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Multiplex networks are convenient mathematical representations for many real-world—biological, social,
and technological—systems of interacting elements, where pairwise interactions among elements have dif-
ferent flavors. Previous studies pointed out that real-world multiplex networks display significant interlayer
correlations—degree-degree correlation, edge overlap, node similarities—able to make them robust against
random and targeted failures of their individual components. Here, we show that interlayer correlations are
important also in the characterization of their k-core structure, namely, the organization in shells of nodes with
an increasingly high degree. Understanding of k-core structures is important in the study of spreading processes
taking place on networks, as for example in the identification of influential spreaders and the emergence of
localization phenomena. We find that, if the degree distribution of the network is heterogeneous, then a strong
k-core structure is well predicted by significantly positive degree-degree correlations. However, if the network
degree distribution is homogeneous, then strong k-core structure is due to positive correlations at the level of
node similarities. We reach our conclusions by analyzing different real-world multiplex networks, introducing
novel techniques for controlling interlayer correlations of networks without changing their structure, and taking

advantage of synthetic network models with tunable levels of interlayer correlations.
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I. INTRODUCTION

A multiplex network is a collection of single-layer net-
works sharing common nodes, where each layer captures a
different type of pairwise interaction among nodes [1-5].
This is a convenient and meaningful representation for many
real-world networked systems, including social [6,7], techno-
logical [8], and biological systems [9-11]. The simultaneous
presence of different types of interactions is at the root of the
observation of collective phenomena generally not possible in
single-layer networks. A paradigmatic example is provided in
the seminal study by Buldryev e al. [12] where it was shown
that, if multiplexity is interpreted as a one-to-one interdepen-
dence among corresponding nodes in the various layers, then
the mutual connectedness of a multiplex network displays an
abrupt breakdown under random failures of its nodes. Other
examples of anomalous behavior of multiplex networks regard
both dynamical and structural processes [13-20]. Although
multiplexity seems a necessary condition for the emergence of
nontrivial collective behavior, the magnitude of the anomalous
behavior in real-world multiplex networks is often suppressed
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by the presence of strong interlayer correlations, such as link
overlap, degree-degree correlations, geometric correlations,
and correlated community structure [16,21-25].

An important feature characterizing structural and dynam-
ical properties of single-layer networks is the so-called k-core
structure [26,27]. The k-core of a network is the maximal
subgraph of the network in which all vertices have degree
at least equal to k (see Appendix A 1). The notion of k-core
is used to define so-called k-shells of nodes, and further to
define the node centrality metric k; named k-shell index or
coreness (Appendix A 1). k-cores, and k-shells, are particu-
larly important for the understanding of spreading processes
on networks [28]. For instance, the coreness of a node is a
good indicator of its spreading power [29]. Also, in many
real-world networks, the notion of maximal k-core, i.e., the
core with the largest k, represents a good structural proxy
for the understanding of dynamical localization phenomena
in spreading processes [30]. Finally, the extinction of species
located in the maximal k-core well predicts the collapse of
networks describing mutualistic ecosystems [31].

The notion of k-core can be generalized to the case of
multiplex networks [32]. In a multiplex of L layers, the
k-core is defined for a vector of degree threshold values
k = (ky,..., ke, ..., kp). Specifically, it is the maximal set of
nodes such that each node complies with the corresponding
degree threshold condition in each layer of the multiplex
(Appendix A 1). In Ref. [32], Azimi-Tafreshi and collabora-
tors studied the emergence of k-cores in random uncorrelated
multiplex network models with arbitrary degree distributions.
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FIG. 1. k-core structure of real-world networks. We analyze single-layer networks. The top row refers to results valid for the IPv6 Internet;
the bottom row refers to results valid for the arXiv coauthorship network. [(a) and (e)] Scatter plot of node degrees vs coreness. The size of
the symbols is proportional to the number of nodes having each specific degree and k-shell index values. [(b) and (f)] Relative size S(k) of the
k-core (see Appendix A 1) in the real networks (labeled as “org”) and their randomized counterparts (labeled as “rnd”). Randomized networks
are obtained by shuffling random pairs of edges while controlling for the average value of the clustering coefficient ¢ (Appendix A 2). ¢ =~ 0
is obtained after 10,000 and 2000 link rewirings in the Internet and arXiv, respectively. [(c) and (g)] k-shell index of nodes before and after
network randomization (obtained for ¢ =~ 0). The size of the symbols is proportional to the percentage of nodes whose coreness changed from
ks in the original network to k; in the reshuffled network. [(d) and (h)] Angular coherence & of the nodes belonging to each k-core.

They showed that k-cores in multiplex networks are character-
ized by abrupt transitions, but their properties cannot be easily
deduced from those of the k-cores of the individual network
layers. They further studied the k-core structure of a few
real-world networks. They noted that these systems display
significant differences from the theoretical predictions that
can be obtained in the framework developed for uncorrelated
networks, thus indicating the necessity of a better understand-
ing of the role of structural correlations in the characterization
of the k-core structure of real-world multiplex networks.

