
4D Backface Culling

To carry out 4D backface culling, first assume we are given three ordered, non-degenerate vectors within
each polyhedron, typically three edges computed from known vertex positions: ~a =~x1−~x0,~b =~x2−~x0, and
~c =~x3 −~x0. Then the 4-vector direction normal to the polyhedral face is the 4D cross-product

~n = det

∣∣∣∣∣∣∣∣
ax bx cx x̂
ay by cy ŷ
az bz cz ẑ
aw bw cw ŵ

∣∣∣∣∣∣∣∣ = nxx̂+nyŷ+nzẑ+nwŵ ,

normalized as usual to n̂ =~n/|~n|. Note that our convention requires that the cross-product of the x,y,z unit
vectors produces a vector in the positive w direction. The final step is to pick a 4D eye-point ~P, and to
remove from the rendering all polyhedral faces for which

(~P−~x0) · n̂ ≤ 0 ,

where~x0 is a representative point lying in the polyhedral face (see the Figure). We remark that the orientation
of a 4D, possibly nonconvex, polyhedron projected into the 3D screen can be checked in the 3D screen,
without needing the full calculation given above, using an exact analogy to the standard 2D-projection
check: ∑i=0,n−1 (uivi+1 −ui+1vi) > 0 where u and v are 2D coordinates of the projected polygon. We simply
add the signed 3D projected-tetrahedron volumes, equivalent to computing only the w-component of the
cross-product, yielding this test,

∑
i=0,n−1

det
∣∣ ~ui ~ui+1 ~ui+2

∣∣ > 0 ,

where the ~ui are the projected vertex coordinates of the polyhedron in the 3D image. The result for a typical
example such as the hypercube is that half or more of the polyhedra that would appear in a wire-frame ren-
dering disappear in any given culled rendering, reappearing in an appropriate sequence when 4D rotations
are applied to the object. That is, just as only 1, 2, or 3 square faces of a 3D die can be seen simulta-
neously, but never more, only 1, 2, 3, or 4 cubic faces of a 4D die can be seen simultaneously, but never more.

Green arrows are forward-facing normals. Left: 3D Back-face culling. Right: 4D Back-face culling.

1

