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In 1987, Bruce McCormick led an extensive study 
of the benefi ts of combining computer graph-
ics and computational-science methods. This 

culminated in the US National Science Foundation 
panel report “Visualization in Scientifi c Comput-
ing,”1 in which I was (serendipitously) a partici-
pant. Many people identify this event as the birth 
of scientifi c visualization as a distinct discipline. It 
was soon followed, for example, by the creation of 
the IEEE Visualization Conference, thanks largely to 
Larry Rosenblum, Arie Kaufman, and Gregory Niel-
son. (A few of us still fondly remember the inaugu-
ral 1990 meeting in San Francisco.) The discipline 
achieved maturity in 1995, when Arie Kaufman be-
came the founding editor in chief of IEEE Transac-
tions on Visualization and Computer Graphics.

Today, the worlds of science, computing, and vi-
sualization continue to evolve at a dizzying pace. 
Visual analytics2 is competing valiantly with visu-
alization per se, and the newcomers big data and 
cloud computing pose novel challenges to the in-
tegration of visualization. While the problems of 
extracting useful information from ever-growing 
datasets that dominated the panel’s original con-
cerns continue unabated, here I will ponder the 
parallel issue of understanding the scientifi c qual-
ity of visualization content.

Art or Science?
The essence of visualization is the creation of ap-
pealing images that are based on scientifi c data 
and that facilitate the domain scientist’s under-
standing of the data. Datasets without visualiza-
tions are little more than lists of numbers, typically 
generated by computational models or extracted 
from measurements. When I construct images and 
animations for a visualization task, I often want 
them to aesthetically inspire the viewer, just as an 
artist wants a piece of art to attract attention and 

comment. For some tasks artistic goals might seem 
irrelevant, but, more often than not, an attrac-
tive presentation can make the difference between 
a widely used visualization and a neglected one. 
Creating artistic images isn’t easy, but producing 
meaningful visualizations isn’t easy either, and 
producing a good visualization that’s also artisti-
cally attractive is doubly diffi cult.

Interestingly, we can fi nd cases for which an 
image of a legitimate scientifi c data domain is 
remarkably close to pure art, and vice versa. For 
example, Figure 1a shows a masterpiece by Jackson 
Pollock, in a style instantly recognizable to almost 
any patron of the arts. In this painting, Pollock 
brings together chaotic elements that each seem to 
have a place in the intuitive process of attracting 
the viewer’s attention and appreciation.

Compare that work of art to Figure 1b, which 
is an instance of The Symplectic Piece, an image 
introduced as a work of art.3 Indeed, this image 
is attractive for the reasons that any good work of 
art is attractive. It captures the eye with forms and 
patterns in shape and color, yet it’s slightly unpre-
dictable, inviting further examination. However, 
it’s not a deliberately designed piece of art, but the 
output of a computer program visualizing the but-
terfl y effect. It illustrates the large-scale, unpre-
dictable behaviors resulting from the propagation 
of infi nitesimally small differences in numerical 
initial conditions for the simulated motion of 10 
moons and two massive suns. The essential pro-
cesses that produced the Jackson Pollock paint-
ing and The Symplectic Piece seem closely related. 
Figure 2a shows another Jackson Pollock painting 
that strongly resembles the technically correct but 
uninformative visualization in Figure 2b, which 
depicts a 4D mathematical object called a K3 sur-
face. This leads us to consider the question, when 
should we label such images as science or art?
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Stretching the Truth Too Far
Visualizations with artistically motivated features 
that are difficult to justify aren’t hard to find. The 
temptation to introduce and exploit artistic ex-
aggeration can sometimes get the upper hand. A 
particularly irresistible domain for this seems to 
be planetary-surface data from spacecraft. One 
example, from the Mars Odyssey mission, is a 
widely shown animation seemingly flying through 
the valleys and mountains of Mars. Most presen-
tations viewed by the general public don’t men-

tion that the elevations are exaggerated by a factor 
of 2.5.

