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4D-control interface with our multitouch-based system, 
we found that the multitouch interface exhibited about 1.5 
times faster performance for 4D navigation tasks.

ADVANTAGES OF MULTITOUCH
Researchers have investigated how multitouch meth-

ods can provide innovative user interaction in a variety of 
environments.1-3 With multitouch, researchers can expand 
significantly beyond the mouse’s two degrees of freedom 
and still avoid the complexity of special-purpose devices 
embedded in 3D space. The simultaneous use of multiple 
fingers for input can provide extra one-handed degrees of 
freedom, allowing users to circumvent two-handed meth-
ods, such as the use of modifier keys to switch control 
contexts.

These extra degrees of freedom can be effective for 
applications in which the user must control data having 
unconventional geometry, such as 4D objects. For example, 
intuitively manipulating objects that are projected from a 
4D model to a standard display screen requires six degrees 
of orientation control plus controls such as scaling, focal-
length adjustment, and translation.

Because multitouch technology is highly intuitive and 
physically natural, it has a high adoption rate. Unlike spe-
cialized interaction devices such as the space mouse and 
3D wands, multitouch interface controls are ubiquitous 

I nteractive computer graphics methods can effectively 
meet the challenge of exploring 4D worlds. Even 
though the physical world is only 3D, the virtual world 
of computer modeling can in principle represent any 

imaginable higher-dimensional geometry. The problem is 
how to present these models in a way that enhances users’ 
intuitive experiences of the abstract geometric world they 
are trying to understand.

Multitouch interfaces can provide an excellent envi-
ronment for exploring and building intuition about the 
geometric concepts of 4D worlds, offering a natural way to 
interact with the extra degrees of freedom that characterize 
4D geometry. The common availability of these interfaces 
in handheld devices strongly motivates exploring how they 
might enhance a user’s 4D manipulation experience.

To test the idea that multitouch interfaces might be a 
more efficient way to interact with and learn about 4D 
objects, we designed an intuitive interactive 4D explora-
tion interface and implemented an application based on 
this design for the iPad and iPhone. Our 4Dice application 
enables the user to interact with the structure of a hyper-
cube or tesseract viewed as an eight-sided, back-face culled 
4D die (http://itunes.apple.com/us/app/4dice/id453083422).

Our interface is the first to exploit multitouch gestures 
to seamlessly explore all six 4D rotational degrees of free-
dom. In a user study comparing an equivalent mouse-based 

The increased degrees of freedom in a multitouch interface help users  
control 4D worlds with intuitive gestures. Relative to a specialized 
mouse-based interface, a multitouch interface is easier to learn, and 4D 
object manipulation is up to 1.5 times faster.
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and easy to master, making them a good fit for educational 
applications. 

VISUALIZING 4D OBJECTS
From the rich history of work on visualizing higher-

dimensional geometric models using computer graphics 
displays, A. Michael Noll’s examination of how to project 
N-dimensional objects to a graphics screen for exploration4 

and Thomas F. Banchoff’s use of continuously rotating 4D 
mathematical objects5,6 are particularly relevant to our 
work. In designing our exploratory interface, we followed 
the core methods of these approaches, using perspective 
projections of 4D points, edges, and surface patches to 3D, 
then employing standard 3D graphics and lighting to render 
the result on the display screen.

Figure 1 shows our 4D imaging pipeline, which paral-
lels the familiar process of 3D imaging with the addition of 
one final projection to the screen space. The image of a 4D 
object is a voxel image in a 3D volume screen instead of a 
2D pixel image as in 3D imaging. After the user rotates the 
4D object as desired, our interface projects it to a 3D image 
that is further rotatable in 3D, so that the user can see all 
its aspects in the final projection from the intermediate 3D 
voxel image to the 2D display.

In 4D imaging, a 4 × 3 matrix implements orthogonal 
projection to eliminate a 4D directional line of sight, instead 
of the 3 × 2 projection matrix typical of 3D imaging. To 
produce perspective projection, we divide by the 4D dis-
tance between a rendered element and the 4D viewpoint 
instead of by the 3D distance to the 3D viewpoint.

