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Effective submodularity of influence maximization on temporal networks
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We study influence maximization on temporal networks. This is a special setting where the influence function
is not submodular, and there is no optimality guarantee for solutions achieved via greedy optimization. We
perform an exhaustive analysis on both real and synthetic networks. We show that the influence function of
randomly sampled sets of seeds often violates the necessary conditions for submodularity. However, when sets
of seeds are selected according to the greedy optimization strategy, the influence function behaves effectively as
a submodular function. Specifically, violations of the necessary conditions for submodularity are never observed
in real networks, and only rarely in synthetic ones. The direct comparison with exact solutions obtained via
brute-force search indicates that the greedy strategy provides approximate solutions that are well within the
optimality gap guaranteed for strictly submodular functions. Greedy optimization appears, therefore, to be an
effective strategy for the maximization of influence on temporal networks.
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I. INTRODUCTION

Influence maximization is the optimization problem aim-
ing to find the most influential nodes in a network [1,2].
The influence of a set of nodes is measured in terms of the
size of the outbreak that the nodes generate when used as
initial seeds for a spreading process occurring on the network.
Optimization is generally constrained by the number of initial
spreaders.

Influence maximization is a NP-hard problem [2]. The
number of candidates to the solution increases exponentially
with the number of seeds, so applying brute-force search to
find the exact solution is possible for very small networks
only. Many attempts to find approximate solutions to the
problem in a computationally feasible way are present in
the literature. Some approaches consist of using greedy algo-
rithms [2–8]. Greedy optimization has provable performance
bounds thanks to the fact that the outbreak size of a spread-
ing process occurring on a static network is a submodular
function [9]. Roughly speaking, a set function is submodu-
lar if the addition one element to the input set generates an
increment of the value returned by the function that decreases
as the size of the input set increases. Unfortunately, greedy
optimization algorithms are computationally expensive, and
thus other more efficient approaches use centrality metrics to
approximate the influence of nodes [10–15]. The drawback of
centrality-based approaches is the lack of provable bounds of
performance as they do not directly optimize the outbreak size
of the spreading process.

The influence maximization problem is traditionally stud-
ied on static networks, i.e., the topology is given and does
not change as spreading unfolds. However, there are many
real-life networks where interactions between nodes might

happen only for a given period of time [16]. If the timescales
of the structural evolution and of spreading dynamics are
similar, then changes in network topology cannot be ignored
as they can dramatically affect the outcome of the spreading
process [17–20]. So far, just a few papers have considered
the influence maximization problem on temporal networks
[21–24]. Osawa et al. studied the influence maximization
problem on temporal networks for the susceptible-infected
(SI) model [25]. They proposed an alternative to the greedy
algorithm, and they showed that their method is very effective
in correctly identifying top spreaders in networks with com-
munity structure. Michalski et al. analyzed the effect of the
size of time steps in temporal networks, including the aggre-
gate version of the network [26]. They observed that using the
aggregate version of the temporal network gives suboptimal
results. Gayraud et al. studied the independent cascade and the
linear threshold models, showing that the influence function is
not submodular [27]. They further showed that the activation
time of nodes greatly affects the size of the final outbreak, and
that delaying the activation of a node can increase its effective
influence.

In a recent paper, we studied the influence maximiza-
tion problem under the susceptible-infected-recovered (SIR)
model on temporal networks [28]. We performed a systematic
analysis on 12 real-world temporal networks and analyzed the
performances of different approximation methods that have
different levels of knowledge on the network topology and
dynamics. We found that complete knowledge of a network,
but in an aggregate way, is not helpful in solving the prob-
lem effectively. On the other hand, knowledge of the initial
stages of the network helps to find good solutions to the in-
fluence maximization problem. The influence function of the
SIR model on temporal networks is not submodular, except
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for the trivial case when the model is equivalent to the SI
model. However, the solutions provided by the greedy algo-
rithm proved to be good upper bounds for the performances
of other methods to identify influential spreaders. This fact
suggests that even though there is no theoretical proof of the
performance of the greedy algorithm, in practice the opti-
mization strategy is effective in approximating solutions to
the influence maximization problem. This brings the questions
of how often the condition for submodularity is violated and
how far the solutions of the greedy algorithm are from the
ground-truth optimum.

We answer the above questions in this paper. In particular,
we provide evidence for an effective submodular behavior of
the influence function under greedy optimization. Results of
our analysis show that the condition for submodularity is vio-
lated frequently for randomly selected seeds; however, when
seeds are selected with the greedy algorithm, the frequency
drops to almost zero, especially for real-world networks. Also,
we show that the solutions of the greedy algorithm have a
performance very close to the optimal solution found with
brute-force search.

