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Recent work on Euclidean self-dual gravitational fields is reviewed. We discuss various 
solutions to the Einstein equations and treat asymptotically locally Euclidean self-dual 
metrics in detail. These latter solutions have vanishing classical action and nontrivial 
topological invariants, and so may play a role in quantum gravity resembling that of the 
Yang-Mills instantons. 

I. INTRODUCTION 

The discovery of self-dual instanton solutions in Euclidean Yang-Mills theory [I] 
has recently stimulated a great deal of interest in self-dual solutions to Einstein’s 
theory of gravitation. One would expect that the relevant instanton-like metrics would 
be those whose gravitational fields are self-dual, localized in Euclidean spacetime 
and free of singularities. In fact, solutions have been found which have the additional 
interesting property that the metric approaches a flat metric at infinity. These solutions 
are called “asymptotically locally Euclidean” metrics because, in spite of their 
asymptotically flat local character, their global topology at infinity differs from that of 
ordinary Euclidean space. Since the Yang-Mills instanton potential approaches a 
pure gauge at infinity, this class of Einstein solutions closely resembles the Yang-Mills 
case. 

The first examples of asymptotically locally Euclidean metrics were the self-dual 
solutions given by the authors in Ref. [2]. Belinskii, Gibbons, Page and Pope [3] 
then studied the general class of self-dual Euclidean Bianchi type IX metrics and 
showed that only metric II of Ref. [2] could describe a nonsingular manifold. Gibbons 
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and Hawking [4] have now exhibited an entire series of such metrics. In fact, very 
general classes of manifolds which could admit self-dual asymptotically locally 
Euclidean metrics have recently been identified by Hitchin [5]. 

Asymptotically locally Euclidean self-dual metrics have a number of special 
properties. For one thing, they have zero action and so must be quite important 
in the path integral. Secondly, since the metrics become flat and the gravitational 
interactions are switched off at infinity, standard asymptotic-state methods can be 
applied to analyze the quantum effects of such metrics. 

For completeness, let us summarize various stages of the search for gravitational 
instantons which took place before the discovery of asymptotically locally Euclidean 
metrics. The first step was the identification of the Euler characteristic and Hirzebruch 
signature of a manifold as the appropriate gravitational analogs of the Yang-Mills 
topological invariants [6, 71. A number of standard Riemannian manifolds were of 
course considered as logical candidates for gravitational instantons. The most 
remarkable of these, the K3 surface, is the only compact regular simply-connected 
four-dimensional manifold without boundary which admits a metric with self-dual 
curvature [8]; this metric would therefore satisfy Einstein’s equations with vanishing 
cosmological constant. Unfortunately, the explicit form of the K3 metric has so far 
eluded discovery [29]. 

The first known metrics which come to mind are the standard solutions of black 
hole physics. While all black hole solutions arise in Minkowski spacetime, they can be 
continued also to the Euclidean regime to produce positive-definite singularity-free 
metrics [9, IO]. These continued metrics are periodic in the new time variable, which is 
associated with the thermodynamic temperature, and decay only in the three spatial 
directions. One example of such a metric is the self-dual Euclidean Taub-NUT 
solution examined by Hawking [lo]. In this case Einstein’s equations are satisfied 
with zero cosmological constant, and the manifold is iw* with a boundary which is a 
twisted three-sphere S3 possessing a distorted metric. The metric is not asymptotically 
flat because it does not fall off in all four asymptotic spacetime directions. 

Another interesting case is the Fubini-Study metric on PZ(@), two-dimensional 
complex projective space, studied by Eguchi and Freund [7, 241. This manifold is 
compact without boundary and has constant scalar curvature. The metric has self- 
dual Weyl tensor rather than self-dual curvature, and so solves Einstein’s equations 
with nonzero, cosmological term. One drawback is that PZ(@) does not admit well- 
defined Dirac spinors. Nevertheless, one can construct a more general type of accep- 
table spin structure on P,(C) by adding a Maxwell field to the theory [l I]. 

All of the metrics just described are in some sense self-dual, are regular and have 
finite action, but are not asymptotically flat. The gravitational fields of such metrics 
persist throughout spacetime and make it difficult to define the asymptotic plane-wave 
states necessary for ordinary scattering theory. Although these metrics are very 
interesting, they do not quite coincide with our intuitive picture of instantons as 
localized excitations in Euclidean spacetime which approach the vacuum at infinity. 
In contrast, the asymptotically locally Euclidean metrics seem to be very naturally 
identifiable as gravitational instantons. 
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The remainder of the paper is organized as follows: Section II contains a complete 
explanation of the derivation of the regular asymptotically flat self-dual solution 
presented in Ref. [2]. 

In Section III, we examine the properties of various other metrics which have 
instanton-like properties. Section IV is devoted to self-dual multicenter metrics and 
Section V contains concluding remarks. 

II. AN ASYMPTOTICALLY FLAT SELF-DUAL SOLUTION OF EUCLIDEAN GRAVITY 

We now derive the simplest regular asymptotically flat self-dual solution of 
Euclidean gravity, which was labeled as metric II in Ref. [2]. Let us begin by reviewing 
a procedure by which one can solve the Yang-Mills equations to obtain the instanton 
solution [l] and noting possible gravitational parallels. To obtain the instanton, 
we do the following: 

(1) Observe that the Yang-Mills equations 

W,,, + M, , F,vI = 0, 

where Fuv = a,A, - &AU + [A,, A,], are solved at once due to the Bianchi identities if 

(2) Choose the Ansatz 

4 = ~(4 g-1 a, g 

for the N(2) gauge potential, where r z=tz+xz,g=(t-iir~x)/r,and{~}arethe 
Pauli matrices. 

