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Optimal percolation concerns the identification of the minimum-cost strategy for the destruction of any
extensive connected components in a network. Solutions of such a dismantling problem are important for the
design of optimal strategies of disease containment based either on immunization or social distancing. Depending
on the specific variant of the problem considered, network dismantling is performed via the removal of nodes
or edges, and different cost functions are associated to the removal of these microscopic elements. In this
paper, we show that network representations in geometric space can be used to solve several variants of the
network dismantling problem in a coherent fashion. Once a network is embedded, dismantling is implemented
using intuitive geometric strategies. We demonstrate that the approach well suits both Euclidean and hyperbolic
network embeddings. Our systematic analysis on synthetic and real networks demonstrates that the performance
of embedding-aided techniques is comparable to, if not better than, the one of the best dismantling algorithms
currently available on the market.
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I. INTRODUCTION

Percolation theory aims at describing how the macroscopic
connectedness of a network is affected by the removal of some
of its microscopic elements [1]. Percolation is among the most
studied topics in statistical physics, especially for its relevance
in the study of properties of materials, e.g., conductivity and
porosity [2]. Since the advent of network science, the number
of applications of percolation theory to real-world problems
has constantly grown, and the literature on the topic has liter-
ally exploded [3,4].

In network science, the primary application of percolation
theory is the study of the robustness of networks. The ra-
tionale is quite intuitive. Being part of the same connected
component is a necessary condition for two nodes to interact,
thus, large-scale connectedness represents a proxy for overall
network function [5]. Percolation allows the quantification of
the extent of damage that a network can tolerate before it is no
longer able to guarantee such a condition. Percolation theory
is useful not only to establish network robustness, but also
in other contexts [4]. For example, the long-term behavior of
some epidemic processes is well predicted using the percola-
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tion framework [6,7], and strategies for disease containment
can be mapped to percolation problems [8].

Percolation models assume the presence of an underly-
ing network where either nodes (site percolation) or edges
(bond percolation) are removed according to some prescribed
protocol [9]. Nearest-neighbor nondeleted elements form
connected components or clusters. The size of the clusters
determines the regime of the network: (i) If only nonextensive
clusters are present, then the network is in the nonpercolating
regime; (ii) if a giant connected component (GCC) spans a
finite fraction of the network, then the system is in the perco-
lating regime.

Different deletion protocols may be considered, each defin-
ing a different percolation model with relevance for a specific
problem at hand. In the classical or ordinary model, individ-
ual elements are deleted randomly with uniform probability
[9–11]. Real, heterogeneous networks display great robust-
ness under this deletion protocol, as most of their elements
should be removed before large-scale connectedness is lost.
In targeted attacks, the protocol prescribes elements to be
removed on the basis of network centrality metrics [10,12,13].
In the context of site percolation, the model shows that het-
erogeneous networks, whose connectedness heavily relies on
hubs, can be quickly dismantled by the removal of a small
portion of their most central nodes.

The spirit of the model for targeted attacks is extremized
in the so-called optimal percolation problem which consists
in determining the minimum-cost deletion protocol able to
bring the network into the nonpercolating regime [14]. The
problem was originally formulated for site percolation with
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unit cost of removal, and later generalized to bond percolation
[15] and to arbitrary cost functions associated to the removal
of microscopic elements [16]. Finding the exact solution to the
optimization problem requires testing all possible bipartitions
of the microscopic elements of the network in two different
sets of structural and nonstructural elements. Elements in the
structural set are those that, if removed from the network,
should fragment the system in nonextensive components. The
number of possible bipartitions grows exponentially with the
network size, thus, the optimization problem is exactly solv-
able for very small systems only. Good approximate solutions
can be achieved via simulated annealing (SA) optimization
[17]. However, the SA algorithm is not scalable.

Existing algorithms able to approximate the solution of the
problem in an efficient and effective way are based on rather
different strategies. Many methods make use of a generic pro-
cedure where structural sets are constructed sequentially by
adding one element at a time, and those elements are chosen
on the basis of some ad hoc network metric that is updated
during the construction of the structural set. Methods of this
class are based on collective influence [14,18], betweenness
centrality [19], nonbacktracking centrality [17], explosive im-
munization [20], core high degree [21], and articulation points
[22], just to mention a few of them. Another class of recent
approaches takes advantage of machine-learning methods to
perform dismantling [23,24]. Machines are trained on a huge
number of small synthetic networks where the ground-truth
solution of the dismantling problem can be obtained via brute-
force search; these machines are then used efficiently and
effectively to dismantle large-scale real networks. Finally,
some methods existing on the market rely on graph embed-
ding. In Refs. [15,16], for example, nodes are mapped into a
one-dimensional space where their coordinates are given by
the components of the first nontrivial eigenvector of specifi-
cally designed Laplacian operators. In Ref. [25] instead, the
map is determined by the community structure of the net-
work, so that nodes are embedded in a space that is not
geometric. Specifically, in this space nodes are represented
by their degree and their community memberships. In such
a discrete nongeometric space, there is no immediate notion
of a distance. Once the network is embedded in space, then
a deletion protocol based on the map is used to construct a
solution of the optimal percolation problem.

Many of the above algorithms focus on the simplest for-
mulation of the problem where dismantling is performed by
removing nodes, and the cost of removal is equal to the
size of the structural set. Other variants of the problem are
considered sporadically. For example, Ref. [15] studies the
bond-percolation version of the problem. Other important
variants of the problem are those considered by Bellingeri
et al. who study optimal site percolation on weighted networks
[26], and by Lokhov et al. who focus on optimal strategies of
immunization for spreading processes [27].