II. METHODS

A. Temporal networks

A temporal network is a collection of T ordered network
layers, namely, A(0), A(1), . . . , A(t ), . . . , A(T − 1), each rep-
resenting the topology of the system at a specific time. All
layers of a temporal network are composed of the same N
nodes, with labels uniquely identifying the nodes across the
layers. The one above is just one possible definition of a
temporal network; other definitions consider the evolution to
happen in continuous rather than discrete time [16].

There are R(N, T ) = 2T (N
2 ) total possible temporal net-

works with N nodes and T layers. There are, in fact, 2(N
2 )

different labeled networks with N nodes; those networks can
be permuted in (2(N

2 ))T ways, where permutations also include
repetitions.

We consider exhaustive enumerations of all possible tem-
poral networks in only one experiment. Clearly, we choose
very small values of the parameters N and T to make the enu-
meration computationally feasible. In all other experiments,
the space of potential temporal networks is sampled by either
constructing synthetic models or leveraging real data.

1. Synthetic temporal networks

We generate random temporal networks with correlated
layers. Specifically, the layer A(t + 1) of the temporal network
is obtained by copying all the edges in the layer A(t ), and then
shuffling with probability r the end points of each individual
edge with those of another random edge. For instance, if
the edge (i, j) undergoes shuffling, we first select at random
another edge (v,w). We then verify that the edges (i,w) and
(v, j) are not yet present in the network. If they are present,
we select another edge (v,w) and repeat the operation. Other-
wise, we shuffle their end points in the sense that the edges
(i, j) and (v,w) are removed from the network, and they
are replaced by the edges (i,w) and (v, j). The above pro-
cedure of shuffling the end points of edges keeps the degree

sequence of the network layers unchanged. For r = 0, we have
A(t + 1) = A(t ) for all t , i.e., layers are perfectly correlated
and the temporal network is essentially a static network. For
r = 1, all edges are surely shuffled, so no correlation exists
between A(t + 1) and A(t ) except for the fact that they have
the same degree sequence. In our experiments, we start by
generating the first layer A(0) according to the Erdős-Rényi
model with average degree k.

Also, we consider a simple uncorrelated model where all
layers are generated according to the Erdős-Rényi model with
average degree k. Networks of this type are statistically equiv-
alent to those created according to the model above with
reshuffling probability r = 1, with the only difference that
whereas the average degree of the network is invariant across
network layers, the degree sequence is not preserved across
network layers. In all cases where the value of the parameter
r is not specified, we will take advantage of this simple model
to generate uncorrelated random temporal networks.

We note that the hypothesis of having an average degree
that is invariant across layers is not necessarily a characteristic
of real-world temporal networks [28]. To study the problem
of influence maximization in realistic settings, we generate
temporal networks directly from real data without the need to
make any assumption, as described below.

2. Real-world temporal networks

We use 12 empirical datasets containing time-stamped
interactions between pairs of nodes. Some datasets contain
only bidirectional interactions, while others consist of only
unidirectional interactions. In both cases, we treat the inter-
actions as undirected. To construct the temporal networks, we
follow the exact same procedure as followed in [28]. Given the
dataset, we divide the interactions into temporal windows of
equal length. All interactions in a single slice are aggregated
to create a temporal network layer that is undirected and un-
weighted. After the procedure is applied to each slice, we end
up with T layers of networks that form the temporal network
as a whole. The networks used are listed in Table I. For more
details of the procedure of temporal network construction, see
Ref. [28].

B. Spreading dynamics

We consider the discrete version of the susceptible-
infected-recovered (SIR) model for spreading dynamics. We
use the model in the same way as already done in Ref. [28].
However, to properly compare the importance of the initial
conditions on the long-term behavior of the model, we gener-
ate individual instances of the SIR model in a slightly different
manner. Under this procedure, the difference in impact of
different initial conditions is measured on identical, determin-
istic dynamical systems. We then average the difference over
multiple individual instances of the SIR model.

Before starting any dynamics on the network, we generate
the qth instance of the SIR model with parameters λ and μ

by determining the propensity of individual edges to spread
the infection and the propensity of individual nodes to re-
cover at particular instants of time. Specifically, for each edge
(i, j) appearing at time t , we set the spreading propensity of
the edge ρ

(q)
(i, j)(t ) = 1 with probability λ; otherwise, we set
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TABLE I. Real-world temporal networks. List of the empirical
datasets used to construct temporal networks. From left to right, we
report the name of the dataset, the number of network layers T , the
number of nodes N in the network, the reference to the paper(s)
where the data were first considered, and the label of the dataset as
used in the analysis of Fig. 7.