(3) Solve the first-order differential equation 

p’(r) + ; p(p - 1) = 0 

obtained by setting Fuy = flfiv ; we find 

p = r”/(r” + a”). 

In this way, we find a Euclidean SU(2) Yang-Mills solution with finite action, self- 
dual Fuy localized at r = 0 and falling like 1 /r4 at infinity, and A, asymptotically a pure 
gauge at infinity. 

We wish to find a Euclidean gravity solution with finite action, self-dual curvature 
localized inside the manifold and falling rapidly at infinity, and with the metric 
asymptotically locally Euclidean at infinity. We might therefore search for such a 



EUCLIDEAN SELF-DUAL GRAVITY 85 

solution by undertaking the following gravitational analogs of the Yang-Mills 
procedure: 

(1) Observe that if the spin connection l-form aa6 is self-dual (i.e., woi = 
-J-&E~~~w~~), the curvature 2-form RQb is self-dual, so Einstein’s equations are satisfied 
at once due to the cyclic identities. 

(2) Choose an Ansatz for gULy(x) which differs from a flat Euclidean metric by 
functions of r2 = t2 + x2 alone. 

(3) Solve the first-order differential equations in the metric obtained by requiring 
mati to be self-dual. 

A. Preliminaries 

First we establish some useful notation and explain more fully the essentia1 concepts 
appearing in the procedure just outlined. We let the four Euclidean coordinates be 
x, = (t, x, y, z) so that the flat metric is given by 

ds2 = dt2 + dx2 + dy2 + dz2. (2.1) 

We next change to four-dimensional polar coordinates with r2 = t2 + x2 + y2 + z2 
and define 

ff 2 = f (x dt - t dx + y dz - z dy) = i (sin # d0 - sin 0 cos $ d$), 

CT y = -$- (y dt - t dy + z dx - x dz) = i (- cos Z/J de - sin 0 sin $J d#, (2.2) 

u z = $ (z dt - t dz + x dy - y dx) = ; (d+ + cos 0 d$). 

The variables 0, 4, $J are Euler angles on the three-sphere S3 with ranges 

(2.3) 

and are related to the Cartesian coordinates by 

x + iy = r cos i exp i (4 + f$), 

z + it = r sin i exp i (# - 4). 
(2.4) 

The differential I-forms (2.2) are closely related to the Cartan-Maurer forms for 
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SU(2) and obey the following structure equations under exterior differentiation: 

da, = 2a, A B, , cyclic. (2.5) 

The flat metric can now be written in polar coordinates as 

ds2 = dr2 + r2(cr2z + uzy + ~2~). (2.6) 

Next we write an arbitrary metric in terms of the local orthonormal vierbein frame 
e~,(x>, 

ds2 = dx@ guy(x) dxy = i (ea)2, 
a=0 

(2.7) 

where ea = ea,, dx”. The spin connection mab is then a one-form determined uniquely 
by the structure equations [12] 

de” + wab A eb = 0, 

uab = -cob, = coab,, dxu. 
cw 

Greek indices are raised and lowered with g,, , while Latin indices are raised and 
lowered by the flat metric 6& . Vierbeins and inverse vierbeins interconvert Latin and 
Greek indices. 

The curvature is now defined as the two-form 

where 

Rab = dw” b + Wac A Wcb, 

Rab = $Rabuv dx” A dxv = $RabedeC A ea. 

By exterior differentiation of (24, we find the cyclic identity, 

Rab A eb = 0 -+ cebc&&d = 0. 

We now define the “dual” of the two-form Rab in its free indices as 

8ab = &,bcdRCd. 

Then it is easy to show that Einstein’s equations 

RaC - LZrrveauebv = 0, bc - 

where 9?uy is the Ricci tensor, are equivalent to 

@b . Aeb=O 

(2.9) 

(2.10) 

(2.11) 

(2.12a) 

(2.12b) 
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(One must take appropriate sums and differences of various components to prove the 
equivalence.) Therefore if Rub is (anti) self-dual, 

Rab = iI&, (2.13) 

the cyclic identity (2.10) implies that the Einstein equations (2.12) are satisfied. This is 
the analog for gravitation of the fact that self-dual Yang-Mills fields automatically 
satisfy the equations of motion. However, Eq. (2.13) is still a second-order differential 
equation in the vierbeins P,(x). It is remarkable that we can now go one step further 
and deduce the Einstein equations from a first-order differential equation in the 
fundamental variables, just as in the Yang-Mills case. We simply observe that 
Eq. (2.9) can be written 

R”, = d’wz3 + ma,, A coo3 + w21 A cJg, cyclic, 

R”, = duo, + woz A 0.3~ + coo3 A w31 , cyclic. 
(2.14) 

Thus if 

woi = *$-Eijpik (2.15) 

is obeyed, then Eq. (2.13) is immediately satisfied. Defining 

we see that the first-order condition on eaU , 

db = *ijab ) (2.17) 

is a sufficient condition for the self-duality of Rub , and hence for solving the Einstein 
equations. 

