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a b s t r a c t

For each positive integer n, we present a tessellation of CP2 that
can be lifted, through the branched covering, to a symmetric
tessellation of the Fermat surface (a 4-manifold) of degree n inCP3.
The process is systematic and symbolically algebraic. Each four-
cell in the tessellation is bounded by four pentahedrons, and each
pentahedron has four triangular faces and one quadrilateral face.
Graphically, one can produce the entire surface from one single
four-cell using translations generated by permutations and phase
multiplications of the homogeneous coordinates of CP3. Note that
the tessellation of the Fermat surface of degree 4, a K3 surface, has
exactly 24 vertices.

© 2008 Elsevier Ltd. All rights reserved.

In this paper, we present a systematic and explicit algorithm for tessellating the Fermat surfaces
in CP3. A Fermat surface in CP3 is an algebraic surface (real 4-manifold) Fn defined by the equation

z n0 + z
n
1 + z

n
2 + z

n
3 = 0 (1)

in the standard homogeneous coordinates [z0, z1, z2, z3], where n is any positive integer. Note that F4
in particular is a K3 surface (see, e.g., Griffiths and Harris (1978)).
The vertices of the tessellation we present are the n-th roots of unity in the six standard projective

lines CP1 in CP3; they are the obvious vertices to start a construction of a natural tessellation for Fn.
Our tessellation is invariant under the action of the isomorphism group of Fn induced by permutations
and phase multiplications of the coordinates (here a phase multiplication means multiplying any of
the coordinates by a number of the form ei2kπ/n), and the action is transitive on the set of 4-cells. The
tessellation is built upon a similar triangulation for the corresponding algebraic curves in CP2, and
we believe the method can be generalized to the corresponding algebraic hypersurfaces in CPN for
N > 3.
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The tessellation is algorithmically programmable: for any given positive integer n, one first lists
all the vertices; then all the edges, faces, 3-cells, and 4-cells can be produced symbolically from the
list of vertices. One may then try, for example, to formulate the simplicial complex boundary map
matrices explicitly and compute the homology of Fn and the intersection form in a more elementary
way, although this may technically still be somewhat complicated.
Explicit representations of geometric objects such as manifolds are essential for any attempt to

create visual images that help expose their features. While there exist many powerful mathematical
methods that allow the calculation of the geometric and topological invariants of manifolds, human
perception requires the construction of visual images. Thus, it can be useful to develop explicit
descriptions of interesting families of manifolds that can be used in practice to create visual
representations and pictures. Such explicit representations can also in principle be used to clarify the
calculation and understanding of abstract invariants of themanifolds. Among the classes of geometric
objects that have a long history of interest are the algebraic varieties defined by homogeneous
polynomials in complex projective spaces. One such family, the algebraic curves in CP2 (see, e.g.,
Hanson (1994)), has recently served the purpose of providing explicit images of cross-sections of
Calabi–Yau spaces, and has been used to represent the hidden dimensions of string theory (Greene,
1999), for which very few other methods of producing images are available. While one might
have guessed that the methods used for CP2 could be extended trivially to CP3 and other higher-
dimensional projective spaces, the problem turns out to be fairly complex.
Let us now be more precise. We will show the following:

Theorem. For any given positive integer n, there is a tessellation on Fn with 6n3 4-cells. Each 4-cell
is bounded by four pentahedrons. Each pentahedron is a pyramid with one quadrilateral face and four
triangular faces. The tessellation is invariant under the action of the group Γn, where Γn consists of
isomorphisms of Fn induced from permutations and phase multiplications of the homogeneous coordinates
of CP3. The group Γn acts transitively on the set of 4-cells of the tessellation.
Altogether, the tessellation has 6n vertices, 12n2 edges, 8n2 + 7n3 2-cells (3n3 quadrilaterals and