Dataset T N Ref. Label

Email, dept. 1 18 309 [29] a
Email, dept. 2 18 162 [29] b
Email, dept. 3 18 89 [29] c
Email, dept. 4 18 142 [29] d
High school, 2011 11 126 [30] e
High school, 2012 21 180 [30] f
High school, 2013 14 327 [31] g
Hospital ward 20 75 [32] h
Hypertext, 2009 11 113 [33] i
Primary school 11 242 [34,35] j
Workplace 20 92 [36] k
Workplace-2 20 217 [37] l

ρ
(q)
(i, j)(t ) = 0. Also, we set the recovery propensity of node i

at time t as ρ
(q)
i (t ) = 1 with probability μ, and ρ

(q)
i (t ) = 0

otherwise.
Once propensities of edges and nodes are set for all tem-

poral layers of the network, SIR dynamics can be run in a
deterministic fashion, starting from the initial condition �σ (t =
0) = [σ1(t = 0), . . . , σN (t = 0)], where σi(0) = S, I , or R.
Please note that the initial condition does not depend on the
actual realization of the SIR model. The rules that determine
the dynamics for t > 0 are as follows. Indicate with σ

(q)
i (t )

the dynamical state of node i at time t in the qth realization of
the SIR model. We have that

σ
(q)
i (t + 1) = S if

⎧⎨
⎩

σ
(q)
i (t ) = S∧

� j | σ (q)
j (t ) = I ∧ ρ

(q)
(i, j)(t ) = 1

, (1)

meaning that node i remains in the state S if it does not get in
active contact with any infected neighbor. Also, we have that

σ
(q)
i (t + 1) = I if σ

(q)
i (t ) = I ∧ ρ

(q)
i (t ) = 0 (2)

and

σ
(q)
i (t + 1) = I if

⎧⎨
⎩

σ
(q)
i (t ) = S∧

∃ j | σ (q)
j (t ) = I ∧ ρ

(q)
i, j (t ) = 1

. (3)

Equation (2) describes the case of a node already infected that
does not recover. Equation (3) accounts instead for the change
of the dynamical state of the node i getting infected because of
an active contact with at least one infected neighbor. Finally,
we have that

σ
(q)
i (t + 1) = R if

⎧⎨
⎩

σ
(q)
i (t ) = I ∧ ρ

(q)
i (t ) = 1∨

σ
(q)
i (t ) = R

, (4)

i.e., node i recovers if infected and prone to recovery at time
t , or it does not change its state if it already recovered. After

all of the above operations are executed for all nodes i, time
increases as t → t + 1.

Assuming that network evolution and spreading dynamics
happen in discrete time and precisely at the same timescale
simplifies the numerical and analytical analysis of the dy-
namical system. We expect results obtained under these
simplifications to also be valid for temporal networks evolving
in continuous time as long as the duration of individual edges
is sufficiently homogeneous and provided that the SIR model
is reformulated in continuous time [38]. We recognize, how-
ever, that our framework would likely fail to properly describe
SIR dynamics happening on temporal networks characterized
by heterogeneous activity of the edges.

In our experiments, we restrict our attention to initial con-
ditions where all nodes are in the susceptible state, except the
nodes in the seed set X which are in the infected state, i.e.,
σi(t = 0) = I if i ∈ X and σi(t = 0) = S if i /∈ X . Starting
from such initial configurations, the dynamics in a network
with T layers is simulated until the stage T . The outbreak
size f (q)(X ) at the end of the qth realization of the process is
calculated as the total number of infected and recovered nodes
at T , i.e.,

f (q)(X ) = 1

N

N∑
i=1

[
1

σ
(q)
i (T ),I + 1

σ
(q)
i (T ),R

]
,

where 1x,y is the identity operator, i.e., 1x,y = 1 if x = y and
1x,y = 0 otherwise.

We indicate the marginal gain in influence of adding node
v to the seed set X as

f (q)
X (v) = f (q)(X ∪ {v}) − f (q)(X ). (5)

We estimate the influence of the set X by taking the aver-
age value of the outbreak size over Q independent realizations
of the SIR model, i.e.,

〈 f (X )〉 = 1

Q

Q∑
q=1

f (q)(X ). (6)

C. Influence maximization

Influence maximization is defined as the constrained opti-
mization problem

X ∗(M ) = arg max
|X |=M

〈 f (X )〉. (7)

Essentially, the goal of the problem is finding the set of seeds
X ∗(M ) of size M corresponding to the maximum value of the
influence function.

Exact solutions of the problem are obtainable via brute-
force search over all possible

(N
M

)
ways of choosing M seed

nodes out of N total nodes in the network. For each of these
candidate sets, the influence function of Eq. (6) should be
evaluated. Clearly, the brute-force search can only be applied
on relatively small networks and small seed set sizes. In most
of the practical settings, the solution of the problem of Eq. (7)
can only be approximated.
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FIG. 1. Violation of the necessary conditions for the submodularity of the influence function on temporal networks. For simplicity, we
consider the deterministic case of the SIR model where the probabilities of infection and recovery are λ = μ = 1. (a) We display four possible
scenarios for the marginal gain of adding node v to sets A and B, where A = {x},B = {x, y}, v = z. The cases are separated on the basis of the
marginal gains being negative or not. The marginal gains in the four scenarios are (i) fA(v) = 1, fB(v) = 2, (ii) fA(v) = 1, fB(v) = −1, (iii)
fA(v) = −1, fB(v) = 0, and (iv) fA(v) = −2, fB(v) = −1. The inequality (10) is violated in (i), (iii), and (iv). (b) A counterexample for the
submodularity of the influence function. Let A = {x},B = {x, y}, v = z. Green circles denote nodes in the susceptible state, red squares denote
nodes in the infected state, and yellow triangles denote nodes in the recovered state. (c) A counterexample for the γ -weakly submodularity of
the influence function. Let A = {w},B = {x, y, z}.