In 3D, if two curves have points that lie on coincident 
lines of sight, the nearer curve technically shadows the 
more distant one. Such curves can share a point in the 
2D projected image even though they are far apart in 3D. 
Similarly, a pair of noncolliding 4D surface patches can 
share a curve embedded in the 3D projection where the 
two surfaces appear to intersect, with the nearer patch 
shadowing the other.

Geometry of 4D worlds 
Those who dabble in the fourth dimension often hear 

questions such as, “Is the fourth dimension real?” or “4D 
can’t be like the ordinary world, so it has to be time, right?” 

The assumption is that 4D cannot be “real” because people 
are not familiar with visualization beyond 3D. However, 
once a piece of mathematics is inside the computer, it is as 
real as any other piece of mathematics inside that computer. 
Thus, one geometric data representation might consist of 
vertex points as 3D vectors; another might have vertex 
points as 10D vectors, as in string theory. All dimensions 
are real as far as the computing framework is concerned. 

The interface between the mathematics inside the com-
puter and the outside world that an observer can sense 
defines the connection with reality—the transformation 
from mathematical 4D models to the 2D computer screen. 
3D stereoscopic displays are also possible, but here we 
assume a 2D screen on a handheld device.

Six 4D rotation parameters 
Because we can express an arbitrary rotation in any 

dimension as a composition of rotations in planes defined 
by pairs of orthogonal Euclidean coordinate axes, we can 
specify all the 4D rotational degrees of freedom by six in-
dependent parameters, corresponding to the rotations in 
the planes labeled wx, wy, wz, yz, zx, and xy. In addition to 
the 3D subspace rotations, yz, zx, and xy, three new ma-
trices effectively tilt the w-axis into the direction of the  
x-, y-, and z-axes. 

The wx 4D rotation matrix is

 cos θ 0 0 sin θ
 0 1 0 0
 0 0 1 0
–sin θ 0 0 cos θ 

R (θ, wx) = ,

and the wy and wz rotations are permutations of this. 
Multiplying R(θ,wx) into a pure w column-vector (0,0,0,w)t 
produces a small positive x component (w sin θ) for small θ, 
and similarly multiplying a pure x column-vector (x,0,0,0)t 

gives a small negative w component (–x sin θ). 

4D back-face culling
A comprehensive simulation of 4D lighting and shad-

ing automatically removes the 3D parts of the scene that 
cannot reflect light to the 4D viewer.7 In 3D graphics sys-
tems such as OpenGL, enabling back-face culling removes 
the invisible polygons, which have normal vectors pointing 

Figure 1. The 4D imaging pipeline from mathematical model to visualization and interaction. The pipeline is the exact parallel of the 
3D imaging process with an additional final projection.
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Figure 2. Rolling ball controller geometry. (a) 3D rolling ball 
controller geometry on a 2D screen and (b) 4D rolling ball con-
troller geometry on a 3D screen.
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of putting a ball on a table, placing a flattened horizontal 
palm on top of the ball, and rotating the ball incrementally by 
moving the hand to the right for a positive y-axis (zx-plane) 
rotation, and toward the user for a positive x-axis (yz-plane) 
rotation. Moving the hand in clockwise horizontal circles 
produces counterclockwise rotations in the xy-plane (about 
the z-axis). Clearly, a mouse-based implementation of this 
algorithm permits rotations in all three planes, thus achiev-
ing any 3D orientation with a finite sequence of 2D motions.

In 4D, the precise analog of the 2D vector that controls 
the 3D rolling ball orientation is a 3D vector that controls 
the 4D rolling ball.9 Imagine a 4D object projected to 3D 
space along the w-axis, which is “pointing out at you” and 
therefore invisible, just as the 3D z-axis is for the 3D case. 
Then, as Figure 2b shows, to explore 4D orientations, we 
specify a 3D drag vector

dx = (dx, dy, dz),

which tilts the w-axis slightly in the plane defined by the 
direction dx  and the w-axis itself. This action hides an old 
piece of geometry on the side toward which this vector is 
moving, and makes a new piece of geometry appear on the 
3D image’s opposite side. This is exactly analogous to the 
3D rolling ball, except that the 3D projection screen, not the 
2D screen, is the canvas.