In this paper, we build on the work of Azimi-Tafreshi
et al. [32] and perform a systematic characterization of the k-
core structure of real-world multiplex networks. We consider
a large variety of systems, and study how the size of the
k-core depends on the choice of the vector k. Specifically,
we compare the k-core of real-world networks with the core
observed for the same choice of the vector k on randomized
versions of the networks where interlayer correlations are
destroyed. We find that real-world multiplex networks possess
non-null k-cores while their reshuffled versions do not. We
interpret this fact as a sign of the strength of the k-core
structure of real-world multiplex networks. To provide an
intuitive explanation of this finding, we take advantage of the
geometric interpretation of interlayer correlations in terms of
network hyperbolic embedding [33,34]. Our choice is moti-
vated by a series of recent studies where it has been shown
that not only real-world multiplex networks display significant
geometric correlations [23], but also that the amount of these
correlations is a good predictor of the robustness of the
system under targeted attacks [24,25]. In network hyperbolic

embedding, nodes of a network are mapped to points of the
two-dimensional hyperbolic disk [35]. The radial coordinate
of a node in the disk quantifies the popularity of the node;
the difference between angular coordinates is related instead
to the level of similarity between pairs of nodes. Geometric
correlations in a multiplex network are quantified by look-
ing at the coordinates of the same node in different layers,
provided that the layers are embedded independently in the
hyperbolic space. Geometric correlations can be quantified
either for radial or angular coordinates of the nodes. Both
types of correlations are able to provide insights about the
k-core structure of a multiplex. Specifically, we show that the
more heterogeneous are the degree distributions of the layers,
the more pivotal is the role of popularity correlations in the
emergence of strong K-core structure. On the other hand, the
less heterogeneous are the degree distributions, the more cru-
cial is the role of similarity correlations. These observations
are in remarkable agreement with the behavior observed in
synthetic multiplex networks where we can control the level
of geometric correlations across the layers [23].

II. RESULTS

A. Single-layer networks

We start by studying the k-core structure of single-layer
networks. Most of our results for single-layer networks are
not novel as the problem was already studied in Ref. [36]. We
replicate and expand the analysis of Ref. [36] here for two
main reasons. First, the repetition of the analysis of Ref. [36]
allows us to have a self-contained paper. Second and more
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FIG. 2. k-core structure of single-layer networks. (a) Hyperbolic embedding of the arXiv network. The position of the nodes in the disk is
determined by their hyperbolic coordinates; different colors serve to differentiate nodes depending on their k-shell index value. (b) Same as in
(a) but for an instance of the S' model built using similar characteristics as in the arXiv network (i.e., same network size N, and same values of
the degree exponent y, average degree k, and average clustering coefficient ¢). (c) Relative size S(k) of the k-core as a function of the threshold
value k for the arXiv network and the S! model. The results for the modeled network are average values over 1000 network instances. The
shaded area identifies the region corresponding to one standard deviation away from the average. The average value is computed only over
non-null k-cores, and the bars in the background of the figure display the fraction of instances where such nonempty cores were indeed present.
(d) We consider the same data as in (c) but monitor the angular coherence & as a function of k. (e) S(k) vs k for the S'. We set here the size of
the network N = 10000, degree exponent y = 2.2, and average degree k = 6. We consider three different values of the temperature parameter
T. This serves to tune the average value of the clustering coefficient ¢ of the model, as T is inversely proportional to ¢. Results are averaged
over 200 instances of the model. Shaded areas stand for one standard deviation away from the average. (f) Same as in (e) but for y = 2.6.
(g) Same as in (e) but for y = 3.5. (h) We consider the same networks as in (e) but we monitor angular coherence &, vs k. (i) Same as in (h)
but for y = 2.6. (j) Same as in (h) but for y = 3.5.
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FIG. 3. k-core of real-world multiplex networks. [(a) and (b)] Hyperbolic embedding of the arXiv multiplex network. (a) refers to the
layer arXivl, while (b) to the layer arXiv2. The position of the nodes in the disk is determined by their hyperbolic coordinates, and only
nodes that exist in both layers are shown (911 nodes); different colors serve to differentiate nodes depending on their k-shell index value.
(c) Correspondence among nodes belonging to the (k, k)-shells (see Appendix A 1) of the arXiv multiplex network. (d) Same as in (c) but
for k > 7. (e) Same as in (c) but for the randomized version of the multiplex where the node labels of one of the two layers are randomly
reshuffled. (f) Relative size S(k, k») of the (k;, k,)-core for the arXiv multiplex network. (g) Same as in (f) but for the randomized version of
the multiplex network. (h) Relative size S(k, k) of the (k, k)-core for the arXiv multiplex network, and its randomized version. These curves are
compared with those of the relative size S(k) of the k-core of the individual layers. (i) Same as in (h) but for the metrics of angular coherence

&k and &.

important, the analysis serves to properly calibrate our frame-
work before extending it to the study of the k-core structure
of multiplex networks. Such a calibration is of fundamental
importance as findings on single-layer networks provide us
with proper baselines for the interpretation of results valid for
multiplex k-core structures, including testable hypotheses on
their expected behavior.

In Fig. 1, we report results obtained by analyzing two
single-layer networks: a snapshot of the Internet at the IPv6
level [37] and the co-authorship network formed by the au-
thors of papers in the “Biological Physics” category of arXiv
[38]. Details on the data and results for other networks can
be found in Ref. [39], Secs. I and II. The k-shell index of the
nodes is strongly correlated with their degree (Figs. 1(a) and
1(e) and Ref. [39], Fig. 2(a)). However, as previously noted in
Ref. [29], nodes with the same value of the k-shell index may
correspond to very different degree values. Further, we note
that the degree distribution of the Internet is much broader
than the one of the arXiv (see Figs. 1(a) and 1(e) and Ref. [39],
Fig. 1). Specifically, the degree distributions of both networks
can be modeled quite well in terms of power laws, i.e.,
P(k) ~ k7, with degree exponent y = 2.1 for the Internet
and y = 2.6 for the arXiv, thus indicating that the degree
distribution of the Internet is more heterogeneous than the one
of the arXiv. The correlation between k-shell index and node
degree weakens significantly as we move into inner k-shells in
the arXiv but not in the Internet (Ref. [39], Fig. 2(a)). We have
verified that the less heterogeneous is the degree distribution

the weaker is the correlation between k-shell index and degree
(Supplemental Material [39], Fig. 2(b)).