D. Greedy optimization

Approximate solutions to the problem can be obtained
using a greedy optimization algorithm, defined as follows.
Representing the seed set at stage m of the algorithm as
Gm = {g1, g2, . . . , gm}, we initialize G0 = ∅. The seed at stage
m > 0 is chosen as

gm = arg max
x/∈Gm−1

〈 fGm−1 (x)〉. (8)

The algorithm of Eq. (8) provides us with an approximation
of the solution of Eq. (7) after m = M iterations. As Eq. (8)
tells us, at each stage of the greedy selection algorithm, the
node giving rise, on average, to the largest marginal gain in
the influence function is selected. The average value of the
marginal gain of each node x /∈ Gm−1 is numerically estimated
from Eq. (6) by running independent simulations.

On static networks, the influence function of Eq. (6) is a
submodular function with non-negative marginal gains. These
two properties guarantee that the solution provided by the
greedy algorithm is at max 1 − 1/e times away from the
ground-truth optimal solution [9]. On temporal networks, such
an optimality bound is guaranteed only for μ = 0. For μ > 0,
the influence function is not necessarily a submodular func-
tion with non-negative marginal gains, and hence there is no
guarantee on the optimality gap for the solutions obtained via
the greedy algorithm [27].

III. SUBMODULARITY OF THE INFLUENCE FUNCTION

In the following sections, we analyze the details for the
violation of the condition for submodularity in temporal net-
works. In particular, we show why the influence function is
neither submodular nor γ -weakly submodular.

A. Submodularity

In their work, Kempe et al. showed that the influence func-
tion of Eq. (6) on static networks has non-negative marginal
gains and is a submodular function [2].

The influence function has non-negative marginal gains if

fA(v) � 0, (9)

for any set A and for any node v. Influence is a submodu-
lar function if it satisfies the submodularity or “diminishing
returns” condition, i.e.,

fA(v) � fB(v), (10)

for all nodes v /∈ B and for all sets of nodes A ⊆ B. This
means that the marginal gain obtained by adding node v to
the set A, a subset of B, must be greater than or equal to the
marginal gain obtained by adding node v to the set B.

As we already mentioned, properties (9) and (10) hold for
the SIR model on static networks. They hold for temporal
networks too as long as the recovery probability is μ = 0.
However, they are generally not valid on temporal networks
for μ > 0. Violations of the condition of Eq. (10) may happen
in three main ways, as illustrated in Fig. 1(a). Four scenarios
are realized depending on whether the marginal gains fA(v)

034301-4



EFFECTIVE SUBMODULARITY OF INFLUENCE … PHYSICAL REVIEW E 106, 034301 (2022)

and fB(v) are non-negative or negative. For fA(v) � 0 and
fB(v) < 0 in (ii), the diminishing returns condition holds;
for fA(v) < 0 and fB(v) � 0 in (iii), the diminishing returns
condition is violated. In the other two scenarios illustrated in
(i) and (iv), it depends on the actual values of the marginal
gain.

The inspection of Fig. 1(a) reveals that violations of
the conditions necessary for the submodularity property are
caused by recovered nodes blocking the paths of future in-
fections. In static networks, a recovered node would already
have exploited any possible paths to infect its neighbors. The
difference in temporal networks is that the neighbors of a node
change in time. This means that the infection and recovery
time of a node are fundamental factors that determine which
paths are effectively used by the infection to propagate. In
particular, an early infection of a node may be detrimental
for the long-term fate of the spreading process just because,
once recovered, the node may block paths that would have
been otherwise available if the node was still in the susceptible
state.

For example, in Fig. 1(b), we set A = {x},B = {x, y}, and
v = z. We also set λ = μ = 1 for simplicity. Each row shows
the initial conditions at t = 0 for the seed sets A,A ∪ v,B,
and B ∪ v, respectively. Infections and recoveries occur at t =
0 and t = 1, and the final configuration is seen at t = 2, where
no more infections or recoveries happen. From Fig. 1(b), we
can see that f (A) = 3 in (i), f (B) = 4 in (ii), f (A ∪ v) = 2 in
(iii), and f (B ∪ v) = 4 in (iv). Here, the condition of Eq. (10)
is violated. The main reason for the violation is the premature
infection of node z. The marginal gain of adding node z to
set A is fA(z) = −1. z recovered at t = 1, thus is not able to
infect w. The infection could have occurred if the node was
susceptible at the beginning of dynamics. So, by adding node
z to the set A, the path to infecting node w is blocked by the
premature infection and recovery of node z, thus decreasing
the total outbreak size at the end of the dynamics.