In fact, Eq. (2.17) is also necessary for a self-dual Rub in the following sense: if 
Eq. (2.13) is satisfied, one can always transform C@ b by an O(4) gauge transformation 
into the form (2.17). To see this, we examine the change in uab when the orthonormal 
frame specified by ea is rotated by an x-dependent orthogonal transformation /lab(x): 

efa = (A-l)ab eb. (2.18) 

A simple calculation using the structure equation (2.8) shows that the form of the 
structure equation is preserved if we identify the new spin connection as 

(2.19) 

Thus C& transforms exactly like an O(4) Yang-Mills gauge potential. Furthermore, 
the curvature behaves as 

&lab = (~+l)~~ R”,L’& , (2.20) 
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TABLE 1 

Comparison of the Euclidean Yang-Mills and Einstein Equations 

Property Yang-Mills Einstein 

Metric - 

Structure equations - 

Connection A=A; ;dxv 

Curvature F=dA+AhA 

= ;FEv$dxp /\ dxy 

Dual curvature or 

connection: 

1 TQ 
p = --fi - dx” h dxy 

2 Iry 2i 

Bianchi identity 

Cyclic identity 

Euler equation 

dF+AttF-FAA=0 

- 

dp+ArtP--PAA= 

Automatic solution F= kP 

First order 

automatic solution 

F= &p 

Basic function A”,,(x) 

ds2 = i (ea)2 
a4 

0 = de” f  wQb A eb 

dR”, + wad A RC - Ra A we = 0 b c b 
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The conclusion of our argument is as follows: Suppose Ra, is self-dual, but mal, 
is not. Then split uab into self-dual and anti-self-dual parts; one can explicitly con- 
struct a (la, which will gauge transform away the anti-self-dual part. Since self-duality 
of Rab is preserved under the orthogonal transformation (2.20), we find that any self- 
dual curvature comes from a self-dual connection if a “self-dual gauge” is chosen. 

In Table 1, we present a summary of these results and compare them with the 
analogous properties of Yang-Mills theories in differential-form notation. The point 
is that although the Euler equations of the Einstein and Yang-Mills theories are quite 
different, they both are automatically solved when the spin connections or field 
strengths obey the appropriate self-duality conditions. In gravity, the self-duality 
condition (2.17) is a first-order differential equation in the vierbein P,(X), while in 
Yang-Mills the self-duality condition F&,, = &flu:,, is first-order in the potentials 
A:(x). We remark that the dryeerence between Yang-Mills theory and Einstein’s 
theory in the orthonormal frame basis is that the gravity O(4) connections uab follow 
from the metric and thus guarantee that Rub obeys the cyclic identity. No such addi- 
tional restriction occurs in general in an O(4) Yang-Mills theory since the group 
indices and the spacetime indices are uncorrelated. 

B. The Metric Ansatz 

We now continue to follow the pattern observed in Yang-Mills theories by choosing 
a metric Ansatz differing from the flat metric by functions of the radius alone. We 
choose to examine the axially symmetric Ansatz 

ds2 = f”(r) dr2 + r”(uz2 + (sy2 + g2(r) 02). (2.21) 

(This was Ansatz II of Ref. [2].) More general Ansatze will be examined in the next 
Section. 

If we decompose the metric (2.21) into the orthonormal vierbein basis 

ea = (f(r) dr, ru, , ru, , r&9 4, 

we find that the structure equations (2.8) give the spin connections 

(2.22) 

1 
wlo = _ el 

rf ' 
1 020 = - e2 

rf ' 

~2~ = K el 
r ’ 

~3~ = 2% e2 
r ’ (2.23) 

w3o = [+ + $1 e3, cd2 = 9 e3. 

With our choice of orientation, we are led to impose anti-self-duality on the C& , 
leading to the differential equations 

fg = 1, 
g + rg’ = f(2 - g”). 

(2.24) 



90 EGUCHI AND HANSON 

These equations are integrable, with the result 

g”(r) = f-“(r) = 1 - (a/r)4, 

where a is the integration constant. 
Hence we find a new metric [2] 

ds2 = [l - (a/r)“]-’ dr2 + r2(az2 + u,3 + r2[l 

(2.25) 

- (4441 uz2 (2.26) 

which satisfies the Euclidean empty space Einstein equations. The spin connections 
are 

do = w23 = [l - (a/r)“]‘/” uz = [I - (a/r)4]1/2 cl/r, 

clJ2 - w31 = [I - (a/r)“]“” uy = [l - (a/r)4]1/2 e2/r, 

0~~: 1 cd2 = [I + (a/r)“] uz = [l + (a/r)“] e”/(r[l - (a/r)4]1/2). 

(2.27) 

We easily compute the curvature components to be 

RI, = R2, = - $ (el A e” + e2 A es), 

R2, = R3, = - $ (e2 A e” + e3 A el), 

R3, = R1, = + -f$ (e3 A e” + e1 A e”). 

(2.28) 

It is straightforward to construct also a combined solution of the Maxwell-Einstein 
equations [30] in the presence of the metric (2.26). Choosing the local potential 

A=$Jz (2.29) 

one finds the local field strength (which is not globally an exact form) 

F = dA = f (e” A e” -J- e1 A e2). (2.30) 

Since F is anti-self-dual, it is harmonic and has vanishing (Euclidean) energy- 
momentum tensor. Thus Einstein’s equations retain their empty-space form and the 
Maxwell-Einstein equations are automatically satisfied. As we will demonstrate 
shortly, the coordinate system “origin” occurs at r = a and the manifold is regular 
there, so F is regular and finite everywhere. (The other two anti-self-dual Maxwell 
fields that naturally present themselves, with A, = r2u,/(r4 - a”) and A2 = 
r2crJ(r4 - a”), are FI = 2(r4 - a4)-l(el A e” + e2 A e”) and Fz = 2(r4 - u4)-l x 

(e2 A e” + e3 A el) and are thus singular.) Suggestively, the l/r4 asymptotic behavior 
of the Maxwell fieId (2.30) is the same as that of the Yang-Mills instanton. 
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C. Properties of the Manifold 

We now need to determine whether there are any true singularities in the new 
metric (2.26) and whether it describes a geodesicaliy complete manifold [3]. We begin 
by writing the metric in several alternative forms. First, let 

then 

p4 ~r4-a~: (2.31) 

ds2 = [I + (a/p)4]-1/2{dp2 + p2ua2) 

+ [l + (a/p)*]““{p2uz2 + p2a,2)-. (2.32) 

These coordinates are well-adapted to converting the metric into complex form using 

z1 = x + iy, z2 = z + it, 

p2 = z& + '252 . 

