Details of the 4D Rolling Ball

The 4D Rolling Ball matrix is a generalization of the 3D Rolling Ball matrix, and it takes the form:

Here we take $\overrightarrow{\mathbf{dx}} = (dx, dy, dz)$, with $r = |\overrightarrow{\mathbf{dx}}|$, as the fundamental control vector, and $c = \cos \theta$, $s = \sin \theta$ with $\theta = \arctan(r/R)$ for some scale *R*. From these we define the normalized control vector $\hat{n} = (n_x, n_y, n_z) = \overrightarrow{\mathbf{dx}}/r$. An exercise for the reader is to verify that this formula, with $\hat{n} = (\cos a, \sin a \cos b, \sin a \sin b)$, can be derived from a sequence of 4D-plane rotations of the form

 $R_{\text{4Droll}} = R(b, yz) \cdot R(a, xy) \cdot R(\theta, wx) \cdot R^{-1}(a, xy) \cdot R^{-1}(b, yz) .$