A toy example of how multiple, misplaced seeds may have
dramatic consequences on the size of the outbreak is provided
in Fig. 2. This is a rather specific and unrealistic example,
where a single edge is present at each layer. We expect, how-
ever, that the very same issue, although in more complicated
forms, is at the basis of violations of the necessary conditions
for the submodularity of the influence function in real tempo-
ral networks.

B. γ-weakly submodularity

After showing that the influence function is not submod-
ular, we can test weaker definitions of submodularity that
would give us looser optimality gaps. In their work, Santiago
and Yoshida defined γ -weakly submodularity for nonsubmod-
ular functions [39]. In their definition, a function is γ -weakly
submodular when

∑
v∈B

fA(v) � min

{
γ fA(B),

1

γ
fA(B)

}
(11)

for any disjoint sets of nodes A and B. In the above inequality,
0 < γ � 1. When the inequality holds, it is possible to find a
solution with a so-called randomized greedy algorithm result-
ing in an optimality gap equal to 1 − γ e−1/γ .

FIG. 2. Blocking paths of future infections with multiple seeds.
We display a toy network where increasing the number of seeds have
catastrophic effects on the outbreak size of the spreading process.
For simplicity, we consider the deterministic case of the SIR model
where the probabilities of infection and recovery are λ = μ = 1.
Setting node 1 as the only seed of the process leads to maximum
spread in the network, i.e., f ({1}) = 1. However, adding another
node i > 1 to the seed set generates a reduction in the influence
function, i.e., f ({1, i}) = i/N .

Unfortunately, the influence function of the SIR model on
temporal networks is not γ -weakly submodular. An example
of the violation of the condition of Eq. (11) is shown in
Fig. 1(c). We select A = {w},B = {x, y, z} and λ = μ = 1.
The marginal gains are fA(B) = 1, fA(x) = −1, fA(y) = 0,
and fA(z) = 1. The left-hand side of the inequality (11) reads∑

v∈B fA(v) = 0. This means that for the inequality to hold,
we need γ = 0 or γ = ∞ because fA(B) = 1. However, the
definition of γ -weakly submodularity requires 0 < γ � 1,
meaning that the inequality does not hold.

IV. RESULTS

There are temporal networks where the inequality (10)
is violated and the influence function is not submodular. In
these situations, the greedy algorithm does not provide any
guarantee on the optimality of its solutions. However, it is still
possible that the algorithm provides solutions close enough
to the ground-truth optimum. To investigate this property, we
perform a systematic analysis on synthetic and real-world
networks.

A. Synthetic temporal networks

1. Random selection of seeds

We calculate the frequency of violations of the inequality
(10) as

g(A,B, v) = 1

Q

Q∑
q=1

H
[

f (q)
B (v) − f (q)

A (v)
]
, (12)

where A ⊂ B and v /∈ B, and H (x) is the Heaviside step func-
tion, i.e., H (x) = 1 if x > 0 and H (x) = 0 otherwise. Please
note that f (q)

A (v) and f (q)
B (v) are both computed on the same

qth instance of the SIR model.
In Fig. 3(a), we consider all the R(N = 4, T = 3) =

262, 144 possible temporal networks that can be formed with
N = 4 nodes and T = 3 layers. Indicating the four nodes of
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FIG. 3. Violations of the submodularity condition on temporal
networks. (a) We display the frequency of violations of the dimin-
ishing returns inequality, i.e., g as defined in Eq. (12), on random
synthetic networks of size N = 4 as a function of the SIR parameters
λ and μ. In the computation of Eq. (12), the sets A and B, and
node v are selected randomly with |A| = 1, |B| = 2, and A ⊂ B.
The simulations are run on a network with N = 4 and T = 3, and
all possible configurations with this specific parameters have been
used for the experiments. (b) Same as in (a), but only on a random
temporal network with N = 100, T = 10, k = 5, and r = 1. Results
are averaged over 50 networks. The dashed black line shows the
critical threshold values λc(μ) averaged over 10 networks. (c) Same
as in (a), but for the real-world temporal network “High school,
2012.” The dashed black line shows the critical threshold values
λc(μ). (d) Same as in (a), but for the real-world temporal network
“Hypertext, 2009.”

the network as v,w, x, and y, we set A = {y} and B = {x, y}.
Please note that since we are considering all possible net-
works, the choice of the sets is irrelevant for our purposes.
For a given network, we compute Eq. (12) over Q = 100 SIR
model instances for each combination of μ and λ values. We
then take the average value of g(A,B, v) over all possible
networks to generate the heat map of Fig. 3(a). For λ = 0.00,
the influence function is submodular, there is no spreading,
and fA(v) = fB(v) = 1. For μ = 0.00, the spreading model
becomes equivalent to the SI model, which displays a sub-
modular influence function in temporal networks. For other λ

and μ values, violations of the inequality (10) are observed;
the maximum frequency of violations is registered for μ =
1.00 and λ = 0.90.

