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4D Intuition-Friendly User Interfaces:

4Dice 4DRoom 4D Explorer

Free on the App Store! || http://homes.sice.indiana.edu/hansona
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Quaternion Proteomics || Isometric Einstein Embeddings

Quaternion applications to pro-

tein geometry and geometry-

matching

11D Nash embedding of self-

dual Einstein metric 3



Onward to Fermat → Calabi-Yau

350 Years of a Common Thread:

• (1637, 1995) Fermat’s Last Theorem...

• (1959, 1981) Superquadrics...

• (1954, 1978, 1985) Calabi-Yau Spaces
in String Theory...

• We will now connect all these together...
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The Common Thread Is This:
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Implicit Equation of a Circle

X Y
2
+

2
= 1
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...and its Parametric
Trigonometric Solution:

X Y
2
+

2
= 1

X = cos θ Y = sin θ
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Why a circle?

• Fermat’s theorem involves changing the circle equa-
tion to any integer power.

• Superquadrics map the (cos θ, sin θ) solutions to
solve a circle-like equation for any real power .

• Leading examples of Calabi-Yau spaces that may
describe the hidden dimensions of String Theory
are complexified extensions of Fermat’s equations.

• So in a real sense: ALL WE NEED TO
UNDERSTAND IS THE EQUATION OF A
CIRCLE.
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Pierre de Fermat

1601(?)–1665
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1637 — Fermat’s “Last Theorem”

• Fermat’s “Last Theorem” states that

xp + yp = zp

has no solutions in positive integers for
integers p > 2 .

• In 1637, Fermat wrote a note in the margin
of his copy of the Arithmetica of Diophan-
tus, claiming to have a proof that he never
recorded or mentioned thereafter.
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Annotated copy of Arithmetica of Diophantus, published by

Fermat’s son and including Fermat’s margin notes, stating

“I have a marvelous proof that this margin is too small to contain.”
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Fermat’s “Theorem,” contd.

• In 1995, Andrew Wiles and collaborators
proved the theorem using the most modern
techniques of elliptic curve theory, unknow-
able by Fermat, but it is unknown whether
a more elementary proof exists.

• In 1990, before the proof , I made a brief
film, “Visualizing Fermat’s Theorem” that I
will show you shortly.
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Next: 1959 — Traffic Circles on Steroids

• Danish poet Piet Hein designs a non-circular shape

for a traffic roundabout in Stockholm in 1959, with

p = 2.5 and (a/b) = (6/5):

(

x

a

)p
+

(

y

b

)p
= 1

• Hein then popularized the Super Egg in 3D:

(az)p +

(

b

√

x2 + y2
)p

= 1
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The Super Egg
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The Super Circles

These are “Real Fermat Curves” for integers from p = 1 . . .10 .

You may also recognize these as Lp Norms.
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Footnote: The Super Fonts

Superquadrics may have actually entered the world first as font

design parameters.

• 1952: Herman Zapf’s Melior type faces appear to have su-

perquadric components.

• Donald Knuth’s Computer Modern type faces explicitly contain

superquadric shape design options.
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1981: Superquadrics
meet Graphics

• Alan Barr introduces the class of Superquadric shapes

to 3D computer graphics in the first issue of IEEE

CG&A:
xp + yp + zp = 1

• Many interesting tricks: exploit continuously vary-

ing exponents and ratios, invert equations for ray-

tracing, toroidal variants, etc.

17



SuperQuadrics in POVRay

Superquadrics as primitives in popular graphics packages.
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1987: Superquadrics Appear in
Machine Vision

• Alex Pentland started using superquadrics as shape

recognition primitives, and his ICCV ’87 paper initi-

ated a long literature.

• Pentland, who had the office next to mine at SRI in

the mid 1980’s, introduced me to Barr’s paper and

to superquadrics. . .

• and that led me directly to notice the connection

to Fermat’s theorem...
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”SuperSketch” Quadric Shape Primitives
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Superquadric/Fermat DEMO

Visualizing Superquadrics in a Fermat context

21



1990 — Fermat’s Theorem Film
This film, focused on Mathematical Visualization, was shown first

in 1990 at IEEE Visualization Conference in San Francisco, then

the Siggraph 1990 Animation Festival.

• First: I got involved in Superquadrics, and noted the resem-

blance to Fermat’s “Theorem” equation:

(x/z)p + (y/z)p = 1

which has no rational solutions for integers p > 2.