An even more striking example occurs in the 
images of the Gula Mons feature on the surface 
of Venus, reconstructed from the Magellan radar 
data survey. The press releases accompanying the 
images didn’t mention the unusual transforma-
tions applied to the surface-reconstruction process 
that produced the images. Figures 3a and 3b are ex-
aggerated vertically by a factor of 22.5. In contrast, 
Figure 3c, available on an apparently later website 

(a) (b)

Figure 1. Art and science with common features. (a) Jackson Pollock’s Number 1, 1950 (Lavender Mist) is considered one of his 
masterpieces. (Courtesy of the National Gallery of Art. © 2013 The Pollock-Krasner Foundation/Artists Rights Society [ARS], 
New York.) (b) The Symplectic Piece is a similar image that appears artistic but is the output of a precise simulation of many-body 
gravitational dynamics. (Courtesy of Alec Jacobson, ETH.)

(a) (b)

Figure 2. More art and science with common features. (a) Jackson Pollock’s Number 18, 1950 qualitatively resembles (b) a raw 
image of the 4D edges tessellating a K3 surface projected to 3D. (Figure 2a courtesy of the Guggenheim Museum. ©2013 The 
Pollock-Krasner Foundation/Artists Rights Society [ARS], New York.)
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thread, is scaled to the actual relative left–right 
versus top–bottom proportions of the surface ge-
ometry of Venus. It shows roughly what you would 
see if you were actually standing on Venus.

I can understand the motivation to enhance 
these images to reveal more details. But does fail-
ing to mention such extreme exaggeration serve 
any purpose, say, in inspiring young students to go 
into science? Such artistic license will more likely 
induce skepticism and disbelief in the claims of 
scientists in general. Exaggerating science with ex-
cessive showmanship does little service to either 
art or science.

Some Useful Visualization Principles
We clearly must seek some well-defined principles 
to guide us when we want our visualizations to 
have artistic qualities while preserving the integ-
rity of our science. Among many such principles 
that have been proposed and advocated, the fol-
lowing two in particular seem universally useful.

Einstein’s Razor
Einstein has been quoted as saying,

Everything should be made as simple as pos-
sible, but no simpler!

This principle sets forth the contrast between the 
value of simplicity and the demands of science. 
Applied to visual representations, it advocates 
whittling down our visualizations to the essential 
features necessary to meet a given goal of the data 
analyst. However, given that data must be selected, 
filtered, and identified with a contextual model 

before we can even begin, we also see that these 
features are fundamentally in the (possibly artis-
tic) eye of the beholder.

(Interestingly, that wasn’t what Einstein actu-
ally said. You might find it amusing to wonder 
about the traditional homily’s self-referential re-
lationship to the truth. What Einstein really said 
was, “It can scarcely be denied that the supreme 
goal of all theory is to make the irreducible basic 
elements as simple and as few as possible without 
having to surrender the adequate representation of 
a single datum of experience.”4)

Falsifiability
What’s the difference between an attractive but 
rigorous solution to a visualization problem and 
a beautiful image whose artistic appeal far out-
weighs its value as visualization? As someone who 
has spent a significant part of my career as a do-
main scientist, I’m inclined to believe that the ul-
timate tests of value come from the principles of 
natural science. We should be able to exploit the 
same methods in evaluating visualizations that 
we use to distinguish a valid scientific framework 
from an untestable one.

A key method by which we make such distinc-
tions in science is the principle of falsifiability, 
championed by Karl Popper.5 (This term doesn’t 
imply any deliberate intent to falsify data or to 
deceive but refers to a standard of provability.) De-
spite being periodically challenged on philosophi-
cal grounds, this principle is still one of our most 
powerful tools to identify and correct erroneous 
and shaky claims. The process of evolving our of-
ten qualitative discipline toward an actual science 

(a) (b)

(c)

Figure 3. When exaggeration gets in the way of science. (a) The Eistla Regio region of the surface of Venus. 
(b) A close-up of the Gula Mons feature, which is 3 km high. (c) The actual scale of the Gula Mons view, 
removing the 22.5× vertical magnification factor used in the height-enhanced 3D reconstructions in Figures 3a 
and 3b. (NASA JPL, Magellan mission.)
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could be enhanced by systematically applying this 
principle to evaluate the validity of our visualiza-
tions. If we can tell the difference between an 
image containing a fatal factual defect and one 
whose features have clearly identifiable scientific 
sources, we can then approach our goal of distin-
guishing the components of art in our work, how-
ever beautiful they might be, from our science.