One then finds two equivalent ways of writing the metric in terms of a Kahler form 
[5, 131 on C2 - (0): 

(1) K = ip4 4’a411,2 (dzl d% + dz, dz2) + ,p4 ~~411,2 aa ln(p2), 

(2) K = 28 ln $, 4= 
p2 exp[p4 + a4]lj2 
a2 + [p4 + a4]1/2 ’ 

(2.33a) 

The @ In p2 term in these forms causes problems at p = 0 (i.e., at r = a). However, 
this apparent singularity can be removed if one identifies opposite points of the 
manifold, 

(Zl 3 z2) - C-1 2 -TJ, 
or 

kJ - (--7cJ. 
(2.34) 

We next give a more elementary explanation of this fact. 
First, let us change radial variables once again by defining 

u2 = r2[1 - (a/r)“]. 

Then the metric can be written 

(2.35) 

ds2 = du2/[1 + (a/r)7” + u2uz2 + r2(oz2 + u,‘). (2.36) 

Very near to the apparent singularity at r = a, or, equivalently, u = 0, we have 

ds2 m ; du2 + i u”(d# + cos 0 d$)2 + : (de2 + sin2 0 d@). (2.37) 
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For fixed 0 and 4, we obtain 

ds2 m i(du2 + u2 d#2). (2.38) 

A short exercise tells us whether or not the singularity at u = 0 is real or is a 
removable polar coordinate singularity. We simply note that the apparent Y = 0 
singularity in the lR2 metric 

ds2 = dx2 + dy2 = dr2 + r2 dQ2 (2.39) 

is removable provided that 

0 < @ < 2rr. (2.40) 

We therefore conclude that if the range 0 < # -=c 477 given by Eq. (2.5) is changed to 

0 < # < 237, (2.41) 

we can remove the apparent singularity at r = a and obtain a geodesically complete 
manifold. 

The global topology of our manifold is now the following: Near r = a, the manifold 
has the topology R2 x S2 indicated by Eq. (2.37). To be precise, at each point of 
the two-sphere parametrized by (0, +), there is attached an R2 which shrinks to a 
point as r -+ a (u + 0). The manifold is thus homotopic to S2 and has the same Euler 
characteristic as S2, x = 2. 

For large r, the metric approaches a flat metric. However, because of the altered 
range (2.41) of #, the constant-r hypersurfaces are not three-spheres, but three- 
spheres with opposite points identified. The boundary as r + cc is thus the familiar 
group manifold of SO(3) = P&Q), for which S3 = SU(2) is the double covering. This 
is an explicit example of a metric whose topology is asymptotically Zocally Euclidean 
(P&R) = S”/ZJ, but not globally Euclidean (i.e., not S3). 

It can be shown [5] that the entire manifold A4 we have just described is in fact the 
cotangent bundle of the complex plane, PI(@) ru S2, and so we may write 

M = T*(P,(@)), 

2M = P@). 
(2.42) 

In Figure 1, we present a description of the topology of the manifold which we have 
deduced from the metric (2.26) and the regularity requirements. 

D. Action and Topological Invariants 

Using the connections and curvatures (2.27) and (2.28) for the metric (2.26) with 
the #-range (2.41), we now calculate the various integrals characterizing the solution. 
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P3 (IR) = Boundary at u =a~ 

P3 (IR) = Boundary at u =a) 

FIG. 1. The manifold T*(PI(C)) described by the metric (2.26). For tied S2 coordinates (0, $), 
the manifold has local topology R2 x 9. Constant radius hypersurfaces have the topology of P@). 
At ~0, the metric on the boundary is the canonical P,(R) metric. As N -+ 0 [Eq. (2.36)] or equivalently, 
as r + a [Eq. (2.26)], the manifold shrinks to Sa N PI(C). 

Since our manifold has a non-empty boundary surface, we will repeatedly need the 
second fundamental form, 

oab = Wnb - (dab , (2.43) 

to compute boundary corrections. If we choose the radial direction as the direction 
everywhere normal to the boundary, (qJab is the connection of the product metric 
for fixed r,, , 

ds2 = [I - (~/r$-~ dr2 + ro2(uz2 + uy2 + [I - (a/rJ4] uz2). (2.44) 

Since our scalar curvature is identically zero, the entire action comes from the 
surface term [9]. Defining Kij by [13] Pi = - Kijej, we calculate the surface action 
at large r to be 

1 
-- 8~ laMtT, Ki, dC = $ [ 3r2 - f - 3r2(1 - (a/r)4)1!2] 

77 a4 N--. 
16 r2 (2.45) 
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Since the surface term falls like l/r2 as r -+ co, we find vanishing action for the metric 
(2.261, 

S[g] = 0. (2.46) 

We have already stated the topological arguments giving our manifold the same 
Euler characteristic, x = 2, as 9. We confirm this fact using Chern’s formula [14, 151 

X(M) = j& (j caenRa~ A RCd - 
A4 s aM(s) 

eabed 28”,, A Red - ; da, A 8”, A B”,)) 
( 

3 1 
=- 

= 
2 4 -- 1 2 2- 

Had we allowed # to range over all of S3 instead of P,(R), we would have found twice 
this answer, x = 4. The apparent disagreement between the topology and the Chern- 
Gauss-Bonnet theorem for the wrong $ range shows that for 0 < 4 < 4rr, the 
manifold would have “cone-tip” singularities at r = a; this implies the necessity of 
cone-tip corrections (such as effective delta-functions in the curvature at r = a) in 
order to adjust the Euler characteristic to its correct topological value. This does not 
seem to be a very satisfactory physical situation, so that the proper range of # must 
indeed be 0 < 4 < 2n. 

