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4D Intuition-Friendly User Interfaces:
4Dice 4DRoom 4D Explorer

4D Explorer

Free on the App Store! || http://homes.sice.indiana. edu{hansona



Quaternion Proteomics || Isometric Einstein Embeddings

VISUALIZING
QUATERNIONS

Quaternion applications to pro- | 11D Nash embedding of self-
tein geometry and geometry- | dual Einstein metric 3
matching




Onward to Fermat — Calabi-Yau
350 Years of a Common Thread:

e (1637, 1995) Fermat’s Last Theorem...
e (1959, 1981) Superquadrics...

. (1954, 1978, 1985) Calabi-Yau Spaces
in String Theory...

« We will now connect all these together...

4



The Common Thread Is This:




Implicit Equation of a Circle




...and its Parametric
Trigonometric Solution:

X — Cosé6 Y =sind



Why a circle?

o Fermat’s theorem involves changing the circle equa-
tion to any integer power.

e Superquadrics map the (cos@,sin @) solutions to
solve a circle-like equation for any real power.

e Leading examples of Calabi-Yau spaces that may
describe the hidden dimensions of String Theory
are complexified extensions of Fermat’s equations.

« SO in a real sense: ALL WE NEED TO
UNDERSTAND IS THE EQUATION OF A
CIRCLE.



Pierre de Fermat

1601(?)-1665



1637 — Fermat’s “Last Theorem”™

« Fermat’s “Last Theorem” states that

TP 4 4P = 2P

has no solutions in positive integers for
integers | p > 2.

 In 1637, Fermat wrote a note in the margin
of his copy of the Arithmetica of Diophan-
tus, claiming to have a proof that he never
recorded or mentioned thereafter.
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Annotated copy of Arithmetica of Diophantus, published by
Fermat’s son and including Fermat’s margin notes, stating
“I have a marvelous proof that this margin is too small to contain.”
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Fermat’s “Theorem,” contd.

o In 1995, Andrew Wiles and collaborators
proved the theorem using the most modern
techniques of elliptic curve theory, unknow-
able by Fermat, but it is unknown whether
a more elementary proof exists.

o In 1990, before the proof, | made a brief
film, “Visualizing Fermat’s Theorem” that |
will show you shortly.
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Next: 1959 — Traffic Circles on Steroids
e Danish poet Piet Hein designs a non-circular shape

for a traffic roundabout in Stockholm in 1959, with
p=2.5and (a/b) = (6/5):

5+ =

e Hein then popularized the Super Egg in 3D:

(@) + (s +42) =1
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The Super Egg
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The Super Circles

These are “Real Fermat Curves” for integers from
You may also recognize these as L, Norms.

.. 10|
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Footnote: The Super Fonts

Superquadrics may have actually entered the world first as font
design parameters.

e 1952: Herman Zapf's Melior type faces appear to have su-
perquadric components.

e Donald Knuth’s Computer Modern type faces explicitly contain
superquadric shape design options.
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1981: Superquadrics
meet Graphics

e Alan Barrintroduces the class of Superquadric shapes
to 3D computer graphics in the first issue of IEEE
CG&A: PP P = 1

e Many interesting tricks: exploit continuously vary-
ing exponents and ratios, invert equations for ray-

tracing, toroidal variants, etc.
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SuperQuadrics in POVRay

Superquadrics as primitives in popular graphics packages.
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1987: Superquadrics Appear in
Machine Vision

e Alex Pentland started using superquadrics as shape
recognition primitives, and his ICCV 87 paper initi-
ated a long literature.

e Pentland, who had the office next to mine at SRl in
the mid 1980’s, introduced me to Barr’'s paper and
to superquadrics...

e and that led me directly to notice the connection
to Fermat’s theorem...
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"SuperSketch” Quadric Shape Primitives

sketch of scene

sketch of scens
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Superquadric/Fermat DEMO

Visualizing Superquadrics in a Fermat context
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1990 — Fermat’s Theorem Film

This film, focused on Mathematical Visualization, was shown first
in 1990 at IEEE Visualization Conference in San Francisco, then
the Siggraph 1990 Animation Festival.

e First: | got involved in Superquadrics, and noted the resem-
's “Theorem” equation:

blance to Fermat’s
(x/2)P + (y/2)P =1

which has no rational solutions for integers p > 2.

e Then: | asked John Ewing, an IU mathematician, if somehow
the superquadric graphics might be useful to try to explain
Fermat’s theorem; he suggested complexifying the equation,
leading to a surface in 4D space. (I found out much later
that this was related to Calabi-Yau spaces and string theory,
which we will discuss shortly.)
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Preface to the film...

PREAMBLE: In 1995 Princeton mathematician
This film was created in 1990, when Andrew Wiles and his collaborators

many believed that the conjecture known finally proved the theorem using
as Fermat's Last Theorem was true but methods that would have been

unprovable. unknowable in Fermat's time.