Case Study: Fermat Surfaces
Being most familiar with the nuances of my own 
work, I will perhaps be forgiven for concluding 
with a narrative involving my experiences devel-
oping a broad set of visualizations, thus exposing 
the perils of trying to follow my own advice. This 
is the saga of a particularly amusing class of ex-
amples from my own library of visualizations, all 
related to Fermat’s equation, a simple equation that 
produces a class of surfaces called Fermat surfaces.6

The equation is

(z1)n + (z2)n = 1,

where z1 and z2 are complex variables and n ≥ 2 
is an integer. There are four real variables and two 
equations (a real and an imaginary part), leaving 
two degrees of freedom defining a surface. Because 
the surface is embedded in 4D, it must be pro-
jected to 3D to exploit standard computer graphics 
rendering methods.

My 25 years of continuous work in this domain 
provide a compelling story. The development of 
clear strategies to introduce falsifiability into the 
images of these surfaces has been counterbalanced 
by the amazing difficulty of convincing any given 
client to prefer the falsifiable forms to forms exces-
sively manipulated (to my mind) by artistic license.

These images first appeared in the animation 
“Visualizing Fermat’s Last Theorem” (www.you-
tube.com/watch?v=xG63O03lWZI), shown at Sig-
graph 1990 and described in a technical article at 
the inaugural IEEE Visualization Conference the 
same year.7 Happily, interest in these images con-
tinued to grow in the next few years owing to the 
development of the successful proof of Fermat’s 
last theorem by Andrew Wiles and his associates 
in 1994 and 1995.

The story continued in fall 1999 as string theo-
rist Brian Greene was finishing his million-selling 
book The Elegant Universe. He suggested to me that 
Fermat surface images could be used to represent 
Calabi-Yau spaces, the hidden dimensions of string 
theory, which were central to his narrative. This 
turned out to be straightforward because the Fer-
mat equation for n = 5 produces a 2D cross-section 

of the 6D complex quintic equation, which is a 
Calabi-Yau space and a strong candidate for the 
hidden string theory geometry. The 2D slices pre-
serve many fundamental features of the quintic, 
particularly the fivefold symmetry. I naively con-
sidered my constructions showing unmistakable 
pentagonal symmetry to be wonderfully compel-
ling examples of a falsifiable representation of 
these otherwise highly abstract objects.

However, when I handed over my basic con-
struction6 of the Calabi-Yau quintic to a variety of 
graphic artists, what befell my cherished principles 
of falsifiability was hard to predict. Figures 4a and 
4b appear in Greene’s books. The absence of color 
printing and a viewpoint that completely hides the 
fivefold symmetry leaves Figure 4a an unintelligi-
ble mish-mash; you simply have to take for granted 
it might be a Calabi-Yau object. Figure 4b, based 
on an image from my webpage, stood a chance of 
meeting my criteria. It showed the fivefold sym-
metry and different shades of gray where fivefold 
pie slices were color coded in the Web version. 
However, the art department added meaningless 
random lines all over the image. Apparently, they 
were unaware that I would have been quite happy 
to spend two seconds to hit my renderer’s hot key 
that overlays the tessellation lines in the correct 
places. This would have maintained the geometric 
falsifiability instead of destroying it in the name 
of art.

