
Meshview: Visualizing the Fourth Dimension

Andrew J. Hanson Konstantine I. Ishkov� Jeff H. May
Computer Science Department

Indiana University
Bloomington, IN 47405 USA

Figure 1: Meshview’s interface window with a four-torus drawn
using edges, vertices, and negative screen door transparency.

Figure 2: Meshview’s key-frame animation interface controlling a set
of animated polygons; the texture coordinates are also key-framed.

Abstract

Meshviewis an interactive visualization system for viewing points,
curves, and two-dimensional manifolds embedded in 3D or 4D,
with the emphasis on handling 4D objects. All rigid motions in
3D and 4D can be performed under mouse (or 3D mouse) control,
while key-frame animations support motions and deformations of
such objects. Meshview is written in C, OpenGL, and X/Motif with
the objective of being as compact, portable, and device-independent
as possible within the given framework. The system has been used
successfully to do research on a variety of problems such as 4D
viewing interfaces, mathematical visualization of classical higher
dimensional geometry, Riemann surfaces, functions of two com-
plex variables, and 4D quaternion representations of 3D coordinate
frames.

Keywords: four dimensions; curve and surface visualization

1 Introduction

Meshviewis an interactive 4D viewing system that fluidly dis-
plays points, curves, and two-dimensional manifolds embedded in
3D or 4D, as well as key-frame animations representing motions
and deformations of such objects. It is written in C, OpenGL,
and X/Motif with the objective of being as compact, portable, and�Current address: Lucent Technologies, Holmdel, NJyCurrent address: Intel Corporation, Santa Clara, CA

device-independent as possible within the given framework. It has
been successfully compiled under Linux 2.2.2, SGI IRIX 5.2 to
IRIX 6.5, and SUN SOLARIS 2.6. Meshview should in principle
be portable to any workstation that supports OpenGL and X/Motif
or appropriate simulators such as Mesa and LessTif.

Our basic motivations for developing yet another 4D viewer in-
stead of using an existing system such as, e.g., Geomview [17],
were twofold: (1) the available user interfaces, particularly for free-
form rotational exploration, were poorly suited to both ourperfor-
mance needs and our preferences for interfaces that allow heads-up,
context-free manipulation. We in fact conceived and implemented
a particularly interesting context-free interface, the “rolling ball”
in 4D (described below) that permits complete exploration of the
6 degree-of-freedom orientation space in 4D with only 3 controller
parameters. (2) Our need for robust high-performance custom in-
terfaces for perceptual psychology measurements and research into
objects like quaternions and knotted spheres in 4D.

The basic design features of Meshview have evolved over a pe-
riod of several years, beginning with the first release of version 1.0
in July of 1994, and continuing with a number of refinements, in-
cluding screen-door transparency, animation, and texture, that were
added during 1998–1999 to version 1.2. In the next sections,we
outline the design philosophy and features of Meshview, point out
its particular strong points, discuss the mathematical underpinnings
of its unique interface features, and present a selection ofappli-
cations, focusing in particular on the suitability of Meshview for
building intuitions in classical mathematics and for the quaternion
methods used routinely in computer graphics.



2 Design Features of Meshview

The adjectives giving the overall goals of the design include:� Fast and general. Use display lists in OpenGL. Enhance
the Geomview/OOGL MESH and OFF file formats. Support
color per object or color per vertex.� Small. Keep as simple and independent as possible.� Portable. Restrict to C, OpenGL, and X/Motif.� Freely distributable. Non-proprietary.� Support document generation. A straightforward image file
generator is provided, and the state of any screen is easily
saveable as a “setting” file for later restoration or refinement
of a view.