To compute the signature 7 of our manifold M, we first compute the integral of the 
first Pontrjagin class, 

=- 3. (2.48) 

The Chern-Simons boundary correction [16] vanishes, 

-Ql[aM] = & jaM Tr(B A R) = 0. (2.49) 

The signature T-invariant rs for the canonical metric on P&R) has been computed by 
Atiyah, Patodi and Singer [I 71 to vanish also: 

7#3(lR)) = ; COP (+j = 0. (2.50) 

Thus the signature of M is 

T[MI = WI - Q,) - qs = -1. (2.51) 

By the Atiyah-Patodi-Singer extension [17] of the Hirzebruch signature theorem, 
there is exactly one anti-self-dual harmonic 2-form with the appropriate boundary 
conditions. 
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The index I,,, of the spin 4 Dirac operator in the presence of the metric (2.26) is 
given by [17, 151, 

(2.52) 

Atiyah [18] has extended the computation of Ref. [17] to the Dirac case, with the 
result 

1 1 1 
77112 = 4 sin2 (r/2) = 3’ 

h,,, = 0. 
(2.53) 

Thus 

I,,, = -s-(--3 - 0) - i(i) = 0, (2.54) 

and there is no asymmetry between the right and left chirality zero-frequency modes 
of the Dirac operator. 

For the spin 3/2 Rarita-Schwinger operator, the index is given by 

I,/2 = %W,[W - Q&W> - Hr/3/2 + h,,,), (2.55) 

where we have corrected the result of Ref. [19] to include boundary terms in the 
obvious way. Hanson and Rijmer [20] have calculated the expression involving the 
Atiyah-Patodi-Singer q-invariant with the result 

r/3/2 + h,,, = -$. (2.56) 

There are thus two excess negative chirality spin 312 fields obeying the Atiyah-Patodi- 
Singer boundary conditions, 

13,2 = Z(-3 - 0) - 4(-S) = -2. (2.57) 

This is in agreement with the explicit construction of Hawking and Pope [21], who 
build two spin 312 wave functions out of two covariant constant spinors and the single 
anti-self-dual Maxwell field whose existence is required by Eq. (2.51) for the signature. 
The indicated spin 3/2 solutions may in fact follow directly from an appropriate 
supersymmetry transformation. 

While the spin 2 index characterizing the number of anti-self-dual perturbations 
about the metric (2.26) has not been calculated at this time, there is at least one 
zero-frequency mode, corresponding to a dilatation, which is not a gauge transfor- 
mation [22]. 
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III. PROPERTIES OF MORE GENERAL METRICS 

A. General Bianchi IX Ansatz 

One might naturally ask what happens if the Ansatz (2.21) is replaced by the most 
general Ansatz giving a Bianchi IX metric [3], 

ds2 = f”(r) dr2 + a2(r) a,2 + b2(r) ay2 + c2(r) os2. (3.1) 

For the case 

a(r) = b(r) = c(r), (3.2) 

we find that self-duality implies a vanishing curvature and hence a flat metric. The case 

a(r) = b(r) = 1, 49 = g(r) (3.3) 

was our choice II of Ref. [2], which we studied in the previous section; the choice 

a(r) = b(r) 3 g(r), c(r) = 1 (3.4) 

was case I of Ref. [2]. While self-dual solutions of (3.3) describe the regular manifold 
of Fig. 1, the self-dual solutions of (3.4) in fact have a singularity at finite proper 
distance and are therefore unacceptable. 

A general solution of the self-duality equations for the Ansatz (3.1) has been given 
by Belinskii, Gibbons, Page and Pope [3]. They find 

f”(r) = F-1/2(r) = r6a-2(r) b-2(r) ce2(r), 

a”(r) = r2E’1/2(r)/(l - (a,/r)3, 

b2(r) = r2F112(r)/(l - (a,/r)4), 
(3.5) 

c2(r) = r”F’l”(r)/(l - (a,/r)3, 

where 

W9 = (1 - W93(1 - (a2/r)3U - Wr)4) (3.6) 

and a,, a, , a3 are constants. They find (see also Ref. [13]) that for general parameters 
ai , these metrics all have singularities at finite proper distance and so describe 
physically unacceptable manifolds. Only the particular degenerate case (3.3) described 
in Section II allows a mechanism for “shielding” the naked singularity inside the S2 
at r = a so that geodesics cannot get to it. (This is of course analogous to what 
happens in the Euclidean continuation of the Schwarzschild and Tat&NUT 
metrics.) 
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B. Nuts and Bolts 

Given a metric, one of the most important things one must know is whether or not 
its apparent singularities are removable. The two known types of removable singu- 
larities have been christened “nuts” and “bolts” by Gibbons and Hawking [23]. 
A “nut” is a four-dimensional R4 polar coordinate singularity in a metric which is flat 
at the origin, like the self-dual Euclidean Taub-NUT metric. A “bolt” is a two- 
dimensional R2 polar coordinate singularity in a metric looking like [w” x S2 near the 
origin, like (2.26). Nuts carry one unit of Euler characteristic, while bolts carry two 
units. 