We repeat a similar analysis on random temporal net-
works with N = 100, T = 10, k = 5, and r = 1. Results are
reported in Fig. 3(b). For each run of the SIR model, we select
three nodes at random, namely x, y, and v. We compose the
sets A = {y} and B = {x, y}, and compute Eq. (12). Results
in the figure are obtained by averaging g(A,B, v) over 40
runs of the SIR model, and over 50 realizations of the random
temporal network. The pattern revealed from the figure is
similar to one obtained from the exhaustive analysis of
Fig. 3(a).

FIG. 4. Violations of the submodularity condition in synthetic
temporal networks. In all panels, unless stated otherwise, we con-
sider 10 000 networks composed of N = 200 nodes, average degree
k = 5, total number of temporal layers T = 10, and probability of
edge shuffle between consecutive layers r = 0.2. SIR parameters are
λ = μ = 1.00. (a) We display g in Eq. (12) as a function of N . (b) We
display Eq. (12) as a function of T for different values of N . (c) We
display Eq. (12) as a function of k. (d) We display Eq. (12) as a
function of r.

Finally, in Figs. 3(c) and 3(d), we report results for two
real-world temporal networks. In this specific case, we still
select nodes at random, namely, x, y, and v, to compose the
sets A = {y} and B = {x, y}. We compute Eq. (12) using
Q = 2000 SIR simulations. For each realization, we randomly
select the nodes x, y, and v. The pattern observed is similar
to those of the previous two cases, although we observe less
violations than in the case of random temporal networks.
Also, we observe that the probability to observe a violation
of the submodularity inequality is much higher in the super-
critical regime than in the subcritical regime. The dynamical
regime of the SIR process on the network is supercritical if
λ > λc(μ), and subcritical for λ < λc(μ). Here, λc(μ) is the
critical value of the spreading probability for a given value of
the recovery probability μ; see the Appendix for details.

We systematically study violations of the submodularity
condition in random temporal networks. In Fig. 4, we display
the frequency of violations for different N, T, k, and r val-
ues. In each of our experiments, we first generate a network
with a given set of parameters. Then, we select three nodes,
namely, x, y, and v, at random. We form the sets A = {y} and
B = {x, y}, and use these sets together with node v in Eq. (12)
to tell whether or not the diminishing returns inequality is
violated. Please note that we consider μ = λ = 1.00 in this
set of experiments, so only one realization of the SIR model is
possible. We consider 10 000 networks and record the average
number of Eq. (12) over such an ensemble. From Fig. 4, we
see that as N increases, the frequency of violation increases.
For increasing T , we observe a phase transition from almost
no violations to a non-null plateau value. For increasing k,
there is a value where the frequency of violations of the dimin-
ishing returns property reaches a maximum; instead, when the
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FIG. 5. Violations of the condition for marginal gain in synthetic
temporal networks. We measure the frequency of violations of the
condition of marginal gain for the influence function using g̃ as de-
fined in Eq. (13). We analyze random temporal networks composed
of N = 100 nodes and T = 10 layers. We consider different values
of the average degree k, and of the SIR parameters λ and μ. In the
estimation of Eq. (13), we select A and v randomly, and we average
over Q = 40 instances of the SIR model. We further take the average
over 50 temporal networks.

network is either too sparse or too dense, the frequency drops
to zero. As r increases, we see an increase in the violation
frequency. Note that for r = 0, all the layers of the network are
the same, meaning that the network is static and the influence
function is submodular.

In Fig. 4, we reshuffle edges with probability r = 0.2.
However, a similar phenomenology can be obtained by creat-
ing layers independently (see Fig. 9). Given the similarity of
the results, from now on, we focus our attention on the simpler
model where random temporal networks are composed of
layers generated independently.

Also, we measure the frequency of violations of the in-
equality (9) as

g̃(A, v) = 1 − 1

Q

Q∑
q=1

H
[

f (q)
A (v)

]
. (13)

The above equation quantifies how often the addition of the
node v to the set A generates a marginal loss in the influence
function. Results of our analysis are reported in Fig. 10. We
set λ = μ = 1.00, and consider Q = 1 SIR simulations; in
each simulation, we select at random two nodes, namely, x
and v. We set A = {x}. We estimate g̃ by taking the average
over 10 000 different networks; for each network, we sample
A and v once. We observe that the frequency for observing a
marginal loss by adding a node follows a very similar behavior
as the frequency of violations of the submodularity inequality;
see Fig. 4. We take advantage of this similarity and focus our
attention on marginal loss cases from now on, rather than mea-
suring violations of the submodularity inequality. This allows
us to alleviate some computational burden without altering the
conclusions of the numerical analysis. We can, in fact, safely
assume that the pattern of violations of the inequality (9) is
similar to the pattern of violations of the condition of Eq. (10).