• Then: I asked John Ewing, an IU mathematician, if somehow

the superquadric graphics might be useful to try to explain

Fermat’s theorem; he suggested complexifying the equation,

leading to a surface in 4D space. (I found out much later

that this was related to Calabi-Yau spaces and string theory,

which we will discuss shortly.)
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Preface to the film...
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Fermat Film

Film: “Visualizing Fermat’s Last Theorem”
https://www.youtube.com/watch?v=xG63O03lWZI

“andjorhanson” YouTube channel

Apology: There was a tight time limit on
short films submitted to the Siggraph ’90
Animation Theater, and so this goes by

REALLY FAST

Remember: This film was made years
before Fermat’s “theorem” was actually

proven.
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The String Theory Connection

• In the fall of 1998, I got a call from a physicist I’d

never heard of named Brian Greene.

• Somehow, he had come across my work on the

visualization of Fermat surfaces, and thought

they could be adapted for the figures showing

Calabi-Yau Spaces in his forthcoming book on

string theory −→ The Elegant Universe.

• Somehow it all worked, and versions of those

images have appeared in dozens of articles, etc.,

on string theory over the last two decades.
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What is a Calabi-Yau space?

• Definition in a Nutshell: A Calabi-Yau space is an

N -complex-dimensional Kähler manifold with first

Chern class c1 = 0 and an identically vanishing

Ricci tensor.

• Calabi-Yau spaces are thus nontrivial solutions

to the Euclidean vacuum Einstein equations.

• This is as close to flat as you can get and still

be nontrivial, which has very important poten-

tial applications.
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Why are people interested in CY spaces?

• Physics: Basic String Theory says spacetime is

10D; we only see 4D, so 6 Hidden Dimensions

are left — a Calabi-Yau Quintic in CP(4) works

(though many other possibilities are now known).

• Mathematics: Mathematicians generally are happy

with EXISTENCE proofs. But, though CY spaces

with Ricci-flat metrics EXIST , no one has written

down any solution. A Major unsolved problem!

• Visualization: If you can’t write the metric down,

maybe “illustrating” CY spaces will help?
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The Simplest Calabi-Yau Manifolds

• CP(N): The Calabi conjecture, proven by Yau, says

the following manifold in CP(N) admits a non-trivial

Ricci-flat solution to Einstein’s gravity equations:

z0
N+1 + z1

N+1 + · · ·+ zN
N+1 = 0

E.g., N = 2 is a cubic embedded in CP(2), which

is simply a torus and admits a flat (thus Ricci-flat)

metric.

• To get a 6-manifold, we need N = 4, implying a

quintic polynomial embedded in CP(4):

z0
5 + z1

5 + z2
5 + z3

5 + z4
5 = 0
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Polynomial Calabi-Yau Manifolds, contd

• For any 2(N−1)-real-dimensional Calabi-Yau space

in CP(N), we can look at the 2-manifold cross-

section in CP(2), a 4D real space, by setting all the

terms to constants except z1 and z2, and studying

this 2D slice of the full space,

z1
N+1 + z2

N+1 = 1 ,

and that is what we have done for N = 4, repre-

senting the quintic 6-manifold in CP(4).
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My 2D Cross-Section of the 6D Calabi-Yau Quintic:

Is this what the Six Hidden Dimensions look like?
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Elegant Universe image of Calabi-Yau Quintic
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Elegant Universe GRID of Calabi-Yau Quintics
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NOVA animations

Greene’s book led to a 3-part NOVA series on String Theory in the

fall of 2003, with some fascinating professional animations:
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NOVA grid of Calabi-Yau Quintic
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Crystal Calabi-Yau Sculpture

Artist: http://www.bathsheba.com
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My version of 2D Cross-Section exposes many structural details...
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The Big Picture: The 6D Calabi-Yau Quintic Structure

This is actually SIX dimensional: the partial space is sampled

on a 4D grid, and the remaining 2D cross-sections are shown

as they change across the grid.
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Mathematical Details

• How does one actually compute the equa-

tion of a Calabi-Yau space using the Equa-

tion of a CIRCLE?

38



Roots: an uninformative approach to CY
spaces?

Inhomogeneous Eqns in CP(N): look at homoge-

neous polynomial order p subspaces, divided by z0
n

to give an inhomogeneous embedding in local coordi-

nates:
N
∑

i=1
(zi)

p = 1

Suppose we try to draw this using p layers of polynomial

roots, which for CP(2) would look something like

w(z) =
p
√

1− zp
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Plotting layers of Riemann sheets . . .

First root of p = 4 case. First two roots.
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Four-Root Riemann surface of Quartic:

This is “correct,” but where is the geometry?

Where is the topology?

[Riemann Surface Demo]
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Better Visual Methods for CY spaces

• Solve the CP(2) slice equations with power p

by exploiting fundamental domains:

z1
p + z2

p = 1

can be split into p2 pieces using method of AJH, Notices of

the Amer. Math. Soc., 1156–1163, 41, 1994. Keep In Mind

that we have taken z0 = 1 here: the rest of the manifold

lives at z0 = 0 !