8n2+4n3 triangles), 12n3 3-cells (pyramids) and 6n3 4-cells. It is known that the Euler characteristic of
any smooth algebraic surface of degree n inCP3 is 6n−4n2+n3 (see, e.g., Griffiths and Harris (1978)).
Onehandily verifies fromour tessellation for Fn that this is equal to 6n−12n2+(8n2+7n3)−12n3+6n3,
i.e., the alternating sum of the numbers of vertices, edges, 2-cells, 3-cells, and 4-cells.
Notice that the restriction to Fn of the natural projection CP3 \ {[0, 0, 0, 1]} → CP2, given by

[z0, z1, z2, z3] 7→ [z0, z1, z2], is a regular n-fold branched covering

σ : Fn → CP2 (2)

which is branched over the algebraic curve in CP2 defined by the equation
z n0 + z

n
1 + z

n
2 = 0. (3)

The tessellation of Fn we present is a lift from σ of a tessellation of CP2, which is an extension of
a tessellation (triangulation) of the algebraic curve (3). This approach greatly reduces the difficulty
caused by the topological complexity of Fn, as the geometry and topology of CP2 are much easier
to handle and visualize. We also implicitly assume that CP2 is equipped with the standard Fubini–
Study Riemannian metric. In particular, every projective line CP1 in CP2 is totally geodesic, and, with
the induced metric, is a round 2-sphere; the real projective planes are also totally geodesic and have
induced metric of constant curvature.

1. Tessellation of the algebraic curve

Denote by Sn the algebraic curve in CP2 defined by (3). In this section, we will tessellate (i.e.,
triangulate) Sn in a specific way so that we can extend the tessellation to the CP2 in the next section.
The tessellation is, in fact, a lifting of a natural tessellation on CP1 for the given n.
The projection CP2 \ {[0, 0, 1]} → CP1, given by [z0, z1, z2] 7→ [z0, z1] induces a regular n-fold

branched covering from Sn to the CP1 branched at n points,
pk := [1, ei(π+2kπ)/n], k = 0, . . . , n− 1. (4)
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Fig. 1.

We first formulate a tessellation for the CP1, which has n+ 2 vertices, 3n edges and 2n triangles:
Let

p0 := [0, 1], p1 := [1, 0] (5)

and join them by the following n paths,

ek(t) := [cos t, sin tei2kπ/n], 0 ≤ t ≤
π

2
, k = 0, . . . , n− 1. (6)

Then the 2n triangles of the tessellation are

f kk , f kk+1, k = 0, . . . , n− 1 (mod n), (7)

where each of f kk , f
k
k+1 is the triangle with vertices p0, p1, pk, the edge ek, or ek+1, respectively, and the

other two edges given by the minimizing geodesics joining pk and p0, p1 (see Fig. 1).
Lifting this triangulation through the branched covering, we then get a triangulation for Sn. There

are 3n vertices,

p0k := [0, 1, ei(π+2kπ)/n], p1k := [ei(π+2kπ)/n, 0, 1], p2k := [1, ei(π+2kπ)/n, 0],

for k = 0, . . . , n − 1 (mod n), and 2n2 triangles. It is not hard to see that these triangles, as
lifts of f kk , f

k
k+1 and expressed in terms of their vertices, are 4p0j−kp1−j−1p2k,4p0j−(k+1)p1−j−1p2k,

respectively. We denote them by the following:

bj−k,−j−1,k, bj−(k+1),−j−1,k, j, k = 0, . . . , n− 1 (mod n). (8)

To be more clear, we verify the indices in (8) by showing the edges of these triangles explicitly.
The three edges of bj−(k+1),−j−1,k, in the order p2k p0j−(k+1) p1−j−1 p2k, can be described as

follows: notice that the first two coordinates give the edges of f kk+1, in the order pk p0
ek+1 p1 pk,

and the factor ei2jπ/n on the third coordinate specifies a certain branch to which f kk+1 is lifted.

[cos t, sin t ei(2k+1)π/n, ei2jπ/n(− cosn t + sinn t)1/n], π/4 ≤ t ≤ π/2;

[sin t, cos t ei2(k+1)π/n, ei2jπ/n(− sinn t − cosn t)1/n], 0 ≤ t ≤ π/2; (9)

[cos t, sin t ei(2k+1)π/n, ei2jπ/n(− cosn t + sinn t)1/n], 0 ≤ t ≤ π/4.