In this paper, we leverage embedding of networks in ge-
ometric space to perform efficient network dismantling. We
show that the same type of methodology can be used for
both Euclidean and hyperbolic embeddings. Furthermore, we
demonstrate that the same embedding can be fruitfully used to
provide effective solutions to various variants of the optimal
percolation problem based on the removal of nodes or edges,

and constrained by different cost functions. We systematically
apply the proposed methods on a corpus of 50 real-world net-
works. Despite their simplicity, we find that the performance
of embedding-aided dismantling algorithms is comparable to
the one of the best methods existing on the market. Further, we
apply the methods to synthetic graphs generated according to
the H2 model [28] and the Lancichinetti-Fortunato-Radicchi
model [29]. Both these models generate networks that are
embedded in an underlying space; moreover, they are char-
acterized by parameters that allow to tune the strength of the
relationship between network structure and imposed embed-
ding. In general, we find that the gap of performance between
embedding-aided methods and other dismantling algorithms
grows as the correlation between topology and embedding
increases. A proxy to quantify this correlation is the aver-
age clustering in a network. Specifically, the stronger is the
average clustering in a network, the stronger is the correla-
tion between its topology and its embedding, in the sense
that nodes closer in the embedding have higher chances of
being connected in the observed network [28,30,31]. An-
other coarse-grained measure to quantify this correlation is
the strength of the community structure in a network. The
stronger the community structure of a network is, the stronger
the correlation between its topology and its embedding is [32].
Performances of the various methods become comparable
when such a relationship is weak.

II. RESULTS

A. Geometric approach to network dismantling

The problem we consider in this paper is the identification
of the minimum-cost strategy for the destruction of any ex-
tensive connected component in unweighted and undirected
networks (see Sec. IV for a formal definition). The destruc-
tion is performed by the removal of microscopic elements,
either nodes (site percolation) or edges (bond percolation).
The optimization problem is constrained by the cost func-
tion F (S ), which quantifies the cost associated with the
removal of the elements of an arbitrary set S . We consider
the unit-cost function for both bond and site percolation,
and the degree-cost function for the site-percolation problem
only.

Exact solutions to the above problem are not feasible due
to the exponentially growing number of possible sets that
must be considered as possible solutions to the problem.
Approximate solutions are obtained via so-called dismantling
algorithms. Assuming that there are T total microscopic ele-
ments that can be removed from the network, the output of a
dismantling algorithm is the sequence of sets S̃0, S̃1, . . . , S̃T ,
with S̃t−1 ⊂ S̃t for all t = 1, . . . , T . The sequence of sets S̃t

indicates how to dismantle the network. Clearly, this sequence
represents only an approximation of the ground-truth solution
of the dismantling problem.

In this paper, we introduce a family of dismantling algo-
rithms based on network embedding. The input network is
first embedded in geometric space, meaning that each node
i of the graph is mapped to a point �vi in an underlying d-
dimensional vector space. The map is used to iteratively create
network bipartitions, and the sets S̃t are constructed by adding
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FIG. 1. Network dismantling aided by hyperbolic embedding. (a) Relative size of the giant connected component (GCC) as a function of
the relative cost of removal. We consider the case of unit-cost site percolation, thus, the x-axis values represent the fraction of nodes removed in
the network. Nodes are removed according to the dismantling algorithm that leverages hyperbolic embedding. The network under consideration
is the U.S. air transportation network of Ref. [36]. A point on the curve denotes an iteration of the algorithm; the curve between two points is
obtained by randomly sorting nodes deleted at a given iteration (see Sec. IV for details). (b)–(f) Illustrate the basic mechanisms of the algorithm
and refer to the first three stages of the algorithm. (b) The network is first embedded in hyperbolic space. (c) The hyperbolic disk is sliced in
two parts, cyan nodes are identified as the nodes to be inserted in the structural set. (d)–(f) In the following stages, the above steps are iterated.
Specifically, the coordinates of the nodes of the first cluster (d) are used to find other nodes to be inserted in the structural set (e). The same
procedure is applied independently to the nodes belonging to the other cluster identified at the first stage of the algorithm (f). In (c) and (e),
we display only nodes that are affected by the cutting procedure (i.e., they lose at least an edge). In (d) and (f), we show the giant connected
components of the corresponding clusters.

blocks of intercluster elements identified at each iteration (see
Sec. IV for details).

The above recipe, introduced by Ren et al., involves the
embedding of the graph in one-dimensional space using
graph Laplacian operators [15,16]. Specifically, the sign of
the components of the eigenvector associated to the second
smallest eigenvalue of Laplacian-type operators is used to
create bipartitions. Essentially, the dismantling of the network
is approached by solving small-scale minimum-cut problems.

The same idea can be generalized to any type of embedding
that captures structural similarity among nodes in the graph.
Community structure is a way of performing such a task
with a nonmetric embedding; community structure has been
exploited in the context of network dismantling in Ref. [25].
In this paper, we consider embeddings in vector spaces, ei-
ther hyperbolic or Euclidean spaces. We employ two popular
embedding methods, namely, Mercator for hyperbolic embed-
ding [33,34] and node2vec for Euclidean embedding [35].
The motivation for going beyond already existing embedding-
aided dismantling algorithms is twofold. First, we believe
that the high dimensionality of the embedding space should
allow us to capture additional features compared to the one-
dimensional Laplacian embedding. Second, we believe that
the geometric nature of the embedding space should allow us
to obtain a more nuanced definition of clusters compared to
community-structure embeddings.

In Fig. 1(a), we show an example of the application of the
hyperbolic-embedding-aided dismantling algorithm to solve
the optimal site-percolation problem with unit cost on the
U.S. air transportation network of Ref. [36]. A technical de-
scription of the algorithm is provided in Sec. IV. Here, we
just describe it in simple terms to give an intuition of how
the method works. First, we embed the network in hyperbolic
space, as shown in Fig. 1(b). Then, we split the network in
two clusters by slicing the hyperbolic disk in two parts. Each
slice of the disk contains the same number of nodes. This
specific choice is inspired by the minimum bisection problem,
where the goal is to partition the vertices of an input graph into
two equal-size sets, such that the number of edges connecting
the two sets is as small as possible [37]. We note that the
stronger the clustering or community structure in a network,
the less probable longer-range connections are in its hyper-
bolic embedding [28,30], and the smaller the expected number
of links connecting nodes belonging in different slices. There-
fore, since real networks are characterized by both strong
clustering and community structure [38], this approach is
indeed well suited for our purpose. We also note that there
are potentially many ways to slice the disk, and some of them
lead to better solutions to the optimal percolation problem
than others. However, we do not observe huge variations in
performance depending on how the two slices of the disk are
obtained (see Figs. S1 and S2 in the Supplemental Material
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FIG. 2. Optimal percolation on the U.S. power grid. (a) Relative size of the giant connected component (GCC) as a function of the fraction
of removed nodes. Different curves correspond to solutions obtained via the various dismantling methods (see Table I for the definition of the
acronyms). Symbols present solutions to the problem of Eq. (2) obtained by the greedy postprocessing strategy started from the solution of a
given algorithm. The network considered here is the U.S. power grid [41]. (b) Same as in (a), but for the optimal site-percolation problem with
degree cost. (c) Same as in (a), but for optimal bond percolation with unit cost.