Of course, Figures 4a and 4b were grayscale 
static images printed in books. When the NOVA 
team started adapting these Calabi-Yau represen-
tations for extensive animated treatment in the 
Elegant Universe episodes in 2003, I again had 
some hope that the result would be mathemati-
cally informative visual representations. Figure 4c 
shows the beautiful results of the Red Vision ani-
mation house’s adaptation of my algorithms6 for 
the 2D cross-section. The 2D checkerboard layout 
of Figure 4d is supposed to represent the higher 
dimensions missing from the cross-section. How-
ever, this approach includes only two of the four 
missing dimensions. We see that every trace of the 
intrinsic quintic signature that the chosen model-
ing approach so carefully preserved is gone, and 
the animation becomes a sea of writhing tulips. 
The result is obviously no longer a visualization 
but pure art (although I must admit I like it).

The original corpus of my Fermat/Calabi-Yau 
Mathematica code deposited in the Wolfram Math-
Source library in the early 1990’s has been ported, 
with the assistance of Jeff Bryant at Wolfram, to 
a Wolfram Demonstration Project.8 The project 
easily supports the generation of both the original 



10 July/August 2014

Visualization Viewpoints

falsifiable images and more artistic versions. Fig-
ure 5a is one of the latter, produced to accompany 
a string theory article in Physics Today by Gordon 
Kane.9 Figure 5b shows the amazing glasswork ren-
dering by Bathsheba Grossman, who took my 4D 
equations and chose her own parameters for the 
projection to 3D. Her deliberately artistic results 
are some of the most mathematically compelling 
representations I’ve seen, showing that we still 
have much to learn from the skills of real artists.

I conclude this story of the struggle between 
the priorities of falsifiability and aesthetics by 
presenting in Figure 6a what I consider to be the 
definitive static visualization of the Calabi-Yau 
quintic 2D cross-section. This representation was 
chosen for the cover of Yau’s own book on string 

theory.10 Figure 6b shows a method that can be 
used to represent the entire 6D space. We see that 
the 2D checkerboard layout used to indicate the 
higher dimensions of string theory in previous vi-
sualizations could be considered an unnecessary  
oversimplification. The representations in Figure 
6 possess significant additional, although subtle, 
information. Each color in Figure 6a has a specific 
mathematical meaning, and each of the hundreds 
of shapes in Figure 6b is different, showing the 
geometric variations across all six dimensions. 
(For more mathematical details on the Calabi-Yau 
quintic images, see the sidebar.)

Over the years, my laboratory has developed 
fully interactive high-dimensional-geometry view-
ing systems enabling us to study these remarkable 

(a) (b)

(c) (d)

Figure 4. Calabi-Yau quintic visualizations adapted from material I provided. (a) From The Elegant Universe. 
(b) From The Fabric of the Cosmos. In these two images, the fivefold (quintic) symmetry is no longer apparent. 
(Reprinted from The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, by 
Brian Greene, © 2003, 1999 by Brian Greene, with permission of the publisher, W.W. Norton & Company Inc.; 
and from The Fabric of the Cosmos, by Brian Greene, © 2005 by Brian Greene, with permission of the publisher, 
Random House Inc., respectively.) (c, d) Still frames of Calabi-Yau space animations from the NOVA Elegant 
Universe episodes. These depictions, although mathematically accurate, exhibit no discernible mathematical 
structure and are essentially indistinguishable from purely invented artwork. (Images used with permission of 
the WGBH Educational Foundation.)
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mathematical objects from arbitrary 4D view-
points. I argue that such interactive exploration 
can significantly enhance the visualization para-
digm for such objects, greatly facilitating the veri-

fication of falsifiable properties. (See, for example, 
4Dice,11 our free iPhone App for interactively ex-
ploring the 4D hypercube, at http://itunes.apple.
com/us/app/4dice/id453083422.)