Similarly, the three edges of bj−k,−j−1,k, in the order p2k p1−j−1 p0j−k p2k, as lifts of those of f kk , in
the order pk p1

ek p0 pk, are

[sin t, cos t ei(2k+1)π/n, ei2jπ/n(− sinn t + cosn t)1/n], π/4 ≤ t ≤ π/2;
[cos t, sin t ei2kπ/n, ei2jπ/n(− cosn t − sinn t)1/n], 0 ≤ t ≤ π/2; (10)

[sin t, cos t ei(2k+1)π/n, ei2(j+1)π/n(− sinn t + cosn t)1/n], 0 ≤ t ≤ π/4.

Notice that there is a branch shift on the lift of p0 pk (see Fig. 2).
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Fig. 2.

From (9) and (10) one then gets the vertices for the corresponding triangles easily. We note that
any one of the indices for b in (8) is determined by the other two according to the rule that the sum
of the three indices is equal to−1 or−2, respectively.
The tessellation is invariant under the isomorphisms of Sn induced from permutations and phase

multiplications of the homogeneous coordinates of CP2. To see this, first notice that the tessellation
on CP1 is obviously invariant under the corresponding isomorphisms: the vertices are invariant and
the edges are all geodesics while the isomorphisms are isometries. The tessellation is also obviously
invariant under the phase multiplication of z2 because the latter is just a deck transformation of
the branched covering. Therefore it suffices only to verify the invariance under interchanging the
coordinates z1 and z2.
After interchanging z1 and z2, the three paths in (10) become

[sin t, ei2jπ/n(− sinn t + cosn t)1/n, cos tei(2k+1)π/n], π/4 ≤ t ≤ π/2;
[cos t, ei2jπ/n(− cosn t − sinn t)1/n, sin tei2kπ/n], 0 ≤ t ≤ π/2;

[sin t, ei2(j+1)π/n(− sinn t + cosn t)1/n, cos tei(2k+1)π/n], 0 ≤ t ≤ π/4.

They are the same as

[sin t, ei(2j+1)π/n(sinn t − cosn t)1/n, cos tei(2k+1)π/n], π/4 ≤ t ≤ π/2;

[cos t, ei(2j+1)π/n(cosn t + sinn t)1/n, sin tei2kπ/n], 0 ≤ t ≤ π/2;

[sin t, ei2(j+1)π/n(− sinn t + cosn t)1/n, cos tei(2k+1)π/n], 0 ≤ t ≤ π/4;

or

[cos t, ei(2j+1)π/n(cosn t + sinn t)1/n, ei2kπ/n(sinn t)1/n], 0 ≤ t ≤ π/2;

[sin t, ei2(j+1)π/n(− sinn t + cosn t)1/n, ei2kπ/n(− cosn t)1/n], 0 ≤ t ≤ π/4.

[sin t, ei(2j+1)π/n(sinn t − cosn t)1/n, ei2kπ/n(− cosn t)1/n], π/4 ≤ t ≤ π/2;

which are the edges of bk−(j+1),−k−1,j, a lift of f
j
j+1. Similarly, interchanging z1 and z2 transforms

bj−(k+1),−j−1,k to bk−j,−k−1,j.
It is easy to see that the transformation under these isomorphisms is transitive on triangles. As the

number of the isomorphisms is 6n2, the order of isotropy of each triangle is 3, consisting of the cyclic
edge permutations. Therefore, the transformation is also transitive on the edges, and obviously on the
vertices as well.
We finally point out that the case n = 1 is somewhat peculiar: the two triangles share the same

three edges. Therefore extra care in labeling, e.g, specifying the orientation, is needed.
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Fig. 3.