A precise formulation of the concepts of nuts and bolts is as follows [13, 231: 
Consider the metric 

ds” = dT2 + a”(T) az2 -+ b2(7) uv2 + C”(T) crz2, (3.5) 

where a variable change has been made on (3.1) to convert the coordinate radius I 
into the proper distance (or proper time) T. In general, one would require that a, b, c 
be finite and nonsingular for finite T to get a regular manifold. (For infinite 7, this 
restriction can be relaxed if the manifold has a suitable boundary at 7 = cc.) How- 
ever, the manifold can be regular even in the presence of apparent singularities. 

Let us for simplicity consider singularities occurring at T = 0. A metric has a 
removable nut singularity provided that 

near 7 = 0, a2 = b2 = ~2 = 72. (3.6) 

In this case at T = 0 we have simply a coordinate singularity in the flat polar coor- 
dinate system on an R4 centered at 7 = 0. The singularity is removed by changing 
to a local Cartesian coordinate system near 7 = 0 and adding the point T = 0 to 
the manifold. Near T = 0, the manifold is topologically R4. 

A metric has a removable bolt singularity if 

near 7 = 0, I a2 = b2 = finite t 
c2 = n2T2 2 n = integer. (3.7) 

Here a2 = b2 multiplies the canonical S2 metric i(d02 + sin2 0 d$2), while at constant 
(0, #>, the (dT2 + C”(T) u,“) piece of (3.5) looks like 

dr2 + n2r2 $d#2. (3.8) 

Provided the range of 4/2 is adjusted to 0 -+ 27r, the apparent singularity at 7 = 0 
is nothing but a coordinate singularity in the flat polar coordinate system on R2. 
Again, this singularity can be removed by using Cartesian coordinates. The topology 
of the manifoId is locally R2 x S2 with the R2 shrinking to a point on S2 as r -+ 0. 
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C. The Fundamental Triplet of Self-Dual Metrics 

The prototype of a metric with a single bolt is the metric (2.26) introduced in 
Ref. [2]. The removal of this singularity was discussed in detail in Section II. The 
prototype of a metric with a single nut is the self-dual Euclidean Tat&NUT metric 
WI 

&2 =: r + m  4 ~--m dr2 + i (r2 - m2)(dP + sin2 0 d$2) 

+ m2 z (d# + cos 8 d#2. (3.9) 

To remove the apparent singularity at r = m, we first change to the proper distance 
coordinate 

dT2 = i (s) dr2 

and consider only the region r = m + E, E < m. Then 

(3.10) 

(3.11) 

The metric near E = 0 is thus 

ds2 m dT2 + $T2(dti2 + sin2 8 d$2) + $T”(d$ f cos 8 d+)2 

M dT2 + T2(Ux2 + uy2 + 0;) (3.12) 

and the condition (3.7) for a nut is met. 
Both the bolt metric (2.26) and the nut metric (3.9) are noncompact with boundary 

at co. A very instructive compact case is the Fubini-Study metric on P2(C), which has 
both a nut and a bolt. To see this, we first write the P,(C) metric in the form [24] 

dr2 f r20 2 
ds2 = (1 + Ar2/i)2 + 

r2(cre2 + 0,“) 
1 + Ar2/6 ’ 

(3.13) 

Here (1 is the cosmological constant in Einstein’s equations for this metric. As r -+ 0, 
we recover the flat metric and thus learn that r = 0 is a removable nut singularity. 
The other interesting region is r = co, which we examine by changing variables to 

so that 

1 u=- 
r 

(3.14) 

ds2 = (u2 + A/6)-2(du2 + $u2(d# + cos 8 d+)2) 

+ $(de2 + sin2 0 dy52)/(u2 + 46). (3.15) 
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As u -+ 0 (or Y -+ co), the coefficient of (dP + sin2 0 ~$5~) stays finite while that of 
(d+ + cos 19 d# vanishes, so the bolt criterion (3.7) is satisfied. At fixed (0, $)>, 
we have for u + 0 

ds2 m (fl/6)-2(du2 + au2 d#3. (3.16) 

Thus the singularity at u = 0 is removable if 

0 < $4 < 45-, (3.17) 

and the constant-r manifolds in the Pz(@) metric are complete S3’s, unlike those of the 
metric (2.26), which had P3([w)‘s. 

Modulo this difference, we are now led to group together the P,(C) metric (3.13) 
or (3.15) the Tat&NUT metric (3.9) and our “bolt” metric (2.26) as a “fundamental 
triplet.” We note that both (3.9) and (2.26) have self-dual Riemann curvature tensors 
and so satisfy Einstein’s equations without a cosmological constant. The Pz(@) 
metric, in contrast, has a self-dual Weyl tensor which is as close as one can get to 
having self-dual Riemann tensor if there is a nonzero cosmological constant. The 
Taub-NUT metric and the P,(C) metric both have nuts at the origin, but Taub-NUT 
opens up at infinity while P2(C) compactifies. On the other hand, our metric (2.26) 
at the origin looks like the Pz(@) metric at injinity-both have bolts at these locations; 
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FIG. 2. Relations among the manifolds of our metric (2.26), the self-dual Taub-NUT metric 
(3.9) and the Fubini-Study metric (3.13) or (3.15) on Pz(C). 
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furthermore, the flat infinity of (2.26) strongly resembles the flat (but compact) origin 
of P2(C). Figure 2 gives a schematic representation of the relationships among the 
manifolds described by these three metrics. 