The principal features of the design are:� Flexible file format. Reads extensions of the Ge-
omview/OOGL MESH, OFF and LIST file formats, plus its
own enhancements FRAMES, DOT, and LINE.� Interactive examination support. Rotates/translates/scales
objects in 3D and 4D interactively under mouse control using
the 3D and 4D rolling ball models for rotations.� Momentum. The momentum option is available on all mo-
tions.� Drawing options. Optionally draws faces, edges, vertices,
normals, palette, unit sphere, the lighting vector, and a refer-
ence set of 4D axes.� Pseudocolor palettes.A wide range of color palette options
for 4D depth color coding a provided based on the NCSA
palette library.� Geometry locator panel. An interactive parametric space
“picker” (or point locator) is supplied for any MESH file or
list of MESH files. Any individual mesh in a set can be se-
lected in turn.� Quaternion rotation panel. Quaternion multiplication is iso-
morphic to multiplying a unit vector in the three-sphereS3 by
an orthogonal4 � 4 matrix that can be derived directly from
rotations acting on the 3D coordinate frame. This panel vi-
sualizes the change in orientation of the 3D frame, the unit
quaternion to which it corresponds, and the action of the cor-
responding quaternion multiplication on the 4D object in the
main window (which is not simply related to a 3D rotation).� Preservation of state.System state is saved for later recov-
ery, including current 3D and 4D viewing matrices, the cam-
era setting, background color, light direction, and rendered
ppm image of the current scene. This is useful for recon-
structing the state of an illustration for a publication.� Restoration. Loads palettes and saved system states.� Face shading options. Surface facets can be flat shaded,
smoothly interpolated, depicted with one color on both sides,
depicted with two different colors for front and back surfaces,
or textured. In addition, any arbitrary palette can be used to
color code the 4D depth of each point in the current 3D pro-
jection: this is useful when rotating objects in 4D.� Projection options. Both 3D and 4D permit perspective (po-
lar projection) and orthogonal projection.

� 3D context can be disentangled. Meshview supports a
choice between applying the 4D rolling ball to the current
screen coordinates of the object’s 3D projection (“context-
free,” the default), or applying to the object’s local 3D coor-
dinate system context (using the “axes” display to help show
the context). The latter is useful for looking at different sides
of the object’s 3D projection while performing a 4D rotation.
This is especially useful for the 2D mouse interface.� Sample data.The release includes a selection of example ge-
ometry files, including the 4D flat torus, Steiner surface (RP2
embedded in 4D), 4D Fermat surfaces and much more. (See
the README file in the data directory for details, and see the
color page of this article for examples.) A selection of short
programs for generating such files is also available.� Help. A simple online help file to remind the user of keyboard
shortcuts and interface options is provided.

3 Fundamental Methods.

3D/4D Rolling Ball. The 4D rolling ball formula was derived in
[4], and this is the method implemented in Meshview for both for
the 2D mouse and the 3D mouse on the desktop. The remarkable
property of this algorithm is that 4D orientation control requires
exactly three control parameters, thus making it usable fora stan-
dard mouse with two buttons switching from(x; y)-plane control
to (x; z)-plane control, and making it ideally suited to the “flying
mouse” or CAVE “wand” 3-degree-of-freedom user interface de-
vices. Let ~X = (X;Y; Z) be a displacement obtained from the
3-degree-of-freedom input device, and definer2 = X2+Y 2+Z2.
Take a constantR with units 10 or 20 times larger than the average
value ofr, computeD2 = R2 + r2, compute the fundamental ro-
tation coefficientsc = cos � = R=D, s = sin � = r=D, and then
takex = X=r; y = Y=r; z = Z=r, sox2 + y2 + z2 = 1. Finally,
rotate each 4-vector by the following matrix before reprojecting to
the 3D volume image:264 1� x2(1� c) �(1� c)xy �(1� c)xz sx�(1� c)xy 1� y2(1� c) �(1� c)yz sy�(1� c)xz �(1� c)yz 1� z2(1� c) sz�sx �sy �sz c 375
The 3D rolling ball method is correspondingly used for 3D orien-
tation control; it is basically the same formula except simplified by
settingz = 0 and reducing the matrix to3� 3.

4 Geometry

Meshview data formats are strongly influenced by the OOGL (Ob-
ject Oriented Graphics Language) file format used by Geomview
[17], but circumstances and practical experience with complex ge-
ometries led us to deviate from strict adherence to the OOGL for-
mat.

Meshview 1.2 now supports MESH, OFF, LIST, FRAMES,
DOT, and LINE formats. MESH, OFF and LIST are very similar
to the OOGL file formats. The OOGL formats are not fully imple-
mented (e.g., there is currently no support for files with more than
4 dimensions), but on the other hand several enhancements have
been added. The FRAMES, DOT and LINE formats are specific
to Meshview, where the FRAMES format is used for key frame
animation, and DOT and LINE are used to display dots and lines
respectively.