2. Extended tessellation on CP2

In this section, we extend the tessellation of Sn described in Section 1 to a tessellation of the CP2.
Then, by lifting, that will automatically produce a tessellation of Fn.
Denote the projective line zj = 0 by Lj, for j = 0, 1, 2, and let

p01 := [0, 0, 1], p12 := [1, 0, 0], p20 := [0, 1, 0]. (11)

We start by specifying the other 2-cells for the tessellation.
Note that on L0, the points p01, p20 and the intersectionswith the Sn, namely p0k, k = 0, . . . , n−1,

form the exact same configuration as (5) and (4) on CP1 described in Section 1. We then add the
corresponding 2n triangles (7); similarly for the lines L1 and L2. Therefore altogether there are 6n new
triangles, which we label as follows:

fj kk, fj kk+1, j = 0, 1, 2 and k = 0, . . . , n− 1 (mod n). (12)

Label the edges corresponding to those in (6) by ej k. Notice that, for example, as a path, e1 k(t) =
[sin t ei2kπ/n, 0, cos t].
In the next group, each triangle is formed by minimizing geodesics joining one of the vertices

p01, p12, p20 to the edge on Sn, e.g., p2j p0k in the case of p20. We denote these 3n2 triangles as
follows:

h01jk, h12jk, h20jk, j, k = 0, . . . , n− 1 (mod n). (13)

We remark that all the triangles in (13) are totally geodesic; one sees, e.g., from (9) that they are
pieces of real projective planes. In fact, all the new 2-cells we add will be totally geodesic.
There is one more group of n2 triangles that all have the same three vertices p01, p12, p20. For

clarity, we write down the following explicit parameterizations for them:

gjk(s, t) = [cos s, sin s cos tei2jπ/n, sin s sin tei2kπ/n], 0 ≤ s, t ≤ π/2.

The three edges of gjk are e0 k−j, e1 −k, e2 j. For convenience, we will denote gjk by

gk−j,−k,j, j, k = 0, . . . , n− 1 (mod n), (14)

noticing again that any one of the indices of g is determined by the other two according to the rule
that the sum of the three indices is equal to 0.
The next set of 2-cells is a set of 3n2 quadrilaterals. They are in one-to-one correspondence with

the edges in Sn; each edge is one side of exactly one quadrilateral. For example, the edge p0j p1k is
a side of the quadrilateral having e2−j−k−1 as the opposite side of p0j p1k; recall that e2−j−k−1 is in
L2 between the two vertices p2−j−k−2 and p2−j−k−1, which are, respectively, the vertices of the two
triangles in Sn having p0j p1k as a common side. See Fig. 3.
The quadrilateral is formed byminimizing geodesics joining the points on e2−j−k−1 to the distance-

proportional points on p0j p1k. In particular, the two edges in L0, L1 joining p20, p12 and p0j, p1k,
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Fig. 4.

respectively, are the other two sides of the quadrilateral. We denote this quadrilateral by q01jk and
the set of quadrilaterals is

q01jk, q12jk, q20jk, j, k = 0, . . . , n− 1 (mod n). (15)

This concludes our construction of the 2-cells. The only new vertices added are then those in (11)
and the only new edges are those in the Lj’s.
We now proceed to describe the 3-cells. It should be pointed out that, up to now, the cells

constructed can be easily verified to be embedded in CP2, and there is no intersection among them in
the interior of any cell. As the dimension of the cell becomes higher, this becomes less clear a priori.
We will show later that the cells do form a tessellation for the CP2.
The 3-cells are divided into two groups. Each of them is in two-to-one correspondence with the

set of edges in Sn, or the set of quadrilaterals. In fact, every quadrilateral is a face of exactly two 3-cells
in each group.
In the first group, the two 3-cells corresponding to, say, the edge p0j p1k are formed by

interpolating between distance-proportional points on bj,k,−j−k−1, bj,k,−j−k−2 and f 2
−j−k−1
−j−k−1, f 2