All the results presented until now used λ = μ = 1.00. In
Fig. 5, we show results valid for λ < 1.00 and μ � 1.00. We
see that the frequencies of inequality violations decrease as
the recovery probability μ decreases, indicating that with a

FIG. 6. Violations of the condition for marginal gain in syn-
thetic temporal networks under greedy selection. We measure the
frequency of marginal losses using g̃ as defined in Eq. (13) on random
temporal networks for different sizes of A. In all panels, unless
stated otherwise, we consider networks composed of N = 100 nodes,
T = 10 layers, and average degree k = 2.5. (a) We display Eq. (13)
as a function of N . (b) We display Eq. (13) as a function of T . (c) We
display Eq. (13) as a function of k.

low recovery probability, it is less likely to observe violations
of the inequality (9).

2. Greedy selection of seeds

All results we obtained so far indicate that violations of
the inequalities (9) and (10) may occur frequently if tested
for sets of randomly chosen nodes. It is, however, natural to
ask whether such an observation is also valid when nodes
are selected according to the greedy optimization protocol of
Eq. (8). In our tests, we measure the marginal gain obtained by
adding the mth node at the mth stage of the greedy algorithm.
We perform the tests on 2000 random temporal networks for
various values of the parameters N , T , and k. SIR simula-
tions are performed for λ = μ = 1.00. Results are obtained
by averaging Eq. (13) over the various network realizations
and are reported in Fig 6. The frequency of violations of the
inequality (9) under greedy selection decreases significantly
compared to the case where nodes are randomly selected. For
the initial stages of the greedy algorithm, the frequency is
almost zero; we only start seeing non-null cases of marginal
loss in late stages of the algorithm. We do not show the results,
but we observe that for λ < 1.00 and μ < 1.00, the frequency
of marginal loss becomes almost zero when selecting up to
10% of all nodes as initial spreaders.

B. Real-world temporal networks

We analyze the frequency of violations of condition of
Eq. (9) on real temporal networks. We conduct our analysis
on the networks shown in Table I. Results of our analysis are
reported in Fig. 7. We observe the same phenomenology as
for the case of random temporal networks. If initial spreaders
are selected randomly, then the number of configurations for
which inequality (9) does not hold is not negligible. On the
other hand, if spreaders are chosen according to the greedy
strategy, then cases where the inequality (9) is violated are
almost nonexistent. This finding suggests that even though the
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FIG. 7. Violations of the condition for marginal gain in real
temporal networks. We measure the frequency of marginal losses
using g̃ as defined in Eq. (13) on the real-world temporal networks
listed in Table I. Results are displayed as full black curves. Labels
of the various panels reflect those appearing in the table. The SIR
parameters are λ = μ = 1.00, so that Q = 1 in Eq. (13). We select
A and v randomly 10 000 times and display the average value of
the violation of marginal gains. The red dashed curves represent
the frequency values when seeds are selected according to greedy
optimization.

right conditions to apply greedy optimization are not satisfied,
in practice the greedy algorithm might still work as intended,
finding solutions close to the ground-truth optimum.

C. Greedy maximization against brute-force optimization

After showing that the greedy algorithm finds solutions
characterized by negligible violations of the condition (9),
we also want to see how close greedy solutions are to the
ground-truth optimal solution. To this end, we apply brute-
force optimization to find seed sets of small size in both
random and real temporal networks. We then compare these
solutions to those obtained using greedy optimization and
random selection. Results from all our tests are summarized
in Tables II and III; results for a few sample cases are reported
in Fig. 8. In general, we observe that the greedy algorithm is
almost optimal. In particular, the performance of the greedy
algorithm is far above the 1 − 1/e bound that would be valid
if the influence was indeed a submodular function with non-
negative marginal gains. At the same time, we see that random
selection performs poorly, generating outbreak sizes well be-
low the optimality bound.