We next make the remark that all three of the metrics just discussed are derivable 
from a more general three-parameter Euclidean Taub-NUT-de Sitter metric, although 
some hindsight is necessary to notice the existence of the appropriate singular limits. 
If we write the general Taub-NUT-de Sitter metric as 

dp2 + (p” - L2)(%” + q/T + jgg gz2, (3.18) 

where 

A-p2-22Mp+Lz+~ (La + 2L”p2 - f pa), (3.19) 

then the choice 

A = 0, M=L (3.20) 

immediately gives the self-dual Taub-NUT metric (3.9). If we set 

A4 = L(1 + @lL”) (3.21a) 

and take the limit [24] 

L-taS with p2 - L* = r2/(l + $Ar2) fixed, (3.2lb) 

we recover the Fubini-Study P,(C) metric in the coordinate system (3.13). Finally, 
our metric (2.26) can be reproduced by setting 

AL2 
M = L (1 + -& -t -+ (3.22) 

putting A = 0 and taking the limit 

L + 03, with r2 = p2 - L2 fixed. (3.23) 

This is a rather peculiar limit which has previously escaped attention. If we keep 
A # 0, we find a new metric resembling (2.26) except that it satisfies Einstein’s 
equations with nonzero cosmological term, 

cil.2 
ds2 = , _ @,,.>4 _ (A,.2/6) + r2(u%2 + %“) + r2 I 

fir2 
- @ir)” - 6 I Oz2 (3.24) 
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By taking an appropriate limit of this metric, we can eliminate the singularity and 
obtain a metric on S2 x S2 with a twist. 

Another amusing comparison which we may make among these three metrics 
involves their natural self-dual Maxwell fields. For P,(C), Trautmann [ll] observed 
that the metric possessed a natural (anti) self-dual Maxwell field given by the P2(@) 
Kahler form, 

F = 2(e0 A e3 - e1 A e2), (3.25) 

where ea = [dr(l + (lr2/6)-l, ru.,( 1 + h2/6)-li2, ra,( I + (lr2/6)-lj2, ru,( 1 + h2/6)-1]. 
Since (anti) self-dual Maxwell fields have vanishing energy-momentum tensor, the 
Einstein equations are undisturbed and we have an automatic solution of the Einstein- 
Maxwell equations (see also Ref. [24]). For the Taub-NUT metric, it is also easy to 
find the Maxwell field 

A= 
r - nz 
__ (Jz 2 r + m 

F = (r ,’ ~7)” 
(e” h e3 - e1 /r eZ), 

where 

(3.26) 

ea = [(C&-)1:’ &, 2(r2 - 3n2)1/2 uz, 2(r2 - n?)l/’ crv , 2m (z)l’ CJ;]‘. 

The Maxwell field for our metric (2.26) was presented earlier in Eq. (2.30). We note 
for comparison that the Tat&NUT Maxwell field has the characteristic l/r2 behavior 
of a magnetic monopole, while (2.30) has the l/r4 behavior of the Yang-Mills instanton. 
The P,(C) field (3.25), on the other hand, is constant everywhere. 

Finally, we give a brief summary of the topological invariants of the fundamental 
triplet of metrics. P,(C) is the easiest, since it is a compact manifold without boundary. 
Because P2(@) has a bolt and a nut, its Euler characteristic is x = 2 + 1 = 3, while 
the signature is T = 1. If Pz(@) were a spin manifold, the spin 4 index would be 

I,,, = - ; = - $. 

Since Ill, must be an integer for a manifold admitting well-defined spinor structure, 
we confirm the fact that P,(C) has no spin structure. For the Taub-NUT metric, 
x = 1 and the spin $ index with boundary corrections vanishes [15]. For the metric 
(2.26), the topological invariants were previously given in Eqs. (2.47-54). A tabulation 
of the properties of the fundamental triplet is presented in Table 2 alongside the 
properties of the K3 manifold mentioned in the Introduction. 
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TABLE 2 

Properties of the Fundamental Triplet of Self-Dual Metrics Compared with the Self-Dual Metric 
of the K3 Manifold 

ref. [2] Taub-NUT Fubini-Study K3 

Metric 

Cosmological Constant 

Manifold 

- Origin 

- Infinity 

- Boundary 

Euler characteristic 

Hirzebruch signature 

Dirac spin-i index 

Maxwell field strength 

Rarita-Schwinger spin-312 index 

Eq. (2.26) Eq. (3.9) 

A=0 A=0 

T*(pdc)) R4 

Se (Bolt) Point (Nut) 

pm distorted Ss 

P,(R) distorted S3 

2 1 

-1 0 

0 0 

-l/r4 -l/r2 
-2 7 

Eq. (3.13) 

A#0 

pm 
Point (Nut) 

S2 (Bolt) 

none 

1 

(no spinors) 

1 

(no spinors) 

explicit 
form 
unknown 

A=0 

K3 

none 

24 

-16 

2 

? 

-42 

IV. MULTICENTER METRICS 

A. Hawking’s E = 1 Multicenter Metric 

Just as there are multiple instanton solutions for the SU(2) Yang-Mills problem [25], 
there is a gravitational metric with multiple removable singularities. Hawking 
examined the Ansatz [IO] 

ds2 = V-l(x)(d# + w . dx)2 + V(x) dx * dx (4.1) 

and found (anti) self-dual connections (and hence an Einstein solution) provided 

VV=&VXO 
+ self-dual 

i- anti-self-dual. (4.2) 

Clearly, 
WV = 0, (4.3) 

so that, modulo delta functions, a solution is 

V(x) = E + E 2mi 1 x - xi /-I, (4.4) 
i-1 
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where E is an integration constant. In order to make the singularities at x = xi into 
removable nut singularities, one must take all the mi to be equal, mi = M, and make 
$ periodic with the range 

0 < t+!~ < 87rM/n. (4.5) 

The case 
E = 1, (4.6) 

which reproduces the self-dual Taub-NUT metric for n = 1, was examined in 
Ref. [IO]. 