−j−k−2
−j−k−1,

respectively, by minimizing geodesics (see Fig. 4).
Clearly, the 3-cell is a pyramid. Besides the quadrilateral face q01jk, the other four faces are the

triangles

{bj,k,−j−k−1, h12k,−j−k−1, h20−j−k−1,j, f 2−j−k−1
−j−k−1},

or

{bj,k,−j−k−2, h12k,−j−k−2, h20−j−k−2,j, f 2−j−k−1
−j−k−2},

respectively. Denote these pyramids by A011jk, A01
2
jk, respectively. We can now list all the 6n

2 3-cells
in the first group:

A011jk, A012jk,

A121jk, A122jk, j, k = 0, . . . , n− 1 (mod n). (16)

A201jk, A202jk.

In the second group of 3-cells, the two corresponding to, say again, p0j p1k are formed
by minimizing geodesic interpolation between h01jk and gj,k+1,−j−k−1, gj+1,k,−j−k−1, respectively
(see Fig. 5).
Clearly, each 3-cell is also a pyramid. Besides the quadrilateral face q01jk, the other four faces are

the triangles

{gj,k+1,−j−k−1, f 0jj, f 1kk+1, h01jk},
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Fig. 5.

or

{gj+1,k,−j−k−1, f 0jj+1, f 1kk, h01jk},

respectively. Notice that, unlike the first group, whose two pyramids share only the quadrilateral face,
these two pyramids share both the quadrilateral face q01jk and the triangular face h01jk. Denote these
pyramids by B0101jk , B01

10
jk , respectively. The list of all the 6n

2 3-cells in the second group then is:

B0101jk , B0110jk ,

B1201jk , B1210jk , j, k = 0, . . . , n− 1 (mod n). (17)

B2001jk , B2010jk .

We are now ready to tessellate the CP2 by 4-cells. Each 4-cell is bounded by four pyramids, two
from each of the groups (16) and (17); in fact, two from one determine the two from the other. Since
every 3-cell should be the face of exactly two 4-cells, it follows that there are in all 6n2 4-cells. We
illustrate one of them as follows.
Start with A011jk in (16). The other pyramid from (16) is either A12

1
k,−j−k−1 or A20

1
−j−k−1,j, as

these are the only other two pyramids in (16) sharing the triangular face bj,k,−j−k−1 with A011jk. If,
say, we pick A121k,−j−k−1, then it is easy to see that the two pyramids from (17) must be B01

01
jk and

B1210k,−j−k−1, in order to have the quadrilateral faces q01jk and q12k,−j−k−1 shared, and for the two to
have the triangular face from (14) in common. Therefore this 4-cell is bounded by the following four
pyramids:

{A011jk, A121k,−j−k−1, B0101jk , B1210k,−j−k−1}. (18)

As illustrated in Fig. 6, the pyramids in (18) indeed form a tessellation for a 3-sphere, at least
combinatorially.
From the above, it is easy now to list all the 4-cells in terms of their boundary pyramids:

{A011jk, A12
1
k,−j−k−1, B01

01
jk , B12

10
k,−j−k−1},

{A012jk, A12
2
k,−j−k−2, B01

10
jk , B12

01
k,−j−k−2},

{A121jk, A20
1
k,−j−k−1, B12

01
jk , B20

10
k,−j−k−1}, (19)

{A122jk, A20
2
k,−j−k−2, B12

10
jk , B20

01
k,−j−k−2},

{A201jk, A01
1
k,−j−k−1, B20

01
jk , B01

10
k,−j−k−1},

{A202jk, A01
2
k,−j−k−2, B20

10
jk , B01

01
k,−j−k−2},
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Fig. 7.

for j, k = 0, . . . , n − 1 (mod n). Combinatorially, these 6n2 4-cells together form a simplicial 4-
manifold. Combining this with the numbers of vertices, edges, 2-cells, and 3-cells we have obtained
before, we find its Euler characteristic number to be