Finding all the 4D degrees of freedom
4D orientations have six degrees of freedom, so how 

can the 4D rolling ball, which apparently rotates only in 
three planes (wx, wy, and wz), generate the other three  
degrees of freedom? In fact, moving the controller in circles 
in the plane of any pair of control directions such as (dx, 
dy) will produce a rotation in that plane. Thus, because the 
three degrees of freedom (dx, dy, dz) correspond in pairs 
to the three missing planes (yz, zx, and xy), it is possible to 
incrementally produce rotations in all six planes (wx, wy, 
wz, yz, zx, and xy), and therefore to reach any possible 4D 
orientation.

4D INTERFACE DESIGN AND 
IMPLEMENTATION

To achieve our goal of designing a fluid multitouch inter-
face for interacting with 4D geometry, the first step was to 

away from the viewer. In four dimensions, it is similarly 
important to implement the 4D equivalent of back-face 
culling when constructing the projection of an object to the 
3D image; our approach implements 4D back-face culling 
to produce a more accurate visual impression.

Back-face culling by itself can ensure correct visibility if 
the object being rendered is a solid convex polyhedron in 
3D or a corresponding solid convex polytope in 4D. More 
complicated scenes require depth buffering in addition to 
back-face culling. 

For a typical convex 4D polytope such as the hypercube, 
many of the polyhedra that would appear in a wireframe 
rendering disappear in any given back-face culled render-
ing. Applying 4D rotations to the hypercube causes the 
culled parts to reappear in the appropriate sequence. No 
more than four of the eight cubes that make up the hyper-
cube’s visible parts can appear at any one time.

The 4D rolling ball
Figure 2a shows the 3D rolling ball method,8 which 

suggests a particularly interesting control mode for 4D rota-
tions. In 3D, the rolling ball implements the physical process 
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Figure 3. Multitouch gestures included in our interactive 4D exploration interface. 
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apart or together scales the screen space, so the user can 
more easily examine details. A four-finger drag enables 
the translation of 2D screen space, a double-tap resets the 
3D orientation, and a triple-tap resets the 4D orientation 
(see Figure 1).

MASTERING THE HYPERCUBE WITH 
MULTITOUCH

The hypercube, or tesseract, is a familiar 4D object 
that generalizes the 3D cube. As an application of our 4D 
multitouch interface, we chose to create an educational 
scenario in which every aspect of a 3D die, represented as 
a numerically labeled 3D cube and manipulated using the 
3D rolling ball, has a parallel realization in a 4D hypercube 
manipulated with our interface.

Just as it is possible to view a 3D cubic die as three axes, 
(x,y,z) ranging from +1 to –1, with square surfaces pasted 
on the two ends of each axis, for a total of six square faces, 
so it is possible to view a 4D hypercubic die as four axes, 
(x,y,z,w), with solid cubic “faces” pasted on the two ends of 
each axis, for a total of eight cubic faces.

Our approach to making the 4D hypercube more famil-
iar is based on first providing an interactive approach to 
understanding the geometric features of a 3D die. We can 
then use these 3D intuitions to provide a basis for interac-
tive exploration and understanding of the hypercube by 
treating it simply as a 4D die.

decide which functions we absolutely had to support at 
the top level of multiple-finger touching and dragging. We 
then chose those actions that had to be available without 
switching modes and set aside those that we could rel-
egate to alternative modes, menus, and sliders. Figure 3 
shows our basic vocabulary of multitouch gestures. The 
“Exploring the 4D World” sidebar lists some resources 
that can aid in understanding the research methods we 
used.

3D screen control
A primary design requirement was to have 3D control 

of the projected image, in which a default parallel projec-
tion simply chops off the fourth coordinate and displays 
the object geometry in terms of the first three coordi-
nates. Thus, rotating in this 3D subspace of 4D is the same 
as rotating the 3D projected image. It is therefore natural 
to allow users to rotate the object geometry in 3D with 
a one-finger drag, in the same general fashion as dozens 
of existing touch-based (and mouse-based) 3D geometry 
systems. Although other 3D image control options are 
available, we chose to use the context-free 3D rolling ball.