The overall syntax is quite straightforward, and is documented
in an accompanying README file that we cannot describe in de-
tail here due to space limitations. The data files are composed of



lists of points in 3D or 4D, various color attachments, and texture
coordinates, all of which get translated in the implementation into
the obvious OpenGL representations.

5 Selected Controls

Below we present a selection of the possible controls in Meshview;(u; v) denotes the incremental mouse coordinates.
3D viewing:
leftbutton 3D rotation (3D rolling ball) R3(u,v)
middlebutton 3D translation in x-y plane T3(u,v,0)
rightbutton 3D translation along z axis T3(0,0,-v)
Shift+right 3D rotation around z axis R2(u)
3D lighting:
Ctrl+left 3D rotation (3D rolling ball) R3(u,v)
Ctrl+middle 3D rotation around z axis R2(u)
4D viewing:
Shift+left xyw rotation (4D rolling ball) R4(u,v,0)
Shift+middle xzw rotation (4D rolling ball) R4(u,0,-v)

<Key>r Reset the 4D and 3D matrices and 3D
light direction, stop momentum.

<Key>F3 (3D mouse) Toggles 3D mouse.
* Left 3D mouse: 4D rolling ball
* Middle 3D mouse: 3D orientation and
position
* Right 3D mouse: reset

Appearances:
<Key>1 both sides of face use same color
<Key>2 two sides of face use different colors
<Key>3 4D depth color coding
<Key>4 texture coding
<Key>5,6,7 screen-door off, positive, negative
Utilities:
<Key>f toggle face drawing (default on)
<Key>e toggle edges
<Key>v toggle vertices
<Key>n toggle normals
<Key>u toggle unit quaternion sphere
<Key>p toggle palette
<Key>l toggle light ray
<Key>a toggle 4D orientation axes
Viewing:
Ctrl+p 3D perspective projection (default)
Ctrl+o 3D orthogonal projection
<Key>w,x,y,z 4D projection along w(default), x, y, or

z-axis
Shift+o 4D orthogonal projection (default)
Shift+p 4D polar projection

6 Applications

Meshview has been used in our laboratory to examine objects and
create imagery for journal articles since its conception in1994.
With the addition of further features such as stereo, key-frame ani-
mation, texture, and screen door transparency during the last year,
many additional applications are possible. Among the specific ap-
plications for which Meshview has been employed in its bare or
task-enhanced forms, we note the following:

6.1 4D Mathematical Visualization

The production of the video animation “knotˆ4 ” [15], which con-
cerned the visualization of knotted spheres embedded in four Eu-
clidean dimensions, generated a family of very interestingobjects

that begged to be explored interactively. Meshview in some sense
was originally motivated by our need for our own customizable sys-
tem for this purpose. As a result, some of the earliest modelscre-
ated for Meshview came from the film; a typical 4D “spun knot,”
that is not even knotted is shown in Figure 6. Many other “classic”
4D mathematical figures are in the Meshview geometry library, in-
cluding the 4-torus (just the product of two circles) in Figures (1,3),
and the crosscap/Steiner Roman Surface in Figures (4,5), which can
in fact be rotated into one another in Meshview (a fact uncovered
during the early work by Banchoff on 4D visualization — see [1]);
the equations for both of these figures can be found in the classic
bookGeometry and the Imagination[16].

6.2 Complex Functions

Some of the first author’s earliest work on mathematical visu-
alization started with attempts to visualize the Fermat surfaces
[9, 10, 14], which are extensions of the Fermat-theorem equations
to two complex variables of the form(z1)n + (z2)n = 1
which are in effect then-fold Riemann surfaces of the complex
equation f(z) = (1� zn)(1=n) :
Meshview provides any number of ways of exploring the 2D man-
ifolds that result from solving these two real equations in four real
variables and looking at projections of the natural embedding in
four real dimensions. In Figure 9, we show such a surface color-
coded by the phase transformations from the fundamental domain;
Figure 10 shows the same object with pseudocolor coded 4D depth.
Figure 11 shows the two complex planesz1 = 0 andz2 = 0 su-
perimposed on then = 3 Fermat surface. Solutions of the closely
related equations(z1)m(z2)n = 1 are shown in Figures 7 and 8.