To quantify the quality of the k-core structure we consider
the relative size S(k) of the k-core as a function of the value
of the threshold k. If there is a rich collection of k-cores with
a wide spectrum of k’s, then the k-core structure is strong; it
is weak, otherwise. Figures 1(b) and 1(f) show that the k-core
structures of the Internet and arXiv are strong. In particular,
we see that S(k) decreases smoothly as k increases, while
S(k) > 0 up to k = 16 for the Internet, and up to k = 13 for
the arXiv.

Reference [36] showed in experiments with synthetic net-
works that both degree heterogeneity and clustering improve
the quality of the k-core structure. To study how these prop-
erties affect the quality of the k-core structure of real net-
works, we study the behavior of S(k) on degree-preserving
randomized versions of the networks. The randomization is
performed by rewiring randomly chosen links till the value
of the average clustering in the network is reduced to a
predefined value (see Appendix A2). We see in Figs. 1(b)
and 1(f) that the randomization affects the k-core structure
of the Internet to a much lesser extent than the k-core struc-
ture of the arXiv, while the effect is stronger the more we
destroy clustering. As Figs. 1(c) and 1(g) clearly show, the
effect of the randomization consists in redistributing nodes
to lower k-shell values. Specifically, these figures show the
percentage of nodes, indicated by the circles, whose k-shell
index changes from k; in the original network to k; in the
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FIG. 4. Interlayer correlations and the k-core structure of the arXiv multiplex network. We analyze the arXiv multiplex network.

(a) Different metrics of interlayer similarity as a function of the group size n used to randomize node labels, thus breaking interlayer degree
correlations. For n = 1, node labels of the network are not randomized; full shuffle of node labels is obtained for large n values. We focus
here on the case where interlayer degree correlation is broken but we preserve interlayer correlation among node angular coordinates (see
main text for details). Metrics of similarities considered here are the Pearson correlation coefficient r; ;v among the degrees of nodes in the
two layers; normalized mutual information NMIj 4 of the angular coordinates of the nodes in the two layers; and edge overlap O among the
two layers (Appendix A 6). (b) Relative size S(k, k) of the (k, k)-core. The results of the original multiplex network (n = 1) are compared
with those valid for n = 4. At this level of randomization, we find that r; »» = 0.36 and NMI, oo = 0.41. These numbers should be compared
respectively with r; » = 0.82 and NMIj »» = 0.46 of the original network. The results for n = 4 are average values obtained on 100 independent
randomizations. Shaded areas identify the region corresponding to one standard deviation away from the average. (c) Same as in (b) but for
the angular coherence & ;. (d) Scatter plot of the (k, k)-shell index of nodes in the original vs the randomized multiplex network. The size of
the symbols is proportional to the percentage of points in the scatter plot. [(e)—(h)] Same as in (a)—(d), respectively. We consider here the case
where interlayer correlation among nodes’ angular coordinates is destroyed but interlayer correlation among node degrees is preserved (see
main text for details). The results of the original network are compared with those obtained for n = 16, when r » = 0.78 and NMI, »» = 0.01.

randomized network. We see that changes of the k-shell
values induced by the randomization are much more appar-
ent for the arXiv than in the Internet—nodes in the arXiv
are redistributed to significantly lower shells. For instance,
we see in Fig. 1(g) that nodes belonging to k; = 11 in the
original network move to k; = 4 and k, = 3 in the random-
ized network. These results indicate that networks with more
heterogeneous degree distributions can have strong k-core
structures even if their clustering is weak. On the other hand,
if the degree distribution is less heterogeneous, clustering
becomes more important for having a strong k-core struc-
ture. In the next section, we explicitly verify these obser-
vations in controlled experiments with synthetic networks

[Figs. 2(e)-2(2)].

B. Hyperbolic embedding

To better capture the role of correlations for the charac-
terization of the k-core structure of networks, we decided
to take advantage of the vectorial representation of nodes in
the hyperbolic space [33,35,40]. According to this mapping,
every node i of a network becomes a point, identified by the
coordinates (r;, 6;), in the two-dimensional hyperbolic disk
(see Appendixes A 3 and A 4). The radial coordinate r; quan-

tifies the popularity of node i in the network, and basically
corresponds to the degree k; of the node (Appendix A 4). The
angular coordinate 6; serves to quantify pairwise similarities,
in the sense that the angular distance between pairs of nodes
is inversely proportional to their similarity. Whereas radial
coordinates do not convey more explicative information than
node degrees, angular coordinates offer the opportunity to
deal with node similarities in continuous space, thus allowing
for smooth and easily quantifiable metrics of similarities of
arbitrary sets of nodes, including k-cores. Specifically, we
use a measure of coherence among angular coordinates of
nodes within the k-core, namely, &, to measure the average
level of similarity among the nodes within the k-core [25]
(see Appendix AS5). By definition & € [0, 1], with & =0
meaning that the angular coordinates of the k-core are uni-
formly scattered around the disk, and & = 1 meaning that all
nodes within the k-core have identical value for their angular
coordinates. Figures 1(d) and 1(h) show &; as a function of k
for the Internet and arXiv networks, respectively. We see that
&, increases with k, meaning that as we move to inner k-cores,
angular coordinates of the nodes tend to be more localized.
Similar results hold if one analyzes other real networks and if
one measures angular coherence in the k-shells instead of the
k-cores (see Ref. [39], Sec. II).