[39]). The actual separation in clusters of the two slices is
achieved by removing the smallest number of nodes that lead
to such a separation, highlighted in cyan in Fig. 1(c). Note
that finding the minimum number of nodes to be removed in
order to disconnect the two clusters is an NP-hard problem
known in the literature as minimum vertex cover problem.
Here, we rely on the approximate algorithm developed by Ren
et al. [16]. Removed nodes are added in random order to the
structural set to reduce the size of the GCC [see Fig. 1(a)].
We then apply the same operation to each of the resulting
clusters [see Figs. 1(d)–1(f)]. We do not need to reembed the
clusters, rather, we can simply reuse the known coordinates
of the remaining nodes to cut in half the corresponding slices
in the hyperbolic disk, and then remove the minimal number
of nodes to split each slice in two disconnected clusters. The
entire procedure is iterated over and over, until the network is
fully dismantled.

The same exact principle can be easily extended to deal
with a different embedding. For Euclidean embeddings such
as those created by node2vec, for example, the k-means al-
gorithm [40] with k = 2 is used to determine the bipartitions
required by the dismantling protocol (see Sec. IV for details).

As described in Sec. IV, dismantling the network requires
a time that grows slightly more than linearly with the network
size. This is achieved by dividing each cluster into slices of
equal size so that the maximal number of iterations of the
algorithm grows as the logarithm of the network size. The
dismantling recipe, however, assumes that the embedding of
the network is given, but such an operation may require a
number of computations that grows superlinearly with the
network size, thus dominating the actual time complexity
of the entire dismantling procedure. This is the case of the
hyperbolic-embedding-aided dismantling method where the
embedding algorithm requires a time that scales as the square
of the network size. Node2vec instead requires a time that
grows linearly with the system size, thus, the resulting dis-
mantling algorithm scales quasilinearly with the network size.

The above geometric method is easily adapted to any vari-
ant of the network dismantling problem. For example, the
bond-percolation version is obtained by splitting clusters via

link removal instead of node removal. Details of the various
algorithms are provided in Sec. IV.

B. Performance of geometric dismantling

We compare the performance of our proposed algo-
rithms against those of well-established baselines and top-
performing state-of-the-art algorithms (see Table I and Sec. IV
for details). A specific example is displayed in Fig. 2. There,
various dismantling algorithms are applied to the network
representing the topology of the U.S. power grid [41]. In
the figure, we display how the relative size of the GCC de-
creases as a function of the cost associated to the removal
of microscopic elements from the network. The quicker the
decrease is, the better the approximate solution of the specific
algorithm at hand is. The area under the percolation curve
is named as robustness and is generally used as a metric of

TABLE I. Network dismantling algorithms.We list here all algo-
rithms devised to approximate solutions to the optimal percolation
problem that we consider in this paper. Methods are grouped
into three main classes: (i) Baseline, (ii) centrality-based, and (iii)
embedding-aided dismantling methods. A detailed description of
each algorithm is reported in Sec. IV. For each algorithm, we report
the name, and the abbreviation as used in this paper.

Group Name Abbrev.

Baseline Random percolation RND
Simulated annealing SA

Centrality High degree adaptive HDA
Collective influence CI

Nonbacktracking NBT
Core high degree COREHD

MIN-SUM decycling MIN-SUM
Explosive percolation EP

Embedding Laplacian LE
Hyperbolic HYP
Node2vec N2V
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FIG. 3. Optimal percolation on the protein-protein interaction network. Same as in Fig. 2, but for the protein-protein interaction network
of Ref. [42].

performance for dismantling algorithms [43] [see Eq. (4)].
We denote the robustness metric as R. As expected, all al-
gorithms produce approximate solutions that are better than
those obtained via random removal (RND). The hyperbolic-
embedding-aided dismantling (HYP) outperforms the other
algorithms in the three variants of the dismantling problem;
the least-performing algorithm is the one based on adaptive
degree centrality (HDA).

As an additional metric of performance, we also consider
the cost function of the structural set required to decrease the
size of the GCC below the square root of the network size
[see Eq. (2)]. This specific threshold value is just a convention
used to determine whether all connected components are not
extensive [20]. We refer to this metric as the dismantling cost
of the network, and denote it as qc.

Solutions of the various algorithms can be further im-
proved by a greedy postprocessing technique (see Sec. IV
for details). The technique was introduced in Ref. [17] for
the case of unit-cost site percolation. Here, we generalize it
to the various variants of the optimal percolation problem.
The technique basically consists in removing from the struc-
tural set all unnecessary elements, i.e., those elements that
if removed from the set do not lead to the emergence of an
extensive GCC. In Fig. 2, we display solutions that have been
improved with this technique as single points denoting the
value of the dismantling cost that is reached after greedy op-
timization. All solutions become similar after being greedily
optimized, displaying performance that is bounded by RND
and simulated annealing (SA) optimization. Please note that
the greedy postprocessing just minimizes the dismantling cost
of the network. The technique is not designed to speed up
the actual dismantling, thus, it does not necessarily reduce the
value of the robustness metric.

The curves displayed in Fig. 2 indicate that, before the
application of the greedy optimization step, there are varia-
tions in performance depending on the specific algorithm and
the specific variant of the percolation problem considered.
Variability in performance also depends on the specific type of
network considered. In Fig. 3, we repeat the same analysis as
in Fig. 2, but on a protein-protein interaction network [42]. An
apparent change in relative performance among the various
methods is visible. For example, the node2vec-embedding-
aided method (N2V) is the least-performing method in the

site-percolation problem with unit cost [Fig. 3(a)], while it
was among the best in dismantling the U.S. power grid net-
work [Fig. 2(a)].