6.3 Quaternion Visualization

The relation of 4D unit quaternions to rotations, orientations, and
camera frame interpolation has been familiar to computer graphi-
cists since their relevance was pointed out by Shoemake in 1985
[18]. Meshview was used extensively to create the figures andani-
mations accompanying our research on mapping streamline orienta-
tion frames to quaternion spaces [11]. Subsequent research[5] em-
ployed Meshview as well to visualize the nature of optimal quater-
nion curves and surfaces corresponding to frame assignments for
3D curves and surfaces. Figures 12 and 13 show the quaternion
form of several possible tangent frame assignments for a (2,3) torus
knot; Figure 14 adds an actual quaternion surface representing the
space of all possible such frames.

6.4 Context for Perceptual Experiments

Meshview’s basic facilities have been adapted to a series ofexper-
iments currently underway in the Perception/Action laboratory at
the Indiana University Department of Psychology. The recently
added key-frame animation and deformation capabilities are essen-
tial here; future work on the perceptual nature of 3D and 4D rigid
versus elastic motion is planned in this context.

6.5 Virtual Reality Features

Several features of the current Meshview support desktop virtual
reality functionality. On a stereo-equipped SGI, the system will
bring up a stereo screen that may be viewed with Stereographics
CrystalEyes equipment. Various parameters can be adjustedto the



user’s taste. We generally assume a non-moving user so that head-
tracking, while feasible, is not a high priority in the unenhanced
desktop system.

Perhaps of more interest is the support (implemented under IRIX
6.x, but not difficult in general) for the Logitech 3D mouse, which
is a full six-degree-of-freedom device with four buttons. By em-
ploying the 4D rolling ball algorithm [4] in its purest form,the 3D
position alone of the 3D mouse can naturally control all six rotation
planes of a 4D mathematical object. This is accomplished by hav-
ing (x; y; z)-motions rotate in the(x;w),(y;w), and(z; w) planes,
respectively, while “rowing” circular motions of the mouseposition
in the(y; z),(z; x), and(x; y) planes, respectively, produce 4D ro-
tations in the(y; z),(z; x), and(x; y) planes themselves, exhausting
the entire 4D orientation space. The motion of a single 3D point at
the tip of the 3D mouse can thus be used to seek out any possible
projection from 4D into 3D.

7 Conclusion and Future Work

The Meshview system is a minimalist approach to a very flexible
and full-featured utility for examining and building intuition about
4D structures, e.g., 4D geometry and topology, two complex vari-
ables, and quaternions. Its implementation strategy is to use only
C, Motif, and OpenGL, thereby facilitating portability, maintain-
ability, extensibility, and compactness of design. The supported
data formats conform very closely to the OOGL formats imple-
mented by Geomview [17], with a handful of extensions. A vari-
ety of desktop virtual reality techniques are incorporated, including
the 4D rolling ball method for manipulating 4D displays, switched-
field Stereographics stereography, and the Logitech flying mouse.

We anticipate a limited CAVETM [3] implementation in the near
future.

Future plans include a number of ambitious extensions to cre-
ate robust and publicly available implementations of related high-
dimensional visualization techniques, including interactive 4D rota-
tion and and volume rendering of 3-manifolds embedded in 4D [8],
4D renderings of 3D scalar fields [7], and automatic generation and
fast interactive rendering of “thickened” 2-manifolds in 4D [6, 2].
Specific extensions involving quaternion visualization and quater-
nion frame optimization are also envisioned, including quaternion
maps of streamlines and stream surfaces in the manner of [11], and
the automatic generation of optimal tubings of curves and framings
of surfaces as described in [5]. The general approaches to more
sophisticated data navigation strategies such as those proposed in
[12, 13] would also be appropriate extensions to the Meshview fam-
ily of interaction modes.

The URL for Meshview isftp://ftp.cs.indiana.edu/
and the file ispub/hanson/Meshview.1.2.tar.gz .

Acknowledgments

This research was made possible in part by NSF infrastructure grant
CDA 93-03189. Thanks are due to John N. Huffman for his assis-
tance with the Linux port.

References

[1] T. F. Banchoff. Beyond the third dimension: Geometry, com-
puter graphics, and higher dimensions.Scientific American
Library, 1990.