023176-5



OSAT, RADICCHI, AND PAPADOPOULOS

PHYSICAL REVIEW RESEARCH 2, 023176 (2020)

L0 o (@ 10 (b)
Z ~B- NMlyy
©
z o 10!
G 2 <
805 < oy
(0] ~—
g 702 v
g
s

0.0 1073

g0 gt g8 ol 100 10!
n k

1.0
=
©
E
@ =
5 0.5
T
3
S

0.0

20 2-1 28 212 10“ 101
n k

5
; © @
10
;
§
—@—n= " 0
—8—n=2
-1
107 0 10! 0 510 15
k ks original
15
" (@) (h)
3 1
E 10 O
;
paa =
Y ll 0
—1 )
10" 10 107 0 510 15
k k, original

FIG. 5. Interlayer correlations and the k-core structure of the Internet multiplex network. Same analysis as in Fig. 4 but for the IPv4/IPv6
Internet multiplex network. Correlations of the original network are such that r; = 0.82 and NMlIy oo = 0.32. Results of the real-world
system are compared with those obtained after destroying interlayer degree correlations such that 7 = 0.12 and NMI, o = 0.28 in the
top-row panels, and after destroying angular correlations such that r; v = 0.76 and NMI, o = 0.03 in the bottom-row panels.

We take advantage of network hyperbolic embedding not
only for descriptive purposes but also to perform controlled
experiments. We leverage models introduced in the literature
on network hyperbolic embedding to better understand the
role played by clustering and node similarities in predicting
the strength of network k-core structure. Specifically, we rely
on network instances generated according to the S' model
[33,41], which is isomorphic to hyperbolic geometric graphs
(see Appendix A 3). The model generates synthetic networks
with arbitrary degree distribution and clustering strength.

In Fig. 2, we perform a direct comparison between the
relative size S(k) and angular coherence &, of the k-core
structure of the arXiv collaboration network and of a synthetic
graph generated according to the S' model with similar values
of number of nodes, average degree, and average clustering
coefficient as of the arXiv collaboration network. The syn-
thetic network has a power-law degree distribution P(k) ~
k™7 with exponent y = 2.6, compatible with the one of the
real-world network (Ref. [39], Sec. I). We see that the two
graphs display a qualitatively similar behavior with respect to
S(k) [Fig. 2(c)] and & [Fig. 2(d)] as functions of the threshold
value k.

Synthetic networks allow us to play with the ingredients
that we believe are important in the characterization of net-
work k-core structure. We see that the range of k values
for which we have non-null k-cores widen not only when
the degree distribution becomes more heterogeneous (lower
y values) but also when the clustering coefficient increases
[Figs. 2(e)-2(g)]. In all these cases, nodes belonging to inner
k-cores always have more similar angular coordinates in the
hyperbolic embedding [Figs. 2(h)-2(j)].

C. Multiplex networks

We now turn our attention to the study of the k-core
structure of real-world multiplex networks. For simplicity,
we limit our attention to two-layer multiplex networks only,
so that k = (k, k). We note that a necessary condition for
having a non-null (k;, k»)-core is that the k;-core of layer
£ =1 and the k;-core of layer £ = 2 are simultaneously non
null. The condition is clearly not sufficient, as there could
be combinations (ki, kp) associated to empty cores in the
multiplex but still showing nonempty cores at the level of the
individual layers. As a consequence, we expect that multiplex
networks displaying low interlayer correlation at the node
level will be weak in terms of kK-core structure, in the sense
that nonempty cores will exist only for limited choices of the
thresholds (ki, k). Based on our knowledge of the relation
between k-core strength and hyperbolic network embedding,
we further expect that interlayer correlations that are impor-
tant in the prediction of the strength of the k-core structure
of a multiplex are not only those relative to the degree of the
nodes but also those concerning the similarity among pairs of
nodes.

In Fig. 3, we consider a multiplex version of the arXiv
collaboration network, where one layer is obtained by con-
sidering manuscripts of the section “Biological Physics” (i.e.,
the one considered already in Figs. 1 and 2), and the other
based on manuscripts of the section “Data Analysis, Statistics
and Probability.” For sake of brevity, we will refer to them as
arXivl and arXiv2, respectively. We observe that the k-core
structure of the multiplex network is quite robust, in the sense
that the relative size S(kj, k) of the (ki, kp)-core is strictly
larger than zero for a wide range of choices of the threshold
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FIG. 6. Quantifying the effect of interlayer degree and
similarity correlations in the k-core structure of real-world
multiplex networks. Relative difference Dg = [Zk S(k, k)&
— 3 Sk, k)™]/ >, S(k, k)¢ between the relative (k, k)-core
sizes S(k, k)¢ and S(k, k)™ of real-world multiplex networks and
their randomized counterparts. In the randomized counterparts,
we either destroy interlayer degree correlation or correlation
among the nodes’ angular coordinates. Each point in the figure
corresponds to one of the real-world multiplex networks considered
in this study. The points from left to right correspond to the
following multiplex networks: IPv4/IPv6 Internet, arXivl-arXiv4,
arXiv2-arXiv4, arXivl-arXiv2, Drosophilal-Drososphila2,
Air-Train, C.Elegans2-C.Elegans3, and arXivl-arXiv5 (Ref. [39],
Sec. I). The x axis shows the average degree exponent y across the
two layers of each multiplex. Results in each case are obtained by
taking the average value of Dy over 100 randomized counterparts.
Error bars correspond to one standard deviation away from the
average. The Pearson correlation coefficient between Dg and y is
rpsy, = —0.87 when degree correlation is broken and rp,,, = 0.48
when similarity correlation is broken. The dashed lines represent
least squares regression lines.