4D control design 
We characterized the remaining three 4D rotational 

degrees of freedom as rotations in the wx-, wy-, and wz-
planes. Because any wx rotation mixes the x-component 
in the projected image and the hidden w-component,  
x and w continually change places with one another as  
θ increases monotonically. The same is true for wy rota-
tions, enabling the clean control of any combination of wx 
and wy rotations with a two-finger drag on the screen’s 
natural xy coordinate system.

Finally, the wz coordinate rotations fill out the six- 
parameter rotation space. There is a natural correspon-
dence between “spinning” the screen around its center 
and familiar actions such as turning a drill brace-and-bit 
or a screwdriver. Such motions have one fixed center and 
a moving curved path around that center. Thus, we chose a 
two-finger action with one finger fixed as a perfect intuitive 
realization of this type of z-direction screw motion. It is a 
two-finger action, just like the wx and wy motions, but in 
gesture analysis, multitouch software can easily separate 
it from an action in which both fingers are moving.

4D perspective, screen space adjustment,  
and reset

To make exploration easier, we added several more multi- 
touch controls, exhausting our chosen vocabulary. The 
most important was 4D perspective adjustment, associated 
with three-finger up-down dragging, which changes the 
4D perspective transformation from orthogonal (pushing 
away, to the top of the screen) to high-perspective dis-
tortion (pulling toward the bottom). Two fingers moving 

Exploring thE 4D WorlD

e fforts to understand the fourth dimension have stimulated 
a rich variety of thoughts and insights—from artistic treat-

ments of the hypercube to a spectrum of novel implementation 
methods exploited in or suggested by our work.

Figure A shows an iPhone running the 4Dice application. For 
those who desire an introduction to manipulating 4D geometry, 
our eponymous YouTube video offers a one-minute conceptual 
overview of the back-face culled hypercube as a 4D die (www. 
youtube.com/watch?v=fx7ehl7YvMY).

Additional background and 
mathematical details for select-
ed topics covered in this article 
are available at homes.soic. 
i n d i a n a . e d u / h a n s o n a / 
4DTouchSidebars, including fur-
ther discussion of the hypercube 
(hypercube.pdf), 2D and 3D 
rotations (2d3drot.pdf), 4D cull-
ing mechanisms (cullface.pdf), 
and the 4D rolling ball (4droll.
pdf), along with an illustration 
of how to apply a multitouch 
interface on a handheld device 
to remotely manipulate 4D 
objects shown on a desktop or 
lecture display (remote.pdf).

Figure A. The 4Dice applica-
tion, which runs on the iPod 
Touch, iPhone, and iPad. 



Rese aRch Fe atuRe

 84 computer

Understanding the ordinary cube as a 3D die 
Figure 4a shows a single 3D die, which contains six 

square faces numbered so that opposite pairs sum to seven. 
One, two, or at most three of these are visible at any one 
time if back-face culling is enforced. Spinning about the  
x (or 1:6) axis reveals the numbered faces in the cyclic re-
peating order 3:2:4:5. Spinning about the y (or 2:5) axis 
reveals the faces in the cyclic order 3:6:4:1. Performing 
a counterclockwise circular xy-plane rolling ball action  
reveals the 1:2:6:5 faces “peeking” around the edges of  
face 3 as the die spins slowly clockwise about the z-axis.

Understanding the hypercube as a 4D die 
To understand the hypercube as a 4D die, we can repeat 

the 3D process by exact analogy, attempting to make the 
strangeness of 4D geometry as familiar as 3D geometry. 
Figure 4b shows how to envision a 4D die as having four 
axes—x, y, z, and w—instead of three. Consequently, there 
are four pairs of labels, one pair for the two ends of each 
axis.

Opposite labels sum to nine. The opposite labels sum 
to nine instead of seven. A 4D gambler would be very 
familiar with the rule that opposite ends of the x-axis are 
labeled by 1 and 8, the y-axis by 2 and 7, the z-axis by 3 
and 6, and the w-axis by 4 and 5.