The gravitational action has been computed to be [26] 

S,=,[n] = 47rnM2, (4.7) 

where the entire contribution comes from the surface term [9]. Since all the singularities 
are nuts and each nut contributes one unit of Euler characteristic, we find the Euler 
characteristic 

x = n. (4-g) 

B. The E = 0 Metric 

Since E in (4.4) is an arbitrary constant, one might ask what happens when we set 

E = 0. (4.9) 

This case has recently been examined by Gibbons and Hawking [4]. Clearly, the 
asymptotic behavior of the metric is drastically altered and in fact the entire action, 
including the surface term, now vanishes: 

S,=,[n] = 0. (4.10) 

This case therefore will probably dominate over the E = 1 solutions in the path 
integral. 

As before, we need the periodicity (4.5) for a regular manifold, but now one finds 

(e = 0, n = 1) = flat space metric. (4.11) 

The boundary at co for n = I is just the Euclidean space boundary S3. For n = 2, 
one finds a two-nut metric with nonzero Riemann tensor. In this case the boundary at 
co is the same lens space S3/Z, = P3([w) found for our metric (2.26) and also the 
curvature invariants are the same; the two metrics are in fact identical, 

(e = 0, n = 2) = the metric (2.26) (4.12) 

as one can show explicitly by making an appropriate coordinate transformation 
[31]. For higher values of n, the boundary at cc consists of S3 with points identified 
under the action of the cyclic group of order n. 
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We conclude that in general the multicenter metric (4.1)-(4.4) with E = 0 strongly 
parallels the Jackiw-Nohl-Rebbi multi-instanton solution [25]. In particular, there 
are (n + 1) positions appearing in the description of the “n-instanton” solution. 

The topological invariants for the E : 0 metric are [21] 

/y = II, 

7 = i(tz - l), 

Zl,, = 0, 

z3,2 = 27 = *2(/z - 1). 

(4.13) 

There is in fact a general theorem showing that the spin l/2 index vanishes for 
asymptotically flat self-dual metrics [13]. We are led to conclude that for gravity, 
a spin 3/2 axial anomaly replaces the spin l/2 axial anomaly induced by Yang-Mills 
instantons. Thus, the roles of gravitational and Yang-Mills instantons in symmetry 
breaking may be summarized as follows: 

Yang-Mills solution, Chern class k + Dirac index = k, 
(4.14) 

Einstein solution, signature 7 -+ Rarita-Schwinger index = 27. 

We conclude with the remark that we can write down natural self-dual Maxwell 
fields for the multicenter metrics just as we did for the metrics in previous Sections. 
One such field is 

A = v-l(d# +- w * dx), 

F = d,4 L 1/-2 ii,V(e” A ei & &i&” A e”). 
(4.15) 

C. More General Metrics 

We have now seen the natural appearance of higher order lens spaces of S3 in the 
multicenter self-dual Einstein metrics (4.1). Hitchin [5] has examined the known com- 
plete classification of spherical forms of S3 and has found regular complex algebraic 
manifolds with boundaries corresponding to each spherical form. It is conjectured that 
a unique self-dual metric can be obtained for each of these manifolds using the 
Penrose twistor construction [27]. Although this subject is not completely understood 
at this time, let us at least list the spherical forms of S3 corresponding to each possible 
simply-connected asymptotically locally Euclidean self-dual metric. The spherical 
forms are classified according to their associated discrete groups as follows [28]: 

Series A,: cyclic group of order k (=lens spaces L(k + 1, l)), 
Series D,: dihedral group of order k, 

T: tetrahedral group, 

0: octahedral group w cubic group, 

I: icosahedral group M dodecahedral group. 
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We note that our metric (2.26) corresponds to A, , while the general n-center metric 
(4.1) corresponds to A,_1 . 

If we could derive self-dual metrics for the manifolds having each of these spherical 
forms as boundaries, the problem of finding zero-action solutions of the Euclidean 
Einstein equations would be essentially solved. We would then have a better under- 
standing of the structure of the vacuum in quantum gravity. 

V. CONCLUSIONS 

The discovery of the self-dual instanton solutions to Euclidean Yang-Mills theory 
suggested the possibility that analogous solutions to the Euclidean Einstein equations 
might be important in quantum gravity. Here we have discussed a number of self-dual 
solutions to Euclidean gravity and indicated their properties. We have concentrated 
particularly on the asymptotically locally Euclidean metrics, of which the authors’ 
solution (2.26) is the simplest nontrivial example. These gravity solutions have 
properties which are strikingly similar to those of the Yang-Mills instanton 
solutions: 

(1) They describe gravitational excitations which are localized in Euclidean 
spacetime. 

(2) Their metrics approach an asymptotically locally Euclidean vacuum metric 
at infinity. 

(3) They have nontrivial topological quantum numbers. 

However, there are also some important distinctions between the two sets of 
solutions: 

(1) The gravity solutions contribute only to the spin 3/2 axial anomaly, while the 
Yang-Mills solutions contribute to the spin l/2 axial anomaly. 

(2) The gravity solutions have zero action, while the Yang-Mills solutions 
have finite action. 

The pairing of the Yang-Mills field with the spin l/2 anomaly and the pairing of 
gravity with the spin 3/2 anomaly are very likely due to the existence of supersymmetry. 
It would be interesting to see whether supersymmetry gives any further insight into 
the structure of these systems. 

As is well-known, the finite Yang-Mills instanton action implies the suppression 
of the transition amplitude between topologically inequivalent sectors of the theory. 
On the other hand, in gravity there appears to be no such suppression. The vanishing 
action of asymptotically locally Euclidean self-dual metrics implies that in the path 
integral they have the same weight as the flat vacuum metric. Thus these solutions 
will presumably be of central importance in understanding quantum gravity. 
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