values (ki, kp) [Fig. 3(f)]. This fact becomes apparent when
the results valid for the real network are contrasted with those
valid for a randomized version of the network [Fig. 3(g)]. The
randomization here consists of randomly shuffling the labels
of the nodes of one of the two layers, so that the topology of
both layers remains unchanged but interlayer correlations are
completely destroyed (Appendix A 2). As a visual inspection
of Figs. 3(f) and 3(g) reveals, the real network displays
nonempty cores in a much wider region of the (k;, k,) plane
than the randomized version of the network. The result is
highlighted in Fig. 3(h) for the special case k| =k, =k,
where we see that the S(k, k) of the real-multiplex network
behaves almost identically to the S(k) of the individual layers.
On the contrary, the randomized version of the multiplex
network displays an empty core already for k > 2. We can
interpret the robustness of the k-core of the real multiplex net-
work in terms of interlayer correlations. Indeed in Fig. 3(i), we
see that nodes belonging to inner cores have simultaneously
high angular coherence & ; (Appendix A 5) in both layers of
the real multiplex, a situation visualized in Figs 3(c) and 3(d)
versus Fig. 3(e) for the randomized version of the network.

Similar results hold for other real-world multiplex networks
(Ref. [39], Sec. III).

Next, we investigate the extent to which degree and sim-
ilarity correlations affect the k-core structure, separately. To
this end, we take advantage of network hyperbolic embed-
ding, where layers are embedded independently, thus each
node has radial and angular coordinates for each layer of
the multiplex. Also in this case, we consider the degree of
the nodes instead of their radial coordinate, being the two
quantities clearly related one to the other. We break each type
of correlation while preserving the other type of correlation.
To break degree correlations, we consider the common nodes
in the two layers of the multiplex, i.e., the nodes that are
simultaneously present in both layers. Then, we select one
of the layers and sort the common nodes with respect to
their angular coordinates. We group the nodes in consecutive
groups of size n, and in each group we reshuffle node labels. If
n is sufficiently small, correlations among angular coordinates
are approximately preserved since the angular coordinates of
nodes do not change significantly within the group. Clearly,
for n = 1, no reshuffling is performed, while if n = N, where
N is the number of common nodes, then all types of interlayer
correlations are broken. To break correlations among angular
coordinates while preserving degree correlations we follow a
similar procedure. Specifically, we select one of the layers,
sort the common nodes with respect to their degrees, group
nodes in consecutive groups of size n, and reshuffle node
labels in each group.

The top row of Fig. 4 shows the results valid for the arXiv
multiplex network when degree correlations are broken while
correlations among angular coordinates are preserved; the
bottom row of Fig. 4 reports results valid when degree cor-
relations are preserved but correlations among angular coor-
dinates are destroyed. As expected, interlayer degree correla-
tion, measured in terms of Pearson correlation coefficient ry
(see Appendix A 6), decreases with the size n of the groups
used in the randomization procedure [Fig. 4(a)]. Similarly,
correlation among angular coordinates of the nodes, mea-
sured in terms of the normalized mutual information NMIy o
(Appendix A 6), decreases as n increases. There is, however,
a range of n values where ryp is low and NMlIy o high,
indicating that correlation at the level of angular coordinates is
preserved but degree correlation is destroyed. We consider the
randomized version of the network obtained for n = 4, thus
belonging to the aforementioned range of suitable n values,
and study differences between its (k, k)-core structure and
the one of the real multiplex network [Figs. 4(b) and 4(c)].
The (k, k)-core of the real network is only slightly more
robust than the one of the randomized network [Fig. 4(b)].
Angular coordinates of the nodes in the inner cores are still
strongly correlated [Fig. 4(c)]. The same analysis gives a
completely different result in the case of the Internet multiplex
network, where the two layers are given by the IPv4 and IPv6
topologies, respectively (see Ref. [39], Sec. I for details on
the data). Reducing degree correlation in this case destroys
the (k, k)-core structure [Figs. 5(b)-5(d)].

If we repeat the same exercise but now destroying correla-
tions among angular coordinates while preserving correlations
between degrees, we see a completely different picture. For
the arXiv multiplex network, the randomization procedure
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FIG. 7. k-core structure of synthetic multiplex networks. We study here the effect of degree and angular correlations on the size of the
(k, k)-core S(k, k) and its coherence & ;, in two-layer synthetic multiplex networks constructed according to the geometric multiplex model
(Appendix A 7). Interlayer degree correlation can be tuned using the parameter v € [0, 1], with v = 0 corresponding to the uncorrelated case,
and v = 1 to the case where degrees are maximally correlated. Interlayer correlation among angular coordinates of nodes is tuned using
the model parameter g € [0, 1]. When generating network instances according to the GMM, we imposed that each layer of the multiplex
has N = 10000 nodes, power-law degree distribution with exponent y = 2.2, average degree k &~ 6, and temperature T = 0.5 (i.e., average
clustering coefficient ¢ = 0.45). We consider various combinations of the model parameters v and g. Results in each case are obtained by
taking the average value over 100 realizations. Shaded areas denote regions corresponding to one standard deviation away from the average.
(a) Relative size S(k, k) of the (k, k)-core as a function of the threshold k. The curve corresponding to the monoplex is obtained by measuring
S(k) for the k-core of the individual layers, and then taking the average value. [(b) and (c)] Same as in (a) but for different choices of the
model parameters. [(d)—(f)] We consider the same data as in (a)—(c), respectively but we monitor the metrics of angular coherence & ; and &

as functions of the threshold value k.