[t is still an open question
whether a proof exists that
Fermat could have conceived...
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Fermat Film

Film: “Visualizing Fermat’s Last Theorem”

https://www.youtube.com/watch?v=xG630031WZI
“andjorhanson” YouTube channel

Apology: There was a tight time limit on
short films submitted to the Siggraph ’90
Animation Theater, and so this goes by
REALLY FAST

Remember: This film was made years

before Fermat’s “theorem™ was actually
proven.
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The String Theory Connection

e In the fall of 1998, | got a call from a physicist I'd
never heard of named Brian Greene.

e Somehow, he had come across my work on the
visualization of Fermat surfaces, and thought
they could be adapted for the figures showing
Calabi-Yau Spaces in his forthcoming book on
string theory — The Elegant Universe.

e Somehow it all worked, and versions of those
images have appeared in dozens of articles, etc.,
on string theory over the last two decades.
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What is a Calabi-Yau space?

e Definition in a Nutshell: A Calabi-Yau space is an
N-complex-dimensional Kahler manifold with first
Chern class ¢y = 0 and an identically vanishing
Ricci tensor.

e Calabi-Yau spaces are thus nontrivial solutions
to the Euclidean vacuum Einstein equations.

e This is as close to flat as you can get and still
be nontrivial, which has very important poten-
tial applications.
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Why are people interested in CY spaces?

e Physics: Basic String Theory says spacetime is
10D; we only see 4D, so | 6 Hidden Dimensions
are left — a Calabi-Yau Quintic in CP(4) works
(though many other possibilities are now known).

e Mathematics: Mathematicians generally are happy
with EXISTENCE proofs. But, though CY spaces
with Ricci-flat metrics EXIST, no one has written

down any solution. | A Major unsolved problem!

e Visualization: If you can’t write the metric down,

maybe “illustrating” CY spaces will help?
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The Simplest Calabi-Yau Manifolds

e CP(N): The Calabi conjecture, proven by Yau, says
the following manifold in CP (V) admits a non-trivial
Ricci-flat solution to Einstein’s gravity equations:

oVt VL N —
E.g., N = 2 is a cubic embedded in CP(2), which

IS simply a torus and admits a flat (thus Ricci-flat)
metric.

e To get a 6-manifold, we need N = 4, implying a
quintic polynomial embedded in CP(4):

z05—|—z15—|—z25—|—Z35—|—Z45 =0
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Polynomial Calabi-Yau Manifolds, contd

e For any 2(N—1)-real-dimensional Calabi-Yau space
in CP(N), we can look at the 2-manifold cross-
section in CP(2), a 4D real space, by setting all the
terms to constants except z1 and z», and studying

this 2D slice of the full space,

2 N+ N+1 —

,

and that is what we have done for N = 4, repre-

senting the quintic 6-manifold in CP(4).
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My 2D Cross-Section of the 6D Calabi-Yau Quintic:
Is this what the Six Hidden Dimensions look like?
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Elegant Universe image of Calabi-Yau Quintic

Figure 8.9 One example of a Calabi-Yau space.
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Elegant Universe GRID of Calabi-Yau Quintics

Figure 8,10 According to string theory, the universe has extra dimensions
curled up into a Calabi-Yau shape.
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NOVA animations

Greene’s book led to a 3-part NOVA series on String Theory in the
fall of 2003, with some fascinating professional animations:
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NOVA grid of Calabi-Yau Quintic
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Crystal Calabi-Yau Sculpture

Calabi-Yau Manifold Crystal

Artist: http://www.bathsheba.com
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My version of 2D Cross-Section exposes many structural details...
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The Big Picture: The 6D Calabi-Yau Quintic Structure

This is actually SIX dimensional: the partial space is sampled
on a 4D grid, and the remaining 2D cross-sections are shown
as they change across the grid.
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Mathematical Details

o How does one actually compute the equa-
tion of a Calabi-Yau space using the Equa-
tion of a CIRCLE?
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Roots: an uninformative approach to CY
spaces?

Inhomogeneous Eqns in CP(/NV): look at homoge-
neous polynomial order p subspaces, divided by zg"
to give an inhomogeneous embedding in local coordi-

nates:
N

> (z)P =1

i=1
Suppose we try to draw this using p layers of polynomial
roots, which for CP(2) would look something like

w(z) = 1\9/1——,21’
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Plotting layers of Riemann sheets . ..

First root of p = 4 case. First two roots.
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Four-Root Riemann surface of Quartic:

This is “correct,” but where is the geometry?
Where is the topology?

[Riemann Surface Demo]
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Better Visual Methods for CY spaces

e Solve the CP(2) slice equations with power p
by exploiting fundamental domains:

2P+ 20P =1

can be split into p? pieces using method of AJH, Notices of

the Amer. Math. Soc., 1156-1163, 41, 1994. Keep In Mind

that we have taken | zo = 1| here: the rest of the manifold

lives at|zg = 0!

e This is effectively stolen from computer graphics tricks

iIn Barr's 1981 superquadric paper, complexified.
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Algebraic Methods, contd.