(3n+ 3)− (3n2 + 9n)+ (2n2 + 6n+ 3n2 + n2 + 3n2)− 12n2 + 6n2 = 3,

which is the Euler characteristic of CP2. However, as we pointed out earlier, to show this is really
a tessellation of the CP2, one needs to verify that all the 4-cells are embedded and that there is no
intersection among them at any of their interior points. We now confirm this.
For any fixed point p = [0, z1, z2] ∈ L0 let L0,p be the projective line joining p12 and p. Then

CP2 =
⋃
p∈L0
L0,p; the union is disjoint except that all the L0,p’s intersect at the single point p12. It is

easy to verify, (i) if p /∈ Sn, then L0,p intersects Sn at exactly n different points in a similar position to
those in (4) on CP1, and (ii) if p ∈ Sn then p is the only intersection of L0,p and Sn.
For p /∈ Sn, we triangulate L0,p similarly to CP1, using the points p12, p (corresponding to the

vertices in (5)), and the n intersections with Sn (see Fig. 7).
Notice that for p ∈ Sn, although we do not have the triangulation, there are n well defined paths

from p12 to p that are obtained as limits of the paths on L0,q, for q near p ∈ Sn on L0, corresponding to
the edges joining p0 in (5) and the pk’s in (4). Also notice, in particular, that L0,p01 = L1 and L0,p20 = L2.
Let

wlk = fl k−1k ∪ fl
k
k, l = 0, 1, 2; k = 0, . . . , n− 1 (mod n).

For given j and k, as p varies onw0j, it is easy to see that we get a continuous family of regionsw1k,p
in L0,p withw1k,p01 = w1k. The union of this family of regions then clearly forms an embedded 4-cell
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in the CP2, which we will denote byWj,k,−j−k. It is also clear that CP2 =
⋃
j,kWj,k,−j−k and there is no

intersection between differentWj,k,−j−k’s at any of their interior points.
For clarity and later convenience, we write down the following explicit parametrization for

Wj,k,−j−k:

[cos s eiβ , cos r sin s, sin r sin s eiα] (20)

with 0 ≤ r, s ≤ π/2, (2j− 1)π/n ≤ α ≤ (2j+ 1)π/n and, if we denote arg(− cosn r − sinn r einα)
by a(r, α)with 0 ≤ a(r, α) ≤ 2π , then

a(r, α)+ 2(j+ k− 1)π
n

≤ β ≤
a(r, α)+ 2(j+ k)π

n
.

We see in particular thatw1k,p20 = w2−j−k. See Fig. 8.
From (20), it follows that, in a way similar to the above,Wj,k,−j−k can also be described as a union

of w2−j−k,p over p ∈ w1k, or a union of w0j,p over p ∈ w2−j−k. Therefore the boundary ofWj,k,−j−k is
tessellated by twelve 3-cells; each of them is the union of one of the two lower half boundary edges of
a w-region over one of the two triangles in the corresponding base region. It is easy to see that these
3-cells are in fact exactly the following twelve pyramids in (16):

A121k−1,−j−k, A122k−1,−j−k, A121k,−j−k−1, A122k,−j−k−1,

A201
−j−k−1,j, A202

−j−k−1,j, A201
−j−k,j−1, A202

−j−k,j−1,

A011j−1,k, A012j−1,k, A011j,k−1, A012j,k−1.

(21)

It is also easy to see there are six 3-cells contained inside Wj,k,−j−k; each of them is the union of
one of the two triangles in a w-region over the middle edge of the corresponding base region. These
3-cells are the following six pyramids in (17):

B1210k−1,−j−k, B1201k,−j−k−1
B2010
−j−k−1,j, B2001

−j−k,j−1,

B0110j−1,k, B0101j,k−1.

(22)

These 3-cells divideWj,k,−j−k into six 4-cells; they are the following six in (19):

{A011j,k−1, A121k−1,−j−k, B0101j,k−1, B1210k−1,−j−k},

{A122k−1,−j−k, A202
−j−k,j−1, B1210k−1,−j−k , B2001

−j−k,j−1},

{A201
−j−k,j−1, A011j−1,k, B2001

−j−k,j−1, B0110j−1,k},

{A012j−1,k, A122k,−j−k−1, B0110j−1,k, B1201k,−j−k−1},

{A121k,−j−k−1, A201
−j−k−1,j, B1201k,−j−k−1 , B2010

−j−k−1,j},

{A202
−j−k−1,j, A012j,k−1, B2010

−j−k−1,j, B0101j,k−1}.