leads to the destruction of the k-core structure [Figs. 4(f)—
4(h)]. Instead, for the Internet multiplex network, we see that
the randomization procedure has virtually no effect on the
strength of the k-core structure, keeping it unchanged with
respect to the one of the original network [Figs. 5(f)-5(h)].
On the basis of our results, we hypothesize that both
degree and similarity correlations matter for the emergence
of strong k-core structures. In particular, when the degree
distributions of the layers are less heterogeneous, like for the
arXiv multiplex network, similarity correlations play a crucial
role. On the other hand, when degree distributions are strongly
heterogeneous, like in the case of the Internet multiplex
network, degree correlations play a crucial role, and the effect
of similarities is strongly attenuated (see Ref. [39], Sec. IV for
results from other multiplex network data). This observation
is also supported by Fig. 6, which quantifies the difference Dy
between the curves of the original and randomized networks
of Figs 4(b), 4(f) and 5(b), 5(f). The figure also shows Dg for
other multiplex systems (considered in Ref. [39], Sec. IV).
We see in Fig. 6 that when degree correlation is broken the
difference Dy increases as the degree exponent y decreases.
On the other hand, when similarity correlation is broken Dg

tends to increase with y . Figure 6 shows results from different
systems that have different parameters (different layer sizes,
average degrees, etc.). Therefore the fact that Dy in Fig. 6 is
not strictly increasing or decreasing is expected.

To test our hypotheses, we rely on synthetic multiplex
networks built according to the geometric multiplex model
(GMM) [23]. This model allows to generate single-layer
topologies using the S' model, and control for interlayer cor-
relation between node degrees and angular coordinates (see
Appendix A 7). In Figs. 7 and 8, we study the behavior of the
k-core in two-layer synthetic multiplex networks constructed
according to the model for different choices of the model
parameters (more results can be found in Ref. [39], Sec. V).
We confirm the validity of our claims. Both types of correla-
tions are important for the characterization of the k-core of
a multiplex network. Interlayer degree correlations (measured
with v) are more important than correlations between angular
coordinates (measured with g) when the degrees of the nodes
are broadly distributed. In this case, the role of pairwise
similarities is much attenuated (see the difference between
curves with different v versus different g in Fig. 7). If instead,
the network layers are characterized by homogeneous degree
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FIG. 8. k-core structure of synthetic multiplex networks. Same as in Fig. 7 but for a different value of the degree exponent y = 3.5. Results

for model parameter g = 0.75 are also shown in this figure. All other model parameters are identical to those used in Fig. 7.

distributions, similarity correlations are more important than
degree correlations whose role is attenuated (Fig. 8). This
effect is also illustrated in Figs. 9(a) and 9(b), which quantify
the differences between the curves of the monoplex and
multiplex networks of Figs. 7 and 8, as well as in Fig. 9(c),
which illustrates a qualitatively similar behavior as the one
observed for real networks in Fig. 6.

The above findings agree with intuition. When the de-
gree distribution of a layer is more heterogeneous there is
stronger correlation between higher k-shell index values and
node degrees (Ref. [39], Fig. 2). In other words, the position
of similarity of nodes matters less. Thus interlayer degree
correlations are more important for having a wide k-core
structure when the degree distributions of the layers are more
heterogeneous. On the other hand, the less heterogeneous is
the degree distribution the weaker is the correlation between
higher k-shell index values and node degrees (Ref. [39],
Fig. 2). In this case, the position of nodes in the similarity
space matters more. Indeed, we have seen that nodes in inner
cores have high angular coherence [cf. Fig. 1(h)]. Therefore
interlayer similarity correlations become more important for
having a strong k-core structure when the degree distributions
of the layers are less heterogeneous.

III. DISCUSSION AND CONCLUSION

Understanding the principles behind the organization of
real-world networks into cores or shells of nodes with in-
creasingly high degree is crucial for better understanding and
predicting their structural and dynamical properties, their ro-
bustness, and the performance of spreading processes running
on top of them. Yet, while the core organization of single-layer

networks has been extensively studied in the past, little is
known about the core organization of real multiplex networks.
In this paper, we performed a systematic characterization of
the k-core structure of real-world multiplex networks, and
shown that real multiplex networks possess a strong k-core
structure that is due to interlayer correlations. Specifically, we
showed that both degree and similarity correlations between
nodes across layers are responsible for the observed strong
k-core structures. The more heterogeneous are the degree
distributions of the layers, the more pivotal is the role of de-
gree correlations. On the other hand, the more homogeneous
are the degree distributions, the more crucial is the role of
similarity correlations. We reached our conclusions by taking
advantage of network hyperbolic embedding, and showed
that such a geometric description of networks provides a
simple framework to naturally understand and characterize
the k-core structure of real-world multiplex networks. As
the core organization of a network is intimately related to
the behavior of spreading phenomena [29], our results open
the door for a geometric perspective in understanding and
predicting the efficiency of spreading processes and the lo-
cation of influential spreaders in real multiplex networks.
Indeed, the wide k-core structure found in real multiplex
systems, explained by interlayer geometric correlations, sug-
gests that there are nodes, located into inner k-cores, which
could potentially act as efficient spreaders in all layers of
the multiplex simultaneously. For instance, we see in Fig. 10
that in the Internet and arXiv multiplexes nodes with high
(k, k)-shell index in the multiplex have also high k-shell
index in the individual layers. Further, in contrast to arXiv,
where the nodes in the most inner k-shells of the individ-
ual layers belong also to the most inner (k, k)-shells of the
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FIG. 9. Quantifying the effect of interlayer degree and similarity correlations in the k-core structure of synthetic multiplex networks.
[(a) and (b)] Relative difference Dg = [Y_, S(k) — Y, S(k, k)1/ Y, S(k) between the monoplex and multiplex relative sizes, S(k) and S(k, k),
in two-layer synthetic multiplexes constructed as in Figs. 7 and 8. We consider various combinations of the model parameters v and g. Results
in each case are obtained by taking the average value over 100 realizations. Error bars correspond to one standard deviation away from the
average. Reference [39], Fig. 30 shows also the relative difference Dy = [Y_, & — >, &x1/ D, & between the angular coherences & and &
of the networks of (a) and (b). (c) is the same as (a) and (b) but for different values of the degree exponent y and parameters v and g as shown