Faces are cubes, not squares. The geometric objects at 
the ends of the axes are cubes instead of squares. At the 
ends of the 3D cube’s three axes are square 2D faces. In 

4D, the dimensions increase by one for everything, so 
the face objects at the ends of the hypercube’s four axes 
are 3D cubes. Thus, hypercube faces are cubic volumes 
instead of square surfaces.

Solid cubic faces are drawn as transparent. The hyper-
cube faces technically are solid cubic volumes, so we 
need to “look inside them” to see the numbering because 
the numbers label the cube’s body rather than the surface. 
For that reason, we drew these solid objects as transpar-
ent wireframe cubes and represented the numeric labels 
as small solid spheres floating inside. 

The rolling die
Figure 5a shows the simplest possible set of views for a 

3D and a 4D die and the small rotations connecting them. A 
3D die can show one face, rotate slightly to show a second 
face, and rotate slightly in another direction to show a 
third face; only three faces can appear at any one time. 
The 4D die possesses one more rotation direction, so up 
to four cubic face volumes can appear simultaneously, but 
no more.

Figure 5b shows the sequence of cubic faces and nu-
meric labels that appear for each basic motion, wx-plane 
rotation, wy-plane rotation, and wz-plane rotation. In each 
case, in the left-to-right sequence, the number 4 labeling 
the positive w-axis becomes invisible as the rotation pro-
gresses, and then reappears in the fifth frame as the die 
approaches a full 360-degree rotation.

Figure 4. (a) The basic geometry, visual presentation, and face-numbering rules of a 3D right-handed die. Opposite ends of the x-axis 
are labeled 1 and 6, the y-axis ends are 2 and 5, and the z-axis ends are 3 and 4. The darkened faces (4, 5 ,6) are those that 3D back-
face culling has removed. (b) The basic geometry, visual presentation, and face-numbering of a 4D right-handed die. Opposite ends 
of the x-axis are labeled 1 and 8, the y-axis ends are 2 and 7, the z-axis ends are 3 and 6, and the w-axis ends are 4 and 5. The solid 
cubes represented as green-colored wire frames (5, 6, 7, 8) are those that 4D back-face culling removes.
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the number 3 labeling the positive z-axis appears in front 
atop the 4 label. Continuing the wz rotation, the 4 label 
shrinks and is replaced by the 3 label. As the 3 label 
shrinks away, the 5 label of the negative w-axis again 
becomes apparent, then the 6 of the negative z-axis, and 
finally the 4 label on the positive w-axis reappears. 

x:y circles spin in z. The z-axis rotation induced by 
moving two fingers in a small clockwise circle parallels 
the z-axis rotation from a 3D one-finger-rotating drag. We 
can thus make the 4D die spin counterclockwise in its 3D 
image about the z-axis (the direction perpendicular to the 
screen from the user’s view); counterclockwise circles 

Rolling in the wx- and wy-planes. Dragging the 4D die 
with two fingers moving to the left on the screen spins 
the die in the wx-plane, passing from the 4 to the 1 label. 
Continued rotation by a leftward pull goes further to the 5 
(negative w-axis) label. Continued pull to the left goes to 8, 
and then returns to 4, giving the 4:1:5:8 sequence. Pulling 
downward to produce wy rotations gives the analogous 
4:2:5:7 sequence.

Drilling through the wz-plane. The last row in Figure 5b 
shows a rotation in the wz-plane as a full circle through 
the labels 4:3:5:6 of the cubic 4D die faces. With a two-
finger-one-fixed clockwise “into-the-screen” spin in wz, 

Figure 5. (a) Illustrative rolling actions of the 3D and 4D die. (b) 4D die face sequences during full-circle rolling in the wx-, wy-, and wz- 
planes. Each sequence begins with 4 being the only visible label, and applies a rotation in the indicated plane until the face labeled 4 
reappears from the other side in the last frame as the die approaches a full 360-degree rotation.
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males and three females with a mean age of 26.7 years, 
used multitouching. Group G2, consisting of five males and 
five females with a mean age of 26.2 years, used a mouse 
and keyboard combination.10

All participants were at least somewhat familiar with 
both interaction methods, and none had used our multi-
touch interface before the study. Two participants had some 
basic knowledge of 4D (which we determined by asking 
them to draw a hypercube), so we split them between G1 
and G2.