Basic idea in the Notices article:

e The Superquadric Trick: First write down a circle:

22 4 o2 =

1.

Then parameterize with x = cos 6, y = sin 6, and

take

z21 = gcz/p Zo = yz/p

so that

2P+ 2oP = g2 +¢y2 =1

e Then Complexify: Let

0 — 0+ &
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Algebraic Methods, contd.

Then we can write, e.g.,
x = CcOS(0 + i) = cosfcoshé —isinfsinh &
to solve pth order inhomogeneous Eqns in CP(2):
(2107 + (22)P = (@) + (y*/P)P = 1
which now reduce to the equation of a complex circle!

2(0,6)%2 +y(0,6)%2 =1
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... but the PHASE is tricky ...

e Fundamental Domain = First Quadrant: The trick

is that you only use 0 < 0 < 7/2.

e Two sets of p separate phases solve eqns: Now

look at whole set of solutions: K =0,...,(p — 1):

z1(k1) = $2/p€27rik1/p, 2o(ko) = y2/p82777jk2/p

This gives

p? patches (k1, k»)

that fit together.
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Algebraic Methods, contd

0

}

Z0

@=L 1 0

v E= <€ max

0 =T1/4 f

6=0 6= T1/2

A single complex quadrant of the complexified Fermat
equation comprises the fundamental domain.
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Algebraic Methods, contd

o[1]

0[2] 0.0 0[2]

0[0]

o[1]

0[2]

p = 3 equation: 3 x 3 = 9 patches making a TORUS.
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Compact Methods . ..

il

/.
\
\\l\

\

RS
‘\‘\}‘\\‘&

The actual compact genus 6 quintic cross-section pro-
jected to 3D looks like this!
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SUMMARY of typical Calabi-Yau spaces.

CP deg(f) | C dim | Rdim | Remarks

CP(1) | 2 0 0 |z==+1,
the 0-sphere S°

2| CP(2)| 3 1 2 | flat torus T2
3| CP(3) 4 2 4 K3 surface
4 | CP(4) 5 3 6 Quintic — C-Y of

String Theory?

CP(N) | N+1 N-1 | 2(N-1) | Solution of

N
Y ()N Tl =1
i=1
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Calabi-Yau DEMO

Visualizing CP(2) Calabi-Yau Space Sections
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Now let’s do some Topology...
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Complex Roots at core of Calabi-Yau Quintic:
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Topology! Count the vertices and edges of z1™ + 25" = 1.

---------
- ~

N R
’

' Asymptotic circles
v in Z, plane @

2

3 n Vertices n< faces = pairs (k1,k2

n2x 4 edges /2 = 22n edges
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Prove Riemann-Hurwitz Formula. . .

The Complexified Fermat equation | z1™ + 25" = 1| has

Vertices 3n One set of n vertices for the

roots on each complex line.

Edges | £ x 4n2 | Four edges per face divided by 2 .

Faces| n? |One face (kq, ko)
for each pair of roots
ki = {0,...,n — 1} and
kr ={0,...,n—1}.
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Prove Riemann-Hurwitz Formula. . .

Thus the genus of the surface |z1™ 4 25" = 1] Is the

solution of:
EulerNo. = V-FEF+ F
= 3n—-2n°4+n° = —-(n—1)(n-2)+2
= 2 —2g
solving:
(n—1)(n —2)
g = >

This is the famous Riemann-Hurwitz Genus Formula
for homogeneous polynomial Riemann surfaces.
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So that’s the story of the Calabi-Yau
images!!

It’'s been an interesting journey ... here a
few places they’'ve been used:
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Covers of Shing-Tung Yau’s recent books.

STRING THEORY and the AND STEVE NADIS

THE SHAPE OF A LIFE

GEOMETRY of the UNIVERSE’S

HIDDEN DIMENSIONS

SHING-TUNG YAU

ONE MATHEMATICIAN'S SEARCH FOR
THE UNIVERSE'S HIDDEN GEOMETRY

and STEVE NADIS
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— Logo for the Harvard CMSA —
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T - g—

Clothing Advertising?

Smart.
But casual.

FTwrrkenm
P T e

..on a London clothing ad billboard.
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e

Just Installed 3D Steel Print | Simulated Proposal for ourty
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Conclusion of our Journey:

From Circles to SuperQuadrics,
from SuperQuadrics to Fermat Surfaces,
from Fermat Surfaces to Calabi-Yau Quintics.
Can we solve the Six Hidden Dimensions of String Theory?

maybe some day ...
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Thank youl!
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Try the Calabi-Yau demo for
yourself ...

Get my WebGL 4D Explorer link here.

http://homes.sice.indiana.edu/hansona

4D Explorer
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