in the legend.

multiplex, in the IPv4/IPv6 Internet there are nodes with high
k-shell index values in the individual layers but not in the
multiplex. This suggests that there are also nodes that could
potentially be efficient spreaders in the individual layers but
not in the multiplex. We leave such investigations for future
work.
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APPENDIX A: METHODS
1. Cores and shells

The k-core of a single-layer network is the maximal sub-
graph of the network in which all vertices have degree at least
k. The k-core is identified by iteratively removing all nodes
with degree less than k, recalculating the degrees of all the

remaining nodes, and continuing with the iterative scheme till
there are no nodes with degree less than k. By definition, all
nodes in the (k + n)-core, with n > 0, are necessarily part of
the k-core. The nodes that belong to the k-core but not to the
(k 4 1)-core form the k-shell of the network, and they are said
to have k-shell index, or coreness, k; = k. The relative size
S(k) of the k-core is
N

Sty = =
where Ny is the number of nodes that belong to the k-core, and
N is the total number of nodes in the network.

In a multiplex system of L layers, the k-core, with k =
(kiy ..., ke, ..., k), is the set of the subgraphs, one for each
layer, remaining after the following pruning procedure is
performed [32]: all nodes whose degree in at least one layer
£ is less than k; are removed from the system; the degree of
all nodes in all layers is recomputed; the pruning continues
iteratively until no node remains such that its degree in layer
£ is less than the threshold k,. By definition, the subgraphs

(AD
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FIG. 10. Coreness in single layers vs coreness in the multiplex. (a) Coreness k, in arXivl of the nodes that have coreness (k, k), in the
multiplex network consisting of arXivl and arXiv2. The size of the symbols is proportional to the percentage of nodes with coreness (k, k), in
the multiplex that have coreness k; in arXivl. (b) Same as (a) but for arXiv2. [(c) and (d)] Same as (a) and (b) but for the IPv4/IPv6 Internet.

belonging to the k-core share the same set of nodes.
Further, the (k4 n)-core of a multiplex, with n =
(ny,...,ng,...,ny) where np >0 for all £ =1,...,L, is
necessarily a subset of the k-core of the multiplex. Similar to
single-layer networks one can also define k-shells. Figure 3(c)
in the main text illustrates the (k, k)-shells in the considered
arXiv multiplex, i.e., the sets of nodes that belong to the
(k, k)-core but not to the (k + 1, k + 1)-core of the system,
k=1,2,...,13. The relative size S(k) of the k-core is

Stk =
=3
where N is the number of nodes belonging to the k-core, and
N is the number of common nodes between the layers of the
multiplex.

(A2)

2. Network randomization
a. Single-layer randomization

In Fig. 1, we employed a degree-preserving clustering-
decreasing randomization procedure that works as follows.
We select a random pair of links (i, j) and (s,) in the
network, and rewire them to (i,7) and (s, j), provided that
none of these links already exist in the network and that the
rewiring decreases the average clustering coefficient ¢ [42] in

the network. If these two conditions are met, then the rewiring
is accepted, otherwise it is not accepted, and a new pair of
links is selected. This way each accepted rewiring step pre-
serves the degree distribution in the network, and decreases its
average clustering. We repeat the rewiring steps till we reach
desired predefined values of the average clustering coefficient
C, as shown in the legends of Figs. 1(b) and 1(f).

b. Multiplex randomization

In Fig. 3, we employed a node label reshuffling procedure
that destroys all correlations between two layers of a multi-
plex. Specifically, we randomly reshuffled the labels of the
nodes of one layer, i.e., we interchanged the label of each
node in that layer with the label of a randomly selected node
from the same layer. This process randomly reshuffles the
trans-layer node-to-node mappings without altering the layer
topology.

3. S model

Each node i in the S! model has hidden variables «;, 6;. The
hidden variable «; is the node expected degree in the resulting
network, while 6; is the angular (similarity) coordinate of the
node on a circle of radius R = N/(2m), where N is the total
number of nodes. To construct a network with the S' model
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that has size N, average node degree k, power law degree
distribution with exponent y > 2, and temperature 7' € [0, 1),
we perform the following steps.