Each participant went through learning, practice, and 
task phases.

Learning phase
In this phase, which took approximately 20 minutes, 

we first presented the geometry of a hypercube as a 3D 
cube generalization and discussed the characteristics of a 
3D die and a 4D die. We then interactively demonstrated 
the assigned interaction control (multitouch, or mouse and  
keyboard) and how participants could use them to ma-
nipulate a cube represented as a 3D die and a hypercube 
represented as a 4D die.

Practice phase
We then gave the participants five minutes to practice 

rotating the 4D die using the group’s assigned interaction 
method. The initial view presented the front face of the 4D 
die labeled 5.

Task phase
In this phase, which took approximately 60 min-

utes, we gave the participants a task sheet with these 
instructions:

This is a test of your ability to rotate a 4D die to find a 

particular view with the interface control. It has 140 trials 

altogether, and in each trial, you will see a 4D die with a 

random number facing you and a goal number displayed at 

the top of the screen. Your task is to apply the interaction 

controls you just learned to quickly rotate the 4D die so 

that you can clearly see the dots in the face with the goal 

number. When you find the goal number, immediately press 

the done button and then press the start button when you 

are ready to go on to the next trial. If the number you found 

is incorrect, an error message will be displayed and you 

have to continue the rotation to look for the goal number. 

When you are ready to start these trials, press the start 

button displayed below.

To make up the 140 trials, we first created 28 trials 
with initial state face numbers from 1 to 4 and target goal 
numbers assigned to the seven remaining numbers. We 
repeated this process five times and presented the resulting 
140 cases to the participants in a random order.

produce a clockwise z rotation. If the 4 label is showing, 
the 1, 2, 8, and 7 labels are visible peeking around the 
edges of 4 in sequence with the counterclockwise circle. 
The 5 label remains hidden on the far side of w, opposite 
the 4 label in 4D space. Starting with any other cubic face 
produces the appropriate sequence of four neighboring 
labels peeking around the edges.

Accelerometer control option. When only 4D orien-
tation control is needed, the accelerometer available in 
many handheld devices enables controlling the entire set 
of three 4D rotation actions at once, producing a w-axis 
tilt in any direction. The 3D directional information from 
an incremental accelerometer motion provides an arbi-
trary value of dx , no longer restricted to any Cartesian 
subspace, as input to the 4D rolling ball algorithm. An 
internal gyroscope can correct for device orientation 
changes, which the accelerometer might confuse with 
acceleration.

Figure 6 shows the correspondences between each  
multitouch 4D action and our chosen screen-centered Car-
tesian coordinates.

USER STUDY
To test the efficiency of our multitouch interface design, 

we recruited 20 participants and randomly divided them 
equally into two groups. Group G1, consisting of seven 

Figure 6. Using two-finger multitouch controls to produce 4D 
rotations in the wx-, wy-, and wz-planes. Two-finger dragging in 
the x or y directions in the screen plane changes 4 to 1 or 8, or 
to 2 or 7, respectively, and one-finger-fixed spinning produces 
an effective z direction drag that changes 4 to 3 or 6. Continuing 
further in any direction will expose the 5 on the opposite end of 
the w-axis from 4.

+y drag shows 7

+x drag shows 8

–y drag shows 2

–x drag shows 1

–z clockwise
spin shows 3

+z counterclockwise
spin shows 6
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the user-declared final view) for the two interfaces, with 
the result that the multitouch interface offers accuracy 
comparable to that of the mouse and keyboard interface. 