[2] R. A. Cross and A. J. Hanson. Virtual reality performancefor
virtual geometry. InProceedings of Visualization ’94, pages
156–163. IEEE Computer Society Press, 1994.

[3] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. De-
Fanti. Surround-screen projection-based virtual reality: The
design and implementation of the CAVE. In James T. Ka-
jiya, editor, Computer Graphics (SIGGRAPH ’93 Proceed-
ings), volume 27, pages 135–142, August 1993.

[4] A. J. Hanson. Rotations for n-dimensional graphics. In
Alan Paeth, editor,Graphics Gems V, pages 55–64. Academic
Press, Cambridge, MA, 1995.

[5] A. J. Hanson. Constrained optimal framings of curves and
surfaces using quaternion gauss maps. InProceedings of Visu-
alization ’98, pages 375–382. IEEE Computer Society Press,
1998.

[6] A. J. Hanson and R. A. Cross. Interactive visualization meth-
ods for four dimensions. InProceedings of Visualization ’93,
pages 196–203. IEEE Computer Society Press, 1993.

[7] A. J. Hanson and P. A. Heng. Four-dimensional views of 3D
scalar fields. InProceedings of Visualization ’92, pages 84–
91. IEEE Computer Society Press, 1992.

[8] A. J. Hanson and P. A. Heng. Illuminating the fourth dimen-
sion.Computer Graphics and Applications, 12(4):54–62, July
1992.

[9] A. J. Hanson, P. A. Heng, and B. C. Kaplan. Techniques for
visualizing Fermat’s last theorem: A case study. InProceed-
ings of Visualization 90, pages 97–106, San Francisco, Octo-
ber 1990. IEEE Computer Society Press.

[10] A. J. Hanson, P. A. Heng, and B. C. Kaplan. Visualizing Fer-
mat’s last theorem.SIGGRAPH Video Review, 61(4), 1990.
3:37 minute video animation.

[11] A. J. Hanson and H. Ma. Quaternion frame approach
to streamline visualization. IEEE Trans. on Visualiz. and
Comp. Graphics, 1(2):164–174, June 1995.

[12] A. J. Hanson and H. Ma. Space walking. InProceedings
of Visualization ’95, pages 126–133. IEEE Computer Society
Press, 1995.

[13] A. J. Hanson and E. Wernert. Constrained 3D navigation with
2D controllers. InProceedings of Visualization ’97, pages
175–182. IEEE Computer Society Press, 1997.

[14] A.J. Hanson. A construction for computer visualization
of certain complex curves.Notices of the Amer.Math.Soc.,
41(9):1156–1163, November/December 1994.

[15] Andrew J. Hanson. knotˆ4 . Video animation of knotted
spheres in four dimensions. Published in Siggraph Video Re-
view 93, Scene 1 (1993).

[16] D. Hilbert and S. Cohn-Vossen.Geometry and the Imagina-
tion. Chelsea, New York, 1952.

[17] Mark Phillips, Silvio Levy, and Tamara Munzner. Geomview:
An interactive geometry viewer.Notices of the Amer. Math.
Society, 40(8):985–988, October 1993. Available by anony-
mous ftp from geom.umn.edu, The Geometry Center, Min-
neapolis MN.

[18] K. Shoemake. Animating rotation with quaternion curves. In
Computer Graphics, volume 19, pages 245–254, 1985. Pro-
ceedings of SIGGRAPH 1985.



Figure 3: 4D depth colored 4-torus Figure 4: Crosscap = 4D rotated Roman surface Figure 5: Steiner Roman surface

Figure 6: Twist-spun trefoil knot Figure 7:z1z2 = 1 Figure 8:z1(z2)2 = 1

Figure 9:N = 4 Fermat surface coded by 2D
complex phase transform

Figure 10: N = 4 Fermat surface with color
coded 4D depth

Figure 11:N = 3 Fermat surface withz1 = 0
andz2 = 0 complex planes

Figure 12: Quaternion Frenet frame of (2,3)
torus knot with color coded 4D depth

Figure 13: Selection of alternate quaternion tan-
gent frames for (2,3) torus knot

Figure 14: Quaternion manifold of allowed (2,3)
torus knot tangent frames