C. Systematic analysis of real-world networks

We perform a systematic analysis on a corpus of 50 real-
world networks. For each network, we consider the three
variants of the optimal percolation problem (i.e., bond per-
colation with unit cost, site percolation with unit cost, and
site percolation with degree cost), we apply each of the dis-
mantling algorithms considered in this analysis, and measure
the performance in terms of the relative dismantling cost qc

of Eq. (3) and the robustness metric R of Eq. (4). Detailed
results are reported in the Supplemental Material [39], and
summarized in Figs. 4, S3 and S4 [39], and in Table II.
Embedding-aided algorithms display performance compara-
ble to the one of the other well-established methods for
network dismantling in all variants of the problem. Notably,
the methods based on Laplacian embeddings (LE) and N2V
excel in all tasks.

The solution of each method is refined using the greedy
postprocessing strategy introduced in Ref. [17]. Whereas the
ranking of the various methods based on performance is not
much affected by the postprocessing technique, the gap in
performance between the various methods is narrowed. Es-
sentially, greedy postprocessing leads to almost equivalent
solutions irrespective of the starting structural set generated by
a given method. The only clear exception is RND, which still
displays a clear gap with respect to the other methods in spite
of the application of the greedy postprocessing step. Also,
we remark that the greedy postprocessing technique always
reduces the dismantling cost of the set of structural elements
identified by an algorithm. However, such an improvement in
the metric is generally accompanied by a loss of performance
in terms of robustness (see Fig. S5 [39] for example). The
effect is systematic in all variants of the percolation problem,
except for site percolation with unit cost.

D. Systematic analysis of synthetic networks

We conclude our analysis by studying the performance
of the various dismantling methods on synthetic networks
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TABLE II. Optimal percolation in real-world networks. For each dismantling method, we report the average value across the corpus of
50 real-world networks of the dismantling cost qc [Eq. (3)] and the robustness metric R [Eq. (4)]. We separate results depending on the
specific variant of the optimal percolation problem considered. Also, we report results valid before and after the application of the greedy
postprocessing strategy. Data for optimal bond percolation, optimal site percolation with unit cost, and optimal site percolation with the degree
cost are the same as in Figs. 4 and S3 and S4 [39], respectively. Performance values of the top two performing methods for each category are
highlighted with bold fonts. Visualized values are rounded to two significant digits, but comparisons are performed before rounding.

Bond Site (unit cost) Site (degree cost)

Regular Greedy Regular Greedy Regular Greedy

Method qc R qc R qc R qc R qc R qc R

CI – – – – 0.18 0.12 0.14 0.90 0.80 0.55 0.75 0.51
COREHD 0.67 0.63 0.57 0.55 0.15 0.10 0.13 0.09 0.78 0.61 0.74 0.54
EP 0.61 0.38 0.60 0.58 0.14 0.10 0.13 0.09 0.76 0.56 0.74 0.55
HDA 0.69 0.65 0.57 0.55 0.15 0.09 0.13 0.09 0.80 0.61 0.75 0.54
HYP 0.60 0.25 0.55 0.52 0.19 0.09 0.13 0.09 0.79 0.43 0.71 0.49
LE 0.54 0.22 0.53 0.50 0.16 0.09 0.13 0.09 0.83 0.36 0.72 0.46
MIN-SUM – – – – 0.13 0.10 0.13 0.09 0.74 0.58 0.74 0.55
N2V 0.59 0.22 0.55 0.50 0.20 0.09 0.14 0.09 0.78 0.40 0.71 0.48
NBT 0.64 0.58 0.56 0.54 – – – – – – – –
RND 0.92 0.66 0.66 0.56 0.59 0.31 0.17 0.11 0.92 0.54 0.74 0.50

generated according to the hyperbolic H2 model [28,44] and
the Lancichinetti-Fortunato-Radicchi (LFR) model [29]. The
use of these models is motivated by their ability to repro-
duce topological properties that resemble the ones observed
in real-world networks, as for example heterogeneous de-
gree distribution, high clustering, and modular structure. Also,
these models generate networks that are naturally embedded

FIG. 4. Optimal bond percolation in real-world networks. (a) Cu-
mulative distribution function of the relative dismantling cost of the
various algorithms in the solution of the optimal bond percolation
with unit cost. The distribution is evaluated on a corpus of 50 real-
world networks. The dismantling cost is defined in Eq. (3). (b) Same
as in (a), but for the robustness metric [see Eq. (4)]. (c), (d) Same
as in (a) and (b), respectively, but for solutions obtained after the
application of the greedy postprocessing technique.

in some underlying space, either geometric or not, thus allow-
ing us to verify how important this property is for the actual
performance of the various dismantling methods.

Some results are reported in Fig. 5; full results are instead
displayed in Figs. S6– S11 [39]. For bond percolation with
unit cost, the main outcome of our analysis is twofold. First,
the performance of all methods decreases as the relationship
between network topology and imposed embedding weak-
ens. This fact can be clearly appreciated for the H2 model
by monitoring how performance varies with the temperature
parameter, and for the LFR model by monitoring how per-
formance changes as a function of the mixing parameter.
We recall that for the H2 model, the higher the tempera-
ture the weaker is the dependence between the probability
of connection of two nodes and their hyperbolic coordinates,
and the lower is the clustering in the network. For the LFR
model, topology and embedding are less correlated the higher
is the mixing parameter, which corresponds to a weaker
community structure in the network. Second, embedding-
aided dismantling methods outperform the other methods. The
above considerations are valid either if performance is mea-
sured in terms of dismantling cost or robustness. The gap in
performance between centrality-based and embedding-aided
methods is not filled even if greedy postprocessing is applied
to the structural sets. For the LFR model, the gap is still
present even for large values of the mixing parameter, when
generated networks display weak community structure and are
almost equivalent to standard realizations of the configuration
model [45]. Similar considerations are valid also for the H2

model in the high-temperature regime. Here, the correlation
between topology and imposed embedding is so weak that the
generated networks are basically indistinguishable from those
obtainable via the configuration model. Still, in this regime,
embedding-aided methods outperform the other dismantling
algorithms.

For site percolation with unit or degree cost of removal,
we find that centrality-based methods outperform embedded-
aided methods. The gap in performance, however, disappears
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FIG. 5. Optimal bond percolation in synthetic networks. (a) We apply the various dismantling methods to instances of the H2 model with
N = 214 nodes (see Sec. IV for details). The degree distribution is a power law with exponent γ = 2.2. We construct networks for different
values of the temperature parameter of the model, and measure the robustness metric defined in Eq. (4). Each point is an average over 100
different instances of the H2 model. (b) Same as in (a), but for γ = 2.6. (c) Same as in (a), but for γ = 3.5. (d) We apply the various
dismantling methods to instances of the Lancichinetti-Fortunato-Radicchi (LFR) model with N = 214 nodes (see Sec. IV for details). The
degree distribution is a power law with exponent γ = 2.2. We measure the robustness metric as a function of the mixing parameter of the LFR
model. (e) Same as in (d), but for γ = 2.6. (f) Same as in (d), but for γ = 3.5.

once the greedy postprocessing technique is applied to the
structural sets found by the various methods.

