = - R 1 2  = +(4a4/r6)(e0 A e 3 _ el  A e2). 

The curvatures for case I have the same algebraic form 
with the replacement 

2a4 /r 6 -+ - a 4  /2r6 g 6. (19) 

Hence in both cases the curvatures are regular every- 
where for r>~ a and fall o f f l ike  1/r 6 at infinity. For 
comparison, we note that the Taub-NUT curvature pro- 
duced by eq. (1) is obtained by the replacement 

2a4/r 6 -+ m/(R + m) 3 , (20) 

and thus goes like 1/R 3 at infinity. 
The manifolds described by the above metrics have 

the topology R X S 3. Although the metrics have an ap- 
parent singularity at r = a, it can be eliminated by a 
change of variable, 

u 2 = r2( l  - (a/r)4). (21) 

For  instance the solution II now takes the form 

(ds)2 = du2/(1 + (a/r)4)2 +u2o 2 + r2(o 2 + 02). (22) 

Our next task is to compute topological invariants 
of the manifold. Here, as in the Taub-NUT case [8] ,  
we have to be careful about possible contributions 
from the boundary of  the manifold. 

A-genus (axial anomaly). The A t i y a h - P a t o d i -  
Singer theorem [9] gives the A-genus of  the manifold 

[ r l , r 2 ]  × S 3 as 
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A ( r l ,  r2)  = Avol  - (Asurf ÷ ½(hD + T/D))J;21" (23)  

"4vol is the  vo lume  integral  o f  the R i e m a n n  curva ture  

t ensor  c o n t r a c t e d  wi th  its dual  and  Asurf gives the con- 

t r i b u t i o n  due to the  devia t ion  o f  the  met r ic  f rom a 

p r o d u c t  met r ic  on  the  b o u n d a r y  [10 ] .  h D is the num-  

ber  o f  h a r m o n i c  spinors  o f  the Dirac o p e r a t o r  re- 

s t r ic ted  to the b o u n d a r y  and  ~/D gives i ts spect ra l  asym- 

m e t r y  [9 ,11 ] .  Using the formulas  in refs. [8] and  [11] 

we o b t a i n  

1 d(r 1 = a ,  r 2 -- oo) = ¼ _ 0 + ( -~ - ~ )  -- 0 ,  ( 2 4 )  

for  b o t h  so lu t ions  I and  II. Thus  these so lu t ions  by  

themselves  will n o t  induce  chiral  s y m m e t r y  break-  

down,  jus t  as in the T a u b - N U T  case [8 ] .  

Euler-Poincard characteristic ( t race  anomaly ) .  The 

E u l e r - P o i n c a r d  charac te r i s t ic  X is re la ted  to the  ther-  

mal effects  o f  gravi ta t ional  pseudopar t i c les  [ 3 , 1 2 ] .  To 

calcula te  ×, we apply the  C h e r n - G a u s s - B o n n e t  theo-  

rem [ 13] ,  

X = Xvol Xsurflr~, (25)  

where  Xvol and Xsurf are the analogs  OfAvo I and  Asurf 
in eq. (23) .  Using the  k n o w n  formulas ,  we f ind for  

b o t h  so lu t ions  I and  11 the Euler  charac te r i s t i c  +3 

43 It appears that the manifold of solution II can be compacti- 
fled by adding an S 2 at r = a. In this case (see eq. (22)) file 
manifold acquffes the local topology of D 2 X $2; since as 
r ~ a, the D 2 shrinks to a point, the manifold is homotopic 
to S 2. If we then omit the r = a boundary term in eq. (26), 
we obtain × = 4. However, we know × = 2 for a manifold 
homotopic to S 2. tlence the Chern-Gauss-Bonnet  theo- 
rem requires a "corner" correction in this case. A similar 
situation occurs if one puts a metric on a cone and tries to 
compute the Euler characteristic using the Gauss-Bonnet  
theorem without correcting for the apex. For solution I, 
analogous arguments indicate that the manifold compacti- 
fled at r = a is homotopic to the manifold of SO(3). Then 
the apparent Euler characteristic is 4, while the true value 
is x = 0. The compactified manifolds admit a spin structure 
because the second Stiefel-Whitney classes vanish [ 14 ]. 
However, in practice the "corners" may make it difficult 
to treat the Dirac operator on the whole manifold. If such 
an operator can be defined, the A~-genus (axial anomaly) 
would also require "corner" corrections. This problem is 
under study. 

X(rl = a, r 2 = ,~) = 3 - (--  1) + ( - 4 )  = 0. (26) 

This o f  course  agrees wi th  the combina to r i a l  calcula- 

t ion  for  R X S 3. 

We observe tha t  at  large r, our  curva tures  fall like 

l / r 6 ;  in cont ras t ,  the euc l idean  Taub -NUT and 

Schwarzsch i ld  so lu t ions  fall like 1/r 3. This suggests 

tha t  ou r  met r ics  describe gravi ta t ional  " d i p o l e s "  while 

T a u b - N U T  and Schwarzschi ld  describe monopoles .  This 

is p r o b a b l y  a sign tha t  ou r  eucl idean so lu t ions  will no t  

have a mean ingfu l  c o n t i n u a t i o n  to Minkowski  space, 

as is the case for  the  Y a n g - M i l l s  pseudopar t i c le .  

We are deeply  i n d e b t e d  to I. Singer  for a n u m b e r  o f  

in fo rmat ive  discussions.  This  research was p e r f o r a t e d  

u n d e r  the  auspices o f  the  Division o f  Physical  Research 

of  the U.S. D e p a r t m e n t  o f  Energy.  
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