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Abstract 

The path-integral approach to quantum field theory assigns special importance to finite 
action Euclidean solutions of classical field equations. In Yang-Mills gauge theories, the 
instanton solutions of classical field equations with self-dual field strength have given 
rise to a new, nonperturbative treatment of the quantum field theory and its vacuum state. 
Since gravitation is also a species of gauge theory, one might think that similar phenomena 
would occur in gravity. The authors recently sought and found a new self-dual solution to 
Euclidean gravity which plays a role parallel to that of the Yang-Mills instanton. Gravita- 
tional instantons now promise to yield new insights into the nature of quantum gravity. 

w Introduction 

Einstein's theory  of  gravitation is one of  the most beautiful structures of  clas- 
sical relativistic physics. Being a classical field theory,  however, gravity has 
proved to be very difficult to be incorporated in the context  of modern quan- 
tum field theory.  The desire to treat  gravitation as a quantum field resembling 
other elementary quantized fields has led to many at tempts  to understand 
quantum gravity. None has been completely successful. 

Nevertheless, a number of  illuminating insights concerning the structure of  
quantum gravity have been obtained using Feynman's  path  integral approach to 
quantization (see, for instance, [1] ). The path integral has the well-known prop- 
erty that it  can be evaluated unambiguously only for Euclidean imaginary time, 
although the results are continued back to the Minkowski regime. Approxima- 

1 This essay received the second award from the Gravity Research Foundation for the 
year 1979-Ed. 
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tions to the path integral quantization for a theory can therefore be developed 
first by examining classical Euclidean solutions of the theory and then making a 
systematic perturbative expansion around these solutions. Since the weight of a 
given path in the path integral is proportional to the exponential of minus the 
action, the minimum-action Euclidean solution may dominate the path integral. 
Quantum amplitudes found by expanding around such a solution have a good 
chance of being fairly accurate. 

w Ins tantons  

One example of a minimum-action solution to a nonlinear field theory 
which has recently attracted a great deal of interest is the instanton solution to 
the Yang-Mills equations found by Belavin, Polyakov, Schwarz, and Tyupkin 
[2]. This solution is called an instanton because its Yang-Mills field strength is 
concentrated around one point in four-dimensional Eucliclean space-time. In 
the distant past and distant future, the field strength vanishes: a bump in the 
field strength appears for an instant of time, then dies away. 

The instanton solution arises in an intriguing fashion. First one examines 
the Yang-Mills equations 

auFuv  + [Au,Ftav ] = 0 (2.1) 

and the identity 

eu~ey (~F~ .  r + [As, F~y] ) = 0 (2.2) 

which follows from the definition of the field strength 

Fur  = 3 u A  v - 8vA u + [ A u , A v  ] 

Then one observes that i f  Fur  is self-dual or anti-self-dual, 

F u r  = +T'uv =- +- �89 e ,  va~Fo~ (2.3) 

the identity (2.2) implies that the Yang-Mills equations (2.1) are satisfied. Fur- 
thermore, one can show that field strengths satisfying equation (2.3) are abso- 
lute minima of the Yang-Mills action. 

Now we notice that equation (2.3) contains only first derivatives of the po- 
tential A u, and yet it implies the solution of equation (2.1), which contains 
second derivatives ofA u. Thus in this special case it is possible to reduce the 
Yang-Mills equations to a first-order differential equation. Suppose one chooses 
the Ansatz 

Og (2.4) A u = p ( r ) g  -1 Ox u 

for the SU(2) Yang-Mills gauge potential, where r 2 = t 2 + x 2 , g = ( t  - iT .  x ) / r  

and ( r}  are the Pauli matrices. Then if we require the field strength to be self- 
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dual, Fur = Fay, we find the first-order differential equation 

d o ( r ) §  1)p =0 
dr r 

with the solution 
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(2.5) 

p(r) = r2 /(r 2 + a 2) (2.6) 

The potential A u given by equations (2.4) and (2.6) is the instanton solution to 
the Yang-Mills equations, which produces a self-dual field strength Fur con- 
centrated at r = 0 and falling off in all directions like 1/r 4 . 

The physical implications of the instanton are profound. It provides a new 
nonperturbative starting point for the path-integral quantization of Yang- 
Mills field theory. Perhaps the most striking consequence of the instanton is 
the fact that the Yang-Mills vacuum has an infinitely periodic structure: the true 
vacuum is a superposition of an infinite number of equivalent vacuum states 
[3]. The instanton action gives a first approximation to the tunneling ampli- 
tude between two adjacent vacuum states. Since instantons carry nontrivial 
topological quantum numbers, these tunneling amplitudes break various sym- 
metries of the theory. In particular there exists a zero-energy solution to the 
Dirac equation in the instanton field and this causes a nonconservation of the 
ninth axial vector current and the breakdown of chiral U(1) symmetry [4]. 
Instantons also possibly generate CP violation and baryon-number non- 
conservation. 

The existence of spin-�89 zero mode in the instanton field is a consequence of 
a mathematical theorem, the Atiyah-Singer index theorem [5], and is ultimately 
traceable to the deep relationship between Yang-MiUs theory and the differen- 
tial geometry of fiber bundles (see, for instance, [6] ). 

w Self-Dual Solutions o f  Euclidean Gravity 

The fact that Yang-Mills theory and its instanton solutions are intimately 
related to geometry suggests that we examine the other major link between 
geometry and physics, i.e., Einstein's theory of  gravitation. By exploring a num- 
ber of parallels between Yang-Mills equations and Einstein equations, the 
present authors were able to discover a new solution of Euclidean gravity [7] 
which strongly resembles the Yang-Mills instanton. 