(a) (b)

Figure 5. Two artistic Calabi-Yau images. (a) An image accompanying a Physics Today article on string theory by Gordon Kane,9 
rendered using the most artistic options in the Wolfram Demonstrations Project Calabi-Yau tool. (Reprinted with permission 
from Physics Today, Nov. 2010, © 2010, American Institute of Physics.) (b) The Calabi-Yau quintic as treated by a professional 
artist, Bathsheba Grossman. Her clever choice of parameters reveals the intrinsic symmetries in this view of her laser-etched 
glass sculptures. This object, intended mainly as an art piece, is superior to many visualization-oriented treatments. (Courtesy of 
Bathsheba Grossman, http://bathsheba.com.)

(a) (b)

Figure 6. Visualizations of the quintic Calabi-Yau 6D manifold. (a) The color-enhanced 2D cross-section emphasizing the fivefold 
symmetry. (b) A representation of the full 6D manifold, showing 2D cross-sections at sampled values of the remaining four 
dimensions.
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Many years have passed since the 1987 ap-
pearance of Visualization in Scientific Com-

puting, and we continue to learn about and evolve 
our craft. Our highest challenges reach beyond 
the accuracy and completeness of the data in a 
visualization image, beyond elegance in the sense 
of Einstein, and beyond appropriateness for the 
viewer’s chosen goals. Our work must also take 
into account the evaluatability of our representa-
tions in an essential way.

Einstein’s principle in sciences such as chemis-
try, physics, and biology is in effect supplemented 
by cross-checking against experimental data for 
validation. Visualization’s needs extend uniquely 
into the cognitive sciences for evaluation. The 
question that confronts us is this: how do we tell 
whether a student or colleague has produced a 
valid pictorial representation of the truth or just 
an appealing image that could have been derived 
inadvertently from a completely invalid process? 
Art and science can work brilliantly together in vi-
sualization science, but we must know when, and 
how, to distinguish them. 
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The full Calabi-Yau quintic is a 6D manifold described 
in a local coordinate system by the equation (z1)5 + 

(z2)5 = F(z3, z4), where F = 1 – (z3)5 – (z4)5, and each z is 
a complex variable represented by two real variables, z = 
x + i y. I ignore for the moment the submanifold at infinity 
that can’t be seen in the finite local coordinates.

Figure 6a in the main article shows a 3D projection of 
the 2D surface embedded in 4D defined by the solutions 
with F(0, 0) = 1. The surface’s coordinates are thus x1, y1, 
x2, and y2. The fivefold pie slices throughout Figure 6 are 
checkable evidence that this is indeed a quintic equation. 
The 25 colors in Figure 6a uniquely identify particular 
phase transformations applied to the mostly hidden blue 
fundamental shape on the back side.

The four variables in the Figure 6b lattice are x3, y3, x4, 
and y4, where one coordinate axis necessarily goes off in 
a diagonal direction in this 3D projection. For each fixed 
sampled point in these variables, F(z3, z4) is a complex con-
stant, and the solutions to (z1)5 + (z2)5 = F(z3, z4) change 
slightly in shape and size. Figure 6b contains 5 × 5 × 5 × 5 = 

625 snapshots of the 2D surface at discretely sampled posi-
tions {–2, –1, 0, 1, 2} in the four additional directions.

The resulting distinct 2D surfaces are plotted at each 
4D sample point in the figure. If the samplings were made 
continuous, the result would be the 6D manifold required 
by string theory. Hidden in the sampled lattice is a “ghost 
surface” of zero-radius 2D objects that form a new embed-
ded 2D surface having exactly the same shape as Figure 6a. 
The outer objects increase in size relative to inner objects 
that are near the surface of zeroes.

Full disclosure obligates me to point out that the visualiza-
tions in Figure 6 are vastly misleading. The full 6D manifold is 
actually closed and compact, with Euler characteristic –200. 
Among other subtle details, the 2D cross-section in Figure 
6a should have its five circular outer edges that extend to 
infinity closed up to make a surface of genus 6. Nevertheless, 
the open-edged version of the quintic in Figure 6 contains 
enough information to check that it’s a consistent local 
depiction of the complete manifold and so is still a sufficient 
(although not ideal) representation.

Details of the Calabi-Yau Quintic