We averaged the accuracy values over the 140 trials for 
each participant, and then performed a matched-paired 
t-test on the two sets of 10 averaged accuracy values (per 
participant) from G1 and G2. The mean values (and stan-
dard deviations) for the accuracy of the multitouch versus 
mouse and keyboard interfaces were 14.58 (12.14) and 
13.76 (11.13) degrees, respectively. The t-value was 0.2861 
with nine degrees of freedom, indicating no significant 
difference between the two sets of accuracy values.

Multitouch interfaces provide the opportunity 
to perform complex manipulations of virtual 
environments, such as those representing 

mathematical models of 4D objects. We have proposed 
an effective interface design supporting interactive 
exploration of 4D objects and their properties, and 
developed an application to facilitate the understanding 
of a hypercube as a 4D analog of a 3D rolling die. A unique 
feature of our hypercube interface is the inclusion of 4D 
back-face culling, which both simplifies the representation 
that the user sees and more accurately represents the 4D 
analog of what is apparent in the 3D world.

The participants had to press a start 
button to begin, but they could press the 
done button at will. The testing environ-
ment detects if the participant has reached 
the goal number by checking the angular 
difference (in degrees) between the goal 
hyperface’s normal direction and the view 
direction of the 4D projection, accepting 
matches below a threshold angle, typically 
45 degrees.

Results and analysis 
Our testing interfaces recorded each 

trial’s start and end times, the accuracy 
(the angular difference between the final 
view and the goal description), the initial 
and goal numbers, and the number of times 
that the error message displayed.

To compare the data from the two inter-
faces, we first applied a moving window 
average of size 15 to the raw data to com-
pensate for the noise in the time data. We 
then computed the average time taken and 
the standard errors in the times for the  
10 participants in each group. This yielded 
the smoothed sampled values T

1(k) and T2(k) 
for G1 and G2, respectively, for k ε [1, 140]. 
To further analyze the asymptotic perfor-
mance and the learning rate, we performed least-squares 
fits on the mean curves (T1(k) and T2(k)) using the exponen-
tial model

T(k) = a e–b k + c.

Figure 7 shows the results with standard errors dis-
played as error bars. We plotted only the first 100 of the 
140 trials, since the curves beyond that are almost flat, with 
negligible changes in asymptotic performance.

An examination of the two curves’ asymptotic trends 
reveals that the multitouch interface is roughly 1.5 times 
faster than the mouse and keyboard interface. To in-
vestigate further, we conducted a paired t-test on the 
data from trial 101 to trial 140 compared with the null 
hypothesis—the proposition that the mean values of 
the trial times for the two distinct interfaces are the 
same. The p-value was 0.0001 (39 degrees of freedom), 
and the difference between the mean trial times was 
statistically highly significant. Hence, we rejected the 
null hypothesis and concluded that the mean trial times 
for the two interfaces are significantly different, thus 
providing evidence that the multitouch interface enables 
better performance.

We also compared the average accuracy (quantified 
by the angular differences between the ideal goal and 

Figure 7. Time to reach a goal number for participants using mouse and key-
board versus multitouching. For the mouse and keyboard, trial time averaged  
5.96 ± 0.11 seconds and the exponential fit coefficient was 0.0696 ± 0.004 per 
trial. For multitouching, trial time averaged 3.82 ± 0.09 seconds and the expo-
nential fit coefficient was 0.1088 ± 0.008 per trial. Both curves show asymptotic 
performance.
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 8. A.J. Hanson, “The Rolling Ball,” Graphics Gems III, D. Kirk, 
ed., Academic Press, 1992, pp. 51-60.

 9. A.J. Hanson and R.A. Cross, “Interactive Visualization Meth-
ods for Four Dimensions,” Proc. 4th IEEE Conf. Visualization 
(VIS 93), IEEE, 1993, pp. 196-203.

 10. A.J. Hanson, K. Ishkov, and J. Ma, “Meshview: A Portable 
4D Geometry Viewer in OpenGL/Motif”; http://homes.soic.
indiana.edu/hansona/meshview/meshview.pdf.
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In future work, we hope to explore incorporating other 
polychora (4D regular polytopes) besides the hypercube, 
interacting effectively with more complicated objects 
such as the other polychora, and simulating 4D physical  
dynamics. 
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