We remark that the job of HYP on H2 networks is facili-
tated by the fact that no embedding is actually learned from
the topology, rather, ground-truth coordinates of the nodes in
the hyperbolic space are used to dismantle the network.

III. CONCLUSIONS

The results of this paper clearly show that embedding a
network in geometric space can be used to design simple but
effective algorithms to dismantle it. Such geometric disman-
tling techniques are rather general. They can be adapted to
various types of embeddings, and they appear useful in solv-
ing different variants of the optimal percolation problem. The
proposed techniques are also computationally efficient. Once
the network is embedded, dismantling is performed in a time
that grows slightly superlinearly with the network size. How-
ever, it is important to keep in mind that embedding a network
may require a time that grows more than linearly with the
system size. For example, embedding a network in the hyper-
bolic space generally requires a time that grows quadratically
with the network size [34]; obtaining a map of the network
in Euclidean space with node2vec requires instead a time that
grows linearly with the network size [35]. The performance

of embedding-aided dismantling methods is comparable to
the one achieved by other methods existing in the market
that are based on different heuristics. The general message is
that embedding-aided algorithms excel in bond percolation,
whereas they are outperformed by centrality-based methods
in site percolation. Eventual gaps in performance between
the various dismantling methods can be filled by applying
the greedy postprocessing technique originally proposed in
Ref. [17] for site percolation, and here generalized to the
other variants of the optimal percolation problem. In essence,
optimal performance can be achieved by first applying a suf-
ficiently effective method to dismantle a network, and then
reducing the cost of the structural set identified by the algo-
rithm via greedy optimization.

Due to the similarity in performance between the various
algorithms, the use of a computationally efficient method such
as node2vec may be naively preferred over other methods to
perform the embedding necessary to geometrically dismantle
a network. We stress, however, that computational time is not
the only important aspect to consider here. Hyperbolic maps
consist of only two coordinates per node, making them partic-
ularly suited to provide meaning and intuitive visualizations.
The same consideration does not apply to Euclidean embed-
dings which instead are generally performed for much larger
values of the space dimension. Also, popular methods that
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perform Euclidean embedding often require the calibration
of several parameters; this procedure is much less expensive,
if not totally absent, in algorithms that embed networks in
hyperbolic space.

IV. METHODS

A. Optimal percolation problem

We consider an undirected and unweighted network with
N nodes. Pairwise interactions among nodes are encoded in
the symmetric adjacency matrix A. If an edge exists between
nodes i and j, then Ai j = 1; Ai j = 0 otherwise.

Large-scale connectedness of the network is quantified
in terms of the fraction of nodes that belong to the giant
connected component (GCC) of the network as P∞ = NGCC

N ,
where NGCC is the number of nodes in the largest connected
component of the network. We indicate with T the set of all
microscopic elements, either nodes or edges, of the network;
the size of the GCC can be reduced by removing from the
network elements belonging to a subset S ⊆ T . We refer to
the subset S as the structural subset of the network, and to
the elements within the set S as the structural elements of the
network. Without loss of generality, we assume that, when all
microscopic elements are present, the network is composed
of a single connected component. In other words, if the set of
structural elements is empty, i.e., S = ∅, then P∞(∅) = 1. The
removal of microscopic elements from a nonempty set S from
the network causes a reduction of the GCC, i.e., P∞(S ) � 1.
Clearly, the removal of all microscopic elements leads to the
smallest size of the GCC, i.e., P∞(T ) = 0 for site percolation
and P∞(T ) = 1/N for bond percolation.

Optimal percolation can be seen as the constrained mini-
mization problem

S∗(C) = arg min
S|F (S )=C

P∞(S ). (1)

The constraint is imposed on the value of the cost function
F (S ) of removing elements of the set S from the network.
In the original formulation of the problem by Morone and
Makse, the cost associated to the set S is identical to the
size of the set, i.e., F (S ) = |S| [14]. However, an arbitrary
cost can be associated to the set in the so-called generalized
dismantling problem framed by Ren et al. [16]. To be a
meaningful cost function, we only require that F (S ) � 0 for
all sets S , and F (S ∪ {s}) � F (S ) for every set S and any
microscopic network element s. It is also natural to assume
that F (∅) = 0.

In this paper, we consider three main formulations of the
optimal percolation problem: (i) Unit-cost optimal site per-
colation, (ii) optimal site percolation with degree cost, and
(iii) unit-cost optimal bond percolation. In formulations (i)
and (ii), network dismantling is performed via the removal
of nodes; in (iii), network dismantling is performed via the
removal of edges. In the unit-cost version of the problem,
the cost function associated to the set S equals its size, i.e.,
F (S ) = |S|. The degree-cost function of variant (ii) is defined
as F (S ) = ∑

s∈S ks − ∑
s,t∈S Ast , where ks is the degree of

node s, the sums run over all nodes in the set S , and edges
shared by nodes within the set S are counted only once.

An important aspect in the characterization of the opti-
mization problem is the identification of the minimum-cost
set able to lead to the disappearance of a macroscopic GCC
[14]. Such a condition is defined in the problem

Sc = arg min
S|P∞(S )�1/

√
N

F (S ). (2)

Essentially, only sets S that are able to reduce P∞ below the
conventional threshold value 1/

√
N are considered as poten-

tial solutions to the problem [20].

B. Approximate solutions of the optimal percolation problem

The optimal percolation problem of Eq. (1) is NP hard [14].
For example, in the optimal site percolation with unit cost, the
exact solution of the problem requires to test all possible

( N
|S|

)

sets that can be composed by choosing |S| nodes out of the N
total nodes in the network.