(23)

The structure of (21)–(23) together can be illustrated by the diagram in Fig. 9.
Now it is clear that the CP2 is well tessellated.
Remark. If all we need is a tessellation of theCP2 (and hence Fn), then the triangles in (14) and the

3-cells in (17) are not needed. The pyramids in (16) are paired into 3n2 octahedrons, and the 4-cells
of the tessellation are precisely the n2 Wj,k,−j−k’s. However, when this tessellation is lifted to Fn, it is
not Γn-invariant.

3. Tessellation of Fn

Through the n-fold regular branched covering (2), the tessellation of CP2 in Section 2 now lifts to
a well defined tessellation for the Fn. The numbers of vertices, edges, 2-cells, 3-cells and 4-cells are
as indicated in the introduction. In this section, we examine this tessellation more closely and show
that it is Γn-invariant. Recall that Γn is the group of the isomorphisms of Fn induced from permuting
and/or phase multiplying the homogeneous coordinates of CP3.
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Fig. 8.

Fig. 9.

The intersection of Fn with each of the projective planes zk = 0, k = 0, 1, 2, 3, is the Sn in
that plane, triangulated as described in Section 1. The tessellation of the Fn is an extension of the
triangulations on these four Sn’s. In fact, the four Sn’s contain all the vertices, edges, and triangles lifted
from those in (8) and (12). The other 4n3 triangles are lifted from (13) and (14) and are characterized
by the fact that for each of them, the three edges lie on three distinct Sn’s. Notice then that for any
three Sn’s of the four, any three different pairwise intersections are vertices of a unique triangle lifted
from (13) or (14).
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Fig. 10.

The formation of the quadrilaterals can be described as follows. Start with any edge on one of the
four Sn’s, say, the one in the projective plane z0 = 0; its two end points, denoted by q1 and q2, must
then also lie in two other distinct projective planes, say, z1 = 0 and z2 = 0, respectively. Then there
are n distinct edges on z2 = 0 joining q2 and the n distinct intersections of the projective planes z2 = 0
and z3 = 0. Any one of these edges plus q1q2, the edge we started with, form two adjacent sides of a
unique quadrilateral. Hence one sees that there are in all 3n3 quadrilaterals.
For two opposite sides, say, lying in the projective planes z0 = 0 and z3 = 0, respectively, of a

given quadrilateral, as in the example above, there are exactly two vertices, v1, v2, in the intersection
of z0 = 0 and z3 = 0 that are the opposite vertices of the given edges in triangles lying in z0 = 0 and
z3 = 0, respectively (see Fig. 10). Each of these two vertices forms a pyramid with the quadrilateral.
Notice that if one starts with the other pair of opposite sides of the quadrilateral, the two vertices will
be different. One sees that there are in all 12n3 pyramids.
Finally, every 4-cell is bounded by four pyramids, and each pyramid is shared by two 4-cells, thus

there are 6n3 4-cells.
From the description above, one can see that if, instead of (2) which is induced from the projection

[z0, z1, z2, z3] 7→ [z0, z1, z2], we use the branched covering induced from, say, [z0, z1, z2, z3] 7→
[z1, z2, z3], the lifted tessellation will be the same. This, combined with the invariance for Sn
demonstrated in Section 1, shows that the tessellation of the Fn is Γn-invariant and the action of Γn is
transitive on the set of 4-cells.
The list of all the vertices in the tessellation is:

p01k := [0, 0, 1, ei(π+2kπ)/n], p02k := [0, 1, 0, ei(π+2kπ)/n],
p03k := [0, 1, ei(π+2kπ)/n, 0], p12k := [1, 0, 0, ei(π+2kπ)/n],
p13k := [1, 0, ei(π+2kπ)/n, 0], p23k := [1, ei(π+2kπ)/n, 0, 0],

for k = 0, . . . , n− 1.
One can then list the edges, 2-cells, 3-cells, and 4-cells in terms of the vertices.We nowwrite down

a few lists of edges and 2-cells for illustration (see Fig. 11).
Every edge lies on one of the four CP2’s defined by zk = 0. For example, the 3n2 edges lying on

z0 = 0 are:

{p01i, p02j}, {p01i, p03j}, {p02i, p03j},

i, j = 0, . . . , n− 1.
The 2-cells are divided into three groups: triangles each of which lies on one of the four CP2’s

defined by zk = 0; triangles each of which has three sides on three different CP2’s; rectangles.
For example, the 2n2 triangles lying on z0 = 0 are:

{p01i, p02j, p03k}, i− j+ k = 0 or−1 (mod n).
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Fig. 11.

The n3 triangles whose edges lie on three different CP2’s, z1 = 0, z2 = 0, z3 = 0, respectively,
are:

{p12i, p13j, p23k}, i, j, k = 0, . . . , n− 1.

The rectangles can be divided into three groups: each of themhas one edge lying on theCP2 labeled
by z0 = 0 and an opposite edge on zm = 0, m = 1, 2, 3. The group withm = 1, for example, contains
the following n3 rectangles:

{p02i, p03j, p13k, p12l}, i− j+ k− l = 0 (mod n).

Fig. 12 is an actual image of a generic 4-cell using an explicit embedding of CP3 into R16 (see, e.g.,
Hanson and Sha (2006)). (a) and (b) depict the 3-balls that are the upper and lower hemispheres of the
S3 bounding the 4-cell (see also Fig. 6). Note the distinct rectangles, which cut across themiddle of the
two 3-balls, dividing each into two pyramids; one pyramid in each 3-ball has been made transparent
using wire-frame rendering to make the rectangle visible. (c) shows a complete partially transparent
shaded rendering of the entire embedded 4-cell projected to 3D, with the outer octahedron being
essentially the equator S2 that is shared by the two hemispheres (a) and (b) of the S3.
Finally, we briefly indicate how tessellation can help in computer graphics visualization of Fermat

surfaces. We first embed the edges of a single 3-cell in R16 using our standard embedding of CP3. The
group Γn (which has order 24n3) acts transitively on the set of all the 3-cells with the isotropy group
Z2 for the single 3-cell. Using computer algebra tools we produce a representative from each two-
element equivalence class of Γn/Z2, and thenwe can generate all distinct 12n3 3-cells. One also needs
to choose appropriate projections to 3D to create the picture. This process becomes very complex even
for F4 (a K3 surface), which has 768 3-cells. With appropriate 3D projections, we can display various
parts of F4, and hence have a glance at its structure. Fig. 13 shows the chosen basic representative 3-
cell; Fig. 14 presents four 3-cells generated from the representatives of Γ4/Z2 that form the isotropy
group, in Γ4, of the quadrilateral base of the basic 3-cell. Fig. 15 shows the three sets of four rectangles
sharing one edge of a fixed triangle; each vertex not on the triangle is shared by twoof these rectangles,
so 15 of the 24 vertices are generated in this way. Fig. 16 uses a projection that exposes all 24 vertices
and draws schematic straight lines between them, with the shape of the basic 3-cell shown in heavy
lines. Finally, Fig. 17 presents a similar projection of the correctly rendered edges for the entire K3
surface, giving a qualitative representation of a full tessellation based on our construction.
Further exploration of the properties of the family of tessellationswehave presented requiresmore

sophisticated interactive visualization tools to expose and examine the structures, e.g., by interactively
selecting and reprojecting subsets of the tessellations in various ways to a 3D graphics environment.
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Fig. 12.

Fig. 13.
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Fig. 14.

Fig. 15.

Fig. 16. The 24 vertices of the K3 tessellation.
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Fig. 17. The full K3 edges.
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