• This is effectively stolen from computer graphics tricks

in Barr’s 1981 superquadric paper, complexified .
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Algebraic Methods, contd.

Basic idea in the Notices article:

• The Superquadric Trick: First write down a circle:

x2 + y2 = 1.

Then parameterize with x = cos θ, y = sin θ, and

take z1 = x2/p z2 = y2/p so that

z1
p + z2

p = x2 + y2 = 1

• Then Complexify: Let

θ → θ + iξ
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Algebraic Methods, contd.

Then we can write, e.g.,

x = cos(θ + iξ) = cos θ cosh ξ − i sin θ sinh ξ

to solve pth order inhomogeneous Eqns in CP(2):

(z1)
p + (z2)

p = (x2/p)p + (y2/p)p = 1

which now reduce to the equation of a complex circle!

x(θ, ξ)2 + y(θ, ξ)2 = 1
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. . . but the PHASE is tricky . . .

• Fundamental Domain = First Quadrant: The trick

is that you only use 0 ≤ θ ≤ π/2.

• Two sets of p separate phases solve eqns: Now

look at whole set of solutions: k = 0, . . . , (p− 1):

z1(k1) = x2/pe2πik1/p, z2(k2) = y2/pe2πik2/p

This gives p2 patches (k1, k2) that fit together.
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Algebraic Methods, contd

   =  +    max

2 1

z  = 01

z  = 02

z 0

   = 0θ
    =    /4θ π

πθ    =    /2

0

  = 0ξ

ξ

ξξ

ξ    = −   max

A single complex quadrant of the complexified Fermat
equation comprises the fundamental domain.
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Algebraic Methods, contd
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p = 3 equation: 3×3 = 9 patches making a TORUS.
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Compact Methods . . .

=⇒

The actual compact genus 6 quintic cross-section pro-
jected to 3D looks like this!
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SUMMARY of typical Calabi-Yau spaces.

N CP deg(f) C dim R dim Remarks

1 CP(1) 2 0 0 z = ±1,

the 0-sphere S0

2 CP(2) 3 1 2 flat torus T2

3 CP(3) 4 2 4 K3 surface

4 CP(4) 5 3 6 Quintic → C-Y of

String Theory?

N CP(N) N+1 N-1 2(N-1) Solution of

N
∑

i=1
(zi)

N+1 = 1
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Calabi-Yau DEMO

Visualizing CP(2) Calabi-Yau Space Sections
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Now let’s do some Topology. . .
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Complex Roots at core of Calabi-Yau Quintic:
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Topology! Count the vertices and edges of z1
n + z2

n = 1.

nth Roots in Z   plane

 

Asymptotic circles

0

k2

  in Z   plane

1

k1
2nth Roots in Z   plane

n   faces = pairs (k1,k2)

0
1 1

0

2 2

n−1n−1

3 n   Vertices

            

1

0

n−1

2

2n  x  4 edges /2  = 2 n   edges2

2
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Prove Riemann-Hurwitz Formula. . .

The Complexified Fermat equation z1
n + z2

n = 1 has

Vertices 3n One set of n vertices for the

roots on each complex line.

Edges 1
2 × 4n2 Four edges per face divided by 2 .

Faces n2 One face (k1, k2)

for each pair of roots

k1 = {0, . . . , n − 1} and

k2 = {0, . . . , n− 1} .
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Prove Riemann-Hurwitz Formula. . .

Thus the genus of the surface z1
n + z2

n = 1 is the

solution of:

Euler No. = V −E + F

= 3n− 2n2 + n2 = −(n− 1)(n− 2) + 2

= 2− 2g

solving:

g =
(n− 1)(n− 2)

2

This is the famous Riemann-Hurwitz Genus Formula
for homogeneous polynomial Riemann surfaces.
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So that’s the story of the Calabi-Yau
images!!

It’s been an interesting journey . . . here a
few places they’ve been used:
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Covers of Shing-Tung Yau’s recent books.
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— Logo for the Harvard CMSA —
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Clothing Advertising?

. . . on a London clothing ad billboard.
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Sculptures!

Just Installed 3D Steel Print ‖ Simulated Proposal for Courtyard
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Conclusion of our Journey:

From Circles to SuperQuadrics,

from SuperQuadrics to Fermat Surfaces,

from Fermat Surfaces to Calabi-Yau Quintics.

Can we solve the Six Hidden Dimensions of String Theory?

maybe some day . . .
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Thank you!
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Try the Calabi-Yau demo for
yourself . . .

Get my WebGL 4D Explorer link here.

http://homes.sice.indiana.edu/hansona
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