Exact solutions of the optimization problem can be ob-
tained only for extremely small networks. However, many
algorithms able to approximate solutions to the optimal perco-
lation problem have been proposed. Some of these algorithms
are described below. Without loss of generality, we indicate
with S̃∗ an approximate solution to the problem of Eq. (1)
obtained by a generic algorithm. Similarly, we use the nota-
tion S̃c to denote an approximate solution to the problem of
Eq. (2).

Many optimization algorithms construct approximate so-
lutions to the optimal percolation problem sequentially,
meaning that the set corresponding to the proposed solution is
built by adding one element at a time. We indicate with S̃t the
approximate solution of a generic sequential algorithm when
the set is composed of exactly t elements, i.e., |S̃t | = t . If there
are T total microscopic elements in the network, i.e., |T | =
T , the sequential algorithm generates T + 1 total sets, i.e.,
S̃0, S̃1, . . . , S̃T , with S̃t−1 ⊂ S̃t for all t = 1, . . . , T . By defi-
nition, S̃0 = ∅ and S̃T = T . We clearly have that P∞(S̃t−1) �
P∞(S̃t ) and F (S̃t ) � F (S̃t−1) for all t = 1, . . . , T . Note that
at stage t , the GCC of the network is evaluated by removing
all elements in the set S̃t−1, and only nodes that belong to
the current GCC are considered as possible candidates to be
added to the structural set S̃t .

C. Evaluating approximate solutions of the optimal
percolation problem

A possible metric to evaluate the performance of an
approximate algorithm to solve the problem of Eq. (2) is im-
mediately given by the value of the cost function F (S̃c), with
S̃c being the approximate solution provided by the algorithm.
Low F (S̃c) values indicate a good ability of the algorithm in
finding solutions of the optimal percolation problem. Specifi-
cally, to make the metric comparable across networks and/or
variants of the optimal percolation problem, we define the
dismantling cost as

qc = F (S̃c)

F (T )
. (3)

Here, F (T ) is the cost associated to the removal of all ele-
ments from the graph.
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If the algorithm under scrutiny works sequentially by
adding to the set of its proposed solution one element at a time,
then the quality of the approximate solution of the algorithm
can be also quantified by

R = 1

F (T )

T∑

t=1

P∞(S̃t ) [F (S̃t ) − F (S̃t−1)]. (4)

R is a generalization of the the so-called robustness metric
introduced by Schneider et al. [43]. By definition 0 � R � 1.
Low values of R are associated to good performance of the
dismantling protocol; large values of R indicate instead poor
performance of the dismantling algorithm. The sum appearing
in the definition of R is nothing more than the area under the
curve P∞(S̃t ) vs t . The area is properly rescaled depending
on the cost function associated to the dismantling problem.
Specifically, the contribution of the element added at the
t th stage of the sequential algorithm is proportional to its
cost, i.e., F (S̃t ) − F (S̃t−1), and to the GCC size obtained
from the removal of that set of elements from the network,
i.e., P∞(S̃t ). In the standard formulation of the optimal site-
percolation problem with unit cost of removal, we recover the
original formulation of the metric by Schneider et al., i.e.,
R = 1

N

∑N
t=1 P∞(S̃t ) [43]. For computational reasons, in our

analysis, we approximate R by summing only the first Tc con-
tributions such that P∞(S̃t ) � 1/

√
N for t = 0, . . . , Tc. We

are basically including only extensive GCCs; this represents
a very good approximation for Eq. (4).

D. Algorithms to approximate solutions to the optimal
percolation problem

Many of the existing algorithms are designed to approx-
imate solutions of the optimal site-percolation problem with
unit cost of removal. We consider several of them in our
analysis. We apply these algorithms without modifications
also in the degree-cost version of the site-percolation problem.
Whenever possible, we generalize these algorithms to deal
also with the optimal bond-percolation problem with unit cost
of removal. We consider three main classes of algorithms,
namely, (i) baseline, (ii) centrality-based, and (iii) embedding-
aided algorithms.

1. Baseline dismantling algorithms

The two algorithms described below represent natural
terms of comparisons for generic dismantling algorithms.

Random percolation (RND). To generate a baseline solu-
tion to the optimal percolation problem, we order the elements
of the network randomly. These elements are added sequen-
tially to form the structural sets S̃t , for t = 0, . . . , T . RND
provides a lower bound of performance in the sense that any
dismantling algorithm should work at least as good as RND.

Simulated annealing (SA). The algorithm was first intro-
duced in Ref. [17] to deal with optimal site percolation with
unit cost. We generalize it to the other variants of the optimal
percolation problem. SA is used to find solutions of the prob-
lem of Eq. (2) only. The set S̃c is obtained by first defining
an energylike function, and then applying standard SA opti-
mization to minimize such a function. The energy function is
defined as E (S, ν) = ν × F (S ) + P∞(S ), i.e., the sum of the

cost F (S ) associated to the removal of the set S and the size of
P∞(S ) of the GCC that the set induces in the network. The two
terms compete one against the other, as the goal of the energy
minimization is to select a cheap set S which significantly
reduces the size of the GCC. The relative weight of the two
terms in the definition of the energy is controlled by the
parameter ν, which, depending on the type of dismantling, is
chosen in the interval ν ∈ [0.1, 1.5]. This definition is used for
all variants of the percolation problem. Basic moves in the SA
algorithm consist of adding or removing single microscopic
elements to or from the set S . SA provides an upper bound
of performance in the sense that we expect other dismantling
algorithms to provide solutions less optimal than SA.

2. Centrality-based dismantling algorithms

All dismantling algorithms belonging to this class con-
struct structural sets sequentially, meaning that nodes are
ranked according to some specific recipe and added one by
one to the structural set. Specifically, if r1, r2, . . . , re, . . . , rT

denote the labels of the ranked elements, then S̃t = ⋃t
e=1{re}.

High degree (HD). For site percolation, we rank nodes in
descending order based on the value of their degree centrality,
with eventual ties randomly broken. For bond percolation, we
assign to the edge (i, j) a centrality score σi j = ki k j

ki+k j
. Edges

are ranked on the basis of their σ scores in descending order,
and eventual ties are randomly broken. Adaptive versions of
the above algorithms are obtained by recomputing nodes’ de-
grees only over elements that are not yet part of the structural
set. These adaptive versions require a similar computational
time as their static counterparts. In our analysis, we use the
adaptive version of the algorithm, and refer to it as HDA [46].