(i) Sample the angular coordinates of nodes 6;, i =
1,2, ..., N, uniformly at random from [0, 2], and their hid-
den variables «;, i = 1,2, ..., N, from the probability density
function

pl) = (y — ) "'k, (A3)

where kg = lE(y —2)/(y — 1) is the expected minimum node
degree.
(i1) Connect every pair of nodes i, j with probability

1
PXij) = ——77> (A4)

I+ x; ;
where x;; = RA;;/(ukik ;) is the effective distance between
i and j, AG;; =m — |m —|6; — 6| is the angular distance,
and u = sin T /(2kT ) is derived from the condition that
the expected degree in the network is indeed k.
The S' model is isomorphic to hyperbolic geometric
graphs (H? model) after transforming the expected node
degrees «; to radial coordinates r; via

K
ri =RH —211]—1,
Ko

(AS5)

where Ry is the radius of the hyperbolic disk where all nodes
reside,

N
Ry=2In—, (A6)
c

sinTw (Y—

while ¢ =k 5T Tl)z. After this change of variables the
v

connection probability in (A4) becomes
1

1+ eﬁ(Xij—RH) ’

p(xij) = (A7)
where x;; = r; +r; + 21n (A6;;/2) is approximately the hy-
perbolic distance between nodes i, j [33].

4. Hyperbolic embedding

The hyperbolic embeddings of all considered real-world
networks have been obtained in Ref. [23] using the HYPERMAP
embedding method [34]. The method is based on maximum
likelihood estimation. On its input it takes the network adja-
cency matrix A. The generic element of the matrix is A;; =
Aji =1 if there is a link between nodes i and j, and A;; =
Aj; = 0 otherwise. The embedding infers radial and angular
coordinates, respectively indicated as r; and 6;, for all nodes
i < N. The radial coordinate r; is related to the observed node

degree k; as
ri~InN —2Ink;. (A8)

The angular coordinates of nodes are found by maximizing
the likelihood

c= [T plap™in—papr' .

1<j<i<N

(A9)

The product in the above relation goes over all node pairs i, j
in the network, x;; is the hyperbolic distance between pair 7, j
[33] and p(x;;) is the connection probability in Eq. (A7).

5. Angular coherence
a. Single-layer networks

To quantify how similar are the angular coordinates of
nodes in the k-cores, we use angular coherence, a metric
previously used to quantify the extent to which nodes within
the same community have similar angular coordinates [25].
We define the angular coherence of a k-core as the module
0 <& < 1, given by

feon =Ly
k

Jjek-core

(A10)

where the sum is taken over the set of nodes that belong
to the k-core, Ny is the number of nodes that belong to the
k-core, and 6, is the angular coordinate of node j. The angular
coherence resembles the order parameter of the Kuramoto
model that captures the coherence of oscillators [43]. The
higher is the &, € [0, 1] the more localized in the similarity
space are the nodes of the k-core. At & = 1 all nodes have the
same angular coordinates, while at £ = 0 nodes are uniformly
distributed in [0, 27r]. ¢4 in Eq. (A10) can be seen as the
k-core ‘“angular coordinate,” i.e., it is a measure of where
the k-core is mostly concentrated along the angular similarity
direction. We note that the angular coherence of a k-core is an
average metric, taken over the nodes that belong to the k-core.
Therefore the value of &, does not depend on the number of
nodes Nj, that belong to the k-core.

b. Multiplex networks

For two-layer multiplex networks, we define the angular
coherence of the nodes belonging to the (k, k)-core as the
module 0 < & < 1, given by averaging the angular coher-
ences of the corresponding nodes in the individual layers,

2
. 1 1 ot
£y = 3 E (N_kk E e’9f>,
=1

" je(k,k)-core

(Al1)

where Ny ; is the number of nodes belonging to the (k, k)-core,
and 6! is the angular coordinate of node j in layer £ = 1, 2.
Similar to &, & ; does not depend on the number of nodes
Ni « that belong to the (k, k)-core.

6. Interlayer similarity
a. Degree correlation

Degree correlation between two layers of a multiplex net-
work is quantified using the Pearson correlation coefficient
(23]
cov(k, k')

oo

Tk = (A12)

where cov(X, X’) denotes the covariance between two random
variables X and X’ and o, denotes the standard deviation
of random variable X. ry takes values in [—1, 1] and is
computed across the nodes that are common in the two layers.
For r = 1, the degrees of the nodes in the two layers are
fully correlated, for r; » = O they are uncorrelated, while for
rix = —1 they are fully anticorrelated.
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b. Angular correlation

Angular correlation between the two layers of a multiplex
is quantified using the normalized mutual information [23]

MI(9;0")
max{MI(8;6), MI(0’;6")}’

where MI is the mutual information, computed using the
method proposed in Ref. [44]. NMly x takes values in [0, 1]
and is computed across the common nodes in the two layers.
NMly x- = 0 means no correlation between X and X', while
NMIy x» = 1 means perfect correlation.

NMIy o =

(A13)

c. Edge overlap
The edge overlap O between two layers is given by
_ Zi> j AijA;j
B min{2i>j Aij Zi>j A;_j}’

(A14)

where A and A’ are the adjacency matrices of the two layers.
The numerator in (A 14) is the number of overlapping links be-
tween the two layers, while the denominator is the maximum
possible number of overlapping links.

7. Geometric multiplex model

The geometric multiplex model (GMM) generates single-
layer topologies using the S' model (Appendix A 3), and
allows for degree and angular coordinate correlations across
the layers. Specifically, correlations can be tuned by varying
the model parameters v € [0, 1] (degree correlations) and
g € [0, 1] (angular correlations) [23]. Degree (angular) cor-
relations are maximized at v — 1 (g — 1), while at v — 0
(g — 0) there are no degree (angular) correlations. The GMM
implementation is available in Ref. [45].
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