The gravitational instanton can be derived in the following way: First, 
consider a Euclidean metric guy decomposed into vierbein one-forms e a = 
ea~ dx  ~ as 

3 

ds 2 =guv dxUdx  v =~_, (ca) 2 (3.1) 
a=O 
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and recall that the spin connection one-form ~Oab is determined by 

de a + c,,)ab A e  b = O, (Dab = -(Dba (3,2) 

Then note that self- duality (or anti-self- duality) of the spin connection one-form, 

(Dab = +-(~ab =--- + �89 Cabed(-',)cd (3.3) 

implies self-duality of the curvature two-form, 

1 c Rab -- dWab + Wac A ~cb  -- ~ Rabccle A ecl (3.4) 

But self-duality of the curvature two-form, 

gab = +gab = +�89 eaboaRca (3.5) 

together with the cyclic identity eebeaRabea = 0 imply that the empty space 
Einstein equations are satisfied. Thus equation (3.5) is the gravitational analog 
of the fact that self-dual Yang-MiUs field strengths satisfy the Yang-Mills 
equations. 

Now we observe that equation (3.3) contains only first derivatives of the 
metric while implying the validity of equation (3.5) and hence Einstein's equa- 
tions. This means that we will be able to reduce Einstein's equations to a first- 
order differential equation, analogous to the Yang-Mills case. 

All that is needed now is a good guess for the metric to play the role of 
equation (2.4). An obvious tactic is to study the flat metric in four-dimensional 
polar coordinates, 

cls 2 =dr  2 + r2 (Ox 2 +or  2 + Oz 2) 

where 

o x = { (sinqJ dO - sinO cos$ d$) 

Cry = �89 (-cos$ dO - sinO sin$ d$) (3.6) 

o~ = �89 (d~, + cos0 d~) 

0~<0 <re, 0 ~ < r  0 ~ < ~ < 4 n  

We then examine the following modification of the flat metric: 

ds 2 = f Z ( r ) d r 2  + r 2 [Ox 2 + cry 2 + g2(r )oz2  ] (3.7) 

A straightforward calculation shows that the spin connections Wab are anti- 
self-dual if f(r) and g(r)  obey the first-order differential equations 

f g =  l 

g+ r ~ =  s - g~) 

(3.8) 
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The solution of these equations is 

g2 (r) = f -2 (r) = 1 - ( a / r )  4 (3.9) 

Thus the metric [7] 

ds 2 = [1 - (a/r) 4 ] - 1  dr 2 + r  2 {Ox 2 + OyZ + [1 - (a/r) 41 Crz 2} (3.10) 

satisfies the Einstein equations with anti-self-dual curvature. 
One must of course check that the manifold defined by the above metric 

is geodesically complete. One finds that all is well, provided the range of ff is 
changed to [8] 

0 ~< ~ < 27r (3.11) 

This means that at ~,  the coordinate x u is identified with its TP conjugate 
partner -x  u . Except for this identification, the metric approaches a fiat-space 
metric at ~. The manifold's natural origin is at r = a, where the metric is in fact 
regular and there is an instantonlike bump in the curvature. 

The new gravitational instanton metric (3.10) is now known to be the first 
of a family of multiple-instanton metrics discovered subsequently by Gibbons 
and Hawking [9]. These interesting metrics have been shown by Calabi [t0] 
and by Hitchin [1 1 ] to arise in a natural mathematical context. 

We now turn to the physical meaning of the gravitational instanton metric 
(3.10). In the first place, since the metric satisfies the Einstein empty-space 
equations, its scalar curvature and classical action vanish. Therefore the gravi- 
tational instanton gives a dominant contribution to the path integral as impor- 
tant as the contribution of the flat metric itself. Secondly, since the metric 
approaches that of a flat space at infinity modulo an identification, it makes 
contributions to the asymptotic scattering states of  conventional quantum field 
theory and causes a certain type of symmet~  violation. Perry [12] has pointed 
out that the simplest nontrivial amplitude induced by the gravitational instanton 
occurs in the particle four-point function. He has shown that in the electron- 
positron scattering process incoming electrons are transformed by an instanton 
into outgoing positrons with reversed helicity. This phenomenon is the TP 
reversal which takes place as a particle passes through an instanton field (recall 
that x u had to be identified asymptotically with its TP conjugate -xu). We also 
remark that while the gravitational instanton does not contribute to the zero- 
frequency modes of a spin-�89 Dirac particle, it does produce zero-frequency 
solutions of the spin 3 Rarita-Schwinger equation [13] and thus possibly 
breaks chiral U(1)symmetry.  

Thus our gravitational instanton solution (3.10) of the Einstein equations 
bears a remarkable resemblance to the instanton solution of Yang-Mills theory. 
We may summarize the parallels in the following table: 
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Yang-Mills Einstein 
Solution of Reference 2 Solution of Reference 7 

self-dual field strength 
field-strength bump at origin 
At~ ~ pure gauge at infinity 
no singularities 
finite action 
CP- changing amplitudes 
spin-�89 zero-frequency modes 

(anti)-self-dual curvature 
curvature bump at origin 
g~v ~ locally flat spact at infinity 
geodesicaUy complete 
zero action 
TP- changing amplitudes 
spin-~ zero-frequency modes 

w Conclusion 

New insights into the nature of  relativistic quantum field theories will be 
gained by  path-integral quantization methods.  In particular,  the expansion of  the 
path  integral around minimum-act ion solutions will prove to be a powerful tool  
in the analysis of  nonlinear field theories. Just as the instanton solution of  
Yang-Mills equations has led to a deeper understanding o f  the theory,  the gravi- 
tat ional  instanton we have presented here promises to play a similar role in 
quantum gravity. 
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