Collective influence (CI). We use also the adaptive version
of the so-called collective influence (CI) centrality [14]. We
use the metric only to approximate solutions of the optimal
site-percolation problem. The metric extends HDA. For each
node i, one first computes the set ∂B(i, �) of all nodes that are
at exactly distance � from the focal node i; CI is then defined
as σi = (ki − 1)

∑
j∈∂B(i,�)(k j − 1). � is a tunable parameter.

For � = 0, the metric reduces to HDA. For � = 1, the score
reduces to σi = (ki − 1)

∑
j Ai j (k j − 1). CI can be computed

in a time that scales linearly with the network size [47]. In
our tests, we set � = 3 and 4. Results reported in the paper
correspond to the best-performing � value.

Nonbacktracking (NBT). In bond percolation, we rank
edges in descending order on the basis of their nonbacktrack-
ing centrality (NBT) scores. Ties are broken at random. The
scores are obtained by finding the principal eigenvector �v
of the nonbacktracking matrix of the graph [48]. The vector
contains two components for the edge (i, j), namely, vi→ j

and v j→i; we associate to the edge (i, j) the score σi j =
max{vi→ j, v j→i}. For site percolation, the NBT of node i is
computed as σi = ∑

j v j→i [49]; nodes are ranked in descend-
ing order on the basis of their NBT, with ties randomly broken.
NBT-based dismantling has been first considered in Ref. [17].
An adaptive version of NBT may be used too. Our results
correspond to the the adaptive version of NBT.

Core high degree (COREHD) and MIN-SUM decycling. For
site percolation, we use the approach proposed in Ref. [21]
consisting of two main steps. First, we compute the 2-core of
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the graph, i.e., the maximal connected subgraph in which all
vertices have degree at least equal to 2. Then all nodes in the
2-core are ranked on the basis of their degree centrality, and
added to the structural set in descending order. The result of
the removal of all nodes in the 2-core is a tree. The second step
of the recipe is a greedy algorithm able to optimally dismantle
such a tree [17]. The idea of dismantling a network by first
removing any cycle from it was proposed in Ref. [17]. There,
optimal decycling is performed using a MIN-SUM optimiza-
tion algorithm, consisting in a system of message-passing
equations that can be solved in linear time. Details are not in-
cluded here for sake of brevity. After decycling, the remaining
tree is dismantled using the method of Ref. [17]. We use the
MIN-SUM algorithm only in the site-percolation variants of
the problem. For bond percolation, we still use COREHD with
the only difference that we are allowed to remove links rather
than nodes. Namely, we consider only the links within the
2-core of the network with inclusive degree of its end nodes.
By inclusive we mean only nodes that belong to the 2-core
are considered in the computation of the degrees. Then, we
assign the score σi j = max{ki, k j} to the edge (i, j) and add
them to the structural set in descending order. We adaptively
remove links with highest score until the 2-core disappears
from the network. If the size of the GCC is still bigger than
a predefined threshold value, we complement COREHD with
HDA to dismantle the GCC below the predefined threshold.

Explosive percolation (EP). For bond percolation, we rely
on the EP algorithm proposed in Ref. [50], here briefly sum-
marized. At the beginning of the algorithm, all edges of the
network are considered not active and each node is part of
its own component. Edges are activated one by one. The
activation of one edge may lead to the merger of two clusters.
At the t th stage of the algorithm, the score of the edge (i, j) is
σi j = 1/(ci c j ), where ci is the size of the cluster which node
i belongs to. A maximum of M = 1000 edges are selected at
random among those still not active; the edge with maximum
score (ties are randomly broken) is activated, and the score
of all other edges is recomputed. The algorithm is iterated
until all edges are active. Solutions to the dismantling prob-
lem are obtained by reversing the order of activation of the
edges in the EP algorithm. For site percolation, we rely on
a very similar algorithm known in the literature as explosive
immunization (EI) [20].

3. Embedding-aided dismantling algorithms

We assume that the network is embedded in some geomet-
ric space. In the embedding, every node i is mapped to a point
�vi in the underlying space. The embedding is used to perform
iterative bisections of the network.

For bond percolation, we use the following procedure.
Indicate with Cz and Ez the total number of clusters and the
intercluster edges identified at stage z of the algorithm, re-
spectively. Tz is the size of the structural set at stage z, i.e.,
|S̃Tz | = Tz. The structural set is initialized to S̃0 = S̃T0 = ∅.
Without loss of generality, we assume that at stage z = 1, the
network is composed of one single cluster C1 = 1. At each
stage z of the algorithm, we follow these steps:

(1) We identify the largest cluster, say cz, among the Cz

available. We use the already available embedding (or we re-

calculate the embedding, depending on the specific algorithm)
of the nodes in this cluster to find a bipartition. The bipartition
of the cluster is obtained considering only elements that do not
belong to the set S̃Tz−1 . The operation allows us to find two new
clusters, thus, Cz+1 = Cz + 1 clusters.

(2) We identify all Ez edges connecting the two parts of
cluster cz determined at step 1. These are edges that stand
in-between the two clusters that will originate from cz but that
are not yet part of the structural set, i.e., e ∈ Ez → e /∈ S̃Tz−1 .

(3) We add all edges within Ez to the structural set in
random order. The structural set at this point is S̃Tz with size
Tz = ∑z

r=1 |Er |.
(4) We increase z → z + 1.
The algorithm is iterated until all edges are part of the

structural set.
In site percolation, the procedure is analogous. The main

difference is that the two clusters that are formed at each
iteration should be disconnected by removing nodes rather
than edges.

Laplacian embedding (LE). This embedding has been con-
sidered by Ren et al. in the context of the site-percolation
problem, and later generalized by some of the same authors
to bond percolation [15,16].

Nodes are embedded in a one-dimensional space, where
the position of node i is identified by the ith component of the
eigenvector corresponding to the second smallest eigenvalue
of the generalized Laplacian operator L = D − B. Here, the
i jth component of the matrix B is defined as Bi j = Ai j (ci +
c j − 1); ci is the cost of removal of node i, i.e., F ({i}) =
ci; D is the diagonal matrix whose ith diagonal element is
Dii = ∑

j Ai j . The bipartition of the network is obtained by
separating nodes on the basis of the sign of their components
in the eigenvector. The eigenvector is recomputed at each
stage of the dismantling algorithm. For bond percolation, the
same procedure as above is followed with the only caveat
that the embedding of nodes is performed using the standard
combinatorial Laplacian [15].

Hyperbolic embedding (HYP). Each node i is mapped to
a point �vi = (ri, θi ) in the hyperbolic disk. To perform the
embedding, we rely on the so-called Mercator method [34].
Mercator embeds networks with arbitrary degree distributions
via the maximization of the likelihood function

L =
∏

1� j<i�N

p(xi j )
Ai j [1 − p(xi j )]

1−Ai j ,

where the product goes over all node pairs i j in the network,
while p(xi j ) is the Fermi-Dirac connection probability given
by p(xi j ) = 1

1+e(xi j −R)/2G . Here, xi j = ri + r j + 2 ln (�θi j/2) is
approximately the hyperbolic distance [28] between nodes i
and j, �θi j = π − |π − |θi − θ j || is the angular (similarity)
distance, and R ∼ 2 ln N is the radius of the hyperbolic disk
where all nodes reside. The radial coordinate ri is related to
the observed node degree ki, as ri ∼ R − 2 ln ki and quantifies
node popularity [51]. The value of the temperature parameter
G for a given network is also inferred by Mercator. The max-
imization of the likelihood function leverages the Laplacian
eigenmaps approach of Ref. [52]. Hyperbolic coordinates are
estimated on the entire network topology. At each stage of
the dismantling algorithm, a bipartition is obtained by cutting

013076-10



EMBEDDING-AIDED NETWORK DISMANTLING PHYSICAL REVIEW RESEARCH 5, 013076 (2023)

in half the slice of the hyperbolic disk of the cluster under
consideration.

Node2vec embedding (N2V). Node2vec [35] is a network
embedding algorithm that builds on the word2vec algorithm
[53] by taking the following analogy: Nodes in the network
are considered as words; a sequence of nodes explored during
a biased random walk is considered as a sentence. Nodes
are embedded in the d-dimensional Euclidean space. The
embedding is dependent on various hyperparameters. We fix
the number of walks per node to 10, the number of iterations
to 10, and the parameters that bias the random walk toward
a breadth-first or depth-first walk both equal to 1. Results
of some tests reported in Fig. S12 [39] indicate that optimal
dismantling is achieved for large values of the embedding
dimension d , and medium values of the walk length l . We
therefore fix d = 2048 and l = 32 in our analysis.

The bipartition is obtained using a k-means algorithm with
k = 2 clusters [40]. Clusters are created on the basis of the
Euclidean distance between nodes in the space. We compute
the embedding only once, and then use the same map in all
stages of the dismantling algorithm.

Algorithmic complexity. The complexity of an embedding-
aided dismantling algorithm is approximately N log2 N on
sparse networks. This can be understood by thinking the it-
erative procedure as equivalent to the generation of a rooted
binary tree. The root of the tree is the input network. Inter-
mediate nodes are the clusters obtained during the iterative
dismantling algorithm. Leaves are individual nodes. The root
and the intermediate nodes have two offsprings corresponding
to the split of a cluster in two smaller clusters. The height of
such a tree is H = log2 N . At each level h of the tree there are
Ch clusters composed of a number of elements proportional to
N/Ch. Finding the bipartition of a cluster and determining the
intercluster edges require a time that grows proportionally to
the cluster size, therefore, each level of the tree is processed
in a time that grows as N . The above computation of the
complexity assumes that embedding and bisecting a cluster
of nodes require a time scaling at maximum with its size. This
is true for both the Laplacian and node2vec embeddings. The
computational time required to embed a network in hyperbolic
space with the Mercator algorithm scales instead as N2. The
quadratic scaling dominates the time complexity of the dis-
mantling algorithm based on hyperbolic embedding.

4. Greedy postprocessing technique

Approximate solutions of the various algorithms are fur-
ther refined with a simple, but effective, greedy postprocessing
strategy. The general principle is to remove from a potentially
spurious structural set all elements that are not necessary to
keep the GCC of the network below a certain predetermined
value. The strategy is useful to reduce the size of the struc-
tural set, and thus obtain a better solution for the problem
of Eq. (2). The strategy for site percolation was introduced
in Refs. [14,17]. Here, we extend it to bond percolation with
unit cost and site percolation with degree cost. Specifically,
we start from the set of structural elements identified by
the dismantling algorithm at hand. Then, each microscopic
element within the set is removed from the set as long as

the resulting GCC is still below the imposed threshold
√

N .
The postprocessing technique serves to improve suboptimal
choices potentially made by the dismantling algorithm during
the construction of the structural set.

E. Networks

1. Real networks

We consider a corpus of 50 real-world networks. Networks
have size ranging from N = 309 to 62 561. The upper bound
on the network size is due to computational reasons, as some
of the dismantling algorithms considered in our analysis do
not scale well with the system size. Details on the various
networks are reported in the Supplemental Material [39].

2. Synthetic networks

H2 model. We create instances of the H2 model [28,44]
with N = 214 nodes, degree exponents γ ∈ {2.2, 2.6, 3.5},
average degree 〈k〉 ≈ 6, and values of the temperature pa-
rameter G ∈ {0.1, 0.2, . . . , 0.9}. The parameter γ controls the
heterogeneity of the degree distribution, as P(k) ∼ k−γ for
networks generated according to this model. The tempera-
ture parameter G controls the strength of correlation between
network topology and imposed embedding, with low values
of G favoring connections between pairs of nodes at small
hyperbolic distance, which increases the average clustering in
the network.

Lancichinetti-Fortunato-Radicchi (LFR) model. We create
networks according to the LFR model [29] with N = 214

nodes and degree exponent γ ∈ {2.2, 2.6, 3.5}, average de-
gree 〈k〉 = 6, maximum degree kmax = √

N . We use values of
the mixing parameter μ ∈ {0.05, 0.1, . . . , 0.5}. Communities
are distributed randomly with size distribution P(s) ∼ s−1

with
√

N and 5 × √
N chosen as minimum and maximum

sizes of a community, respectively. Also for the LFR model,
the parameter γ controls the heterogeneity of the degree
distribution, i.e., P(k) ∼ k−γ . The mixing parameter μ con-
trols the strength of correlation between network topology
and imposed embedding, as low-μ values favor connections
between pairs of nodes belonging to the same preimposed
communities.
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