V. CONCLUSION

In spreading processes occurring on temporal networks,
the influence function is not a submodular function, and yet
greedy optimization provides performances far better than
those of other heuristic methods [28]. Here, we investigated
the reasons behind such effectiveness of the greedy strategy.
We measured violations of the necessary conditions for the
submodularity property. We observed that the premature in-

FIG. 8. Optimal selection of influential spreaders in temporal
networks. (a) We display the influence function of Eq. (6) as a
function of the size of the set of influential spreaders X . Different
methods for the identification of the influential spreaders are used,
either brute-force search (black), greedy optimization (red), or ran-
dom selection (blue). We also display the 1 − 1/e bound from the
brute-force solution (green). Results are valid for a random temporal
network composed of N = 200 nodes, T = 10 layers, and average
degree k = 1.5. SIR parameters are λ = μ = 1.00. (b) Same as in
(a), but for λ = 0.25 and μ = 0.50. (c) Same as in (a), but for the
real-world temporal network “High school, 2012.” (d) Same as in
(c), but for λ = 0.10 and μ = 0.25.

fection and recovery of some nodes may have detrimental
effects on the outbreak size, which in turn bring violations
of the necessary conditions for the submodularity property.
In our systematic analysis, we showed that violations occur
frequently if seeds are selected at random. When seeds are
selected according to the greedy optimization protocol, we
observe that the frequency of violations is much lower in
random temporal networks and nonexistent in real-world tem-
poral networks. This finding suggests that even though the
function to be optimized does not satisfy the strict definition of
a submodular function, in practice it behaves as an effectively
submodular function under greedy optimization. As a matter
of fact, solutions found by the greedy algorithm are as good
as expected for optimization problems involving truly, mathe-
matically speaking, submodular functions. To actually test this
hypothesis, we compared greedy solutions to ground-truth so-
lutions in small networks and for small sizes of the seed sets.
We observed that in all considered cases, the performance of
the greedy algorithm is very close to the optimal solution.
On average, the greedy algorithm has a performance of, at
worst, 97% in random temporal networks and, at worst, 98%
in real-world temporal networks. This is much higher than
the optimality guarantee of 63% for the greedy algorithm in
static networks and also much better than the performance
that can be achieved with randomly selected nodes. The fact
that greedy optimization generates quasioptimal solutions to
the influence maximization problem on temporal networks is
associated with its ability of avoiding the selection of seeds
whose premature recovery would block future infection paths.
We believe that this ability is not related to the specific pro-
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tocol of optimization, rather to the fact that the optimization
procedure relies on direct measurements of the influence func-
tion. We expect that any other optimization algorithm that uses
dynamical information should be able to achieve similar per-
formance by learning about the blocking effect of some nodes
via measurements of the influence function. Also, the great
effectiveness displayed by the greedy optimization strategy
might indicate the effective existence of a tight lower bound
on the performance of the greedy algorithm in solving the
influence maximization problem on temporal networks. We
leave to future research the challenging task to formulate a
theory for such a performance guarantee.
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APPENDIX A: FINDING THE CRITICAL THRESHOLD

The critical threshold value λc of a temporal network is a
function of the recovery probability μ, denoted as λc(μ). In
order to estimate λc(μ), we start the spreading process from
each single node in the first layer of the temporal network
and calculate the outbreak size. We repeat this process 500
times for each node for a range of values for the infection
probability λ. The λ value that gives the maximum for the
ratio between the standard deviation and mean of the outbreak
sizes is selected as the critical threshold value λc for a given
recovery probability μ.

FIG. 9. Violations of the submodularity condition on synthetic
temporal networks. Frequency of violations of the inequality (10)
on synthetic network models with N = 100, T = 10, k = 5 unless
stated otherwise, and SIR parameters λ = μ = 1.00. (a) Equa-
tion (12) as a function of N . Results obtained for r = 1.0 (black
curve) are compared to the results obtained when layers in the tem-
poral network are created independently (red curve). (b) Same as in
(a), but we display Eq. (12) as a function of T . (c) Same as in (a), but
for Eq. (12) as a function of k.

FIG. 10. Violations of the condition for marginal gain in syn-
thetic temporal networks. Frequency of marginal loss cases with
random seeds on random temporal networks for N = 100, T =
10, k = 5 unless stated otherwise, and SIR parameters λ = μ =
1.00. (a) Equation (13) as a function of N . (b) Equation (13) as a
function of T . (c) Equation (13) as a function of k.

TABLE II. Greedy selection of optimal spreaders in real tem-
poral networks. We report the average outbreak size of the seeds
found by the greedy algorithm on various networks relative to the
optimal solution found with brute-force optimization. The results are
averaged over all real-world temporal networks listed in Table I. We
excluded “Email, dept. 1” and “High school, 2013” due to their size.

λ μ |A| = 2 |A| = 3 |A| = 4 |A| = 5

1.00 1.00 99.0% 98.8% 98.4% 98.2%
0.50 1.00 99.6% 99.3% 99.1% 98.7%
0.25 1.00 100.0% 99.3% 98.9% 98.5%
0.50 0.50 99.7% 99.6% 99.5% 99.4%
0.25 0.50 99.6% 99.6% 98.9% 98.8%
0.10 0.50 98.8% 98.3% 98.6% 98.5%
0.25 0.25 98.9% 99.3% 99.1% 99.1%
0.10 0.25 99.6% 99.1% 99.3% 99.3%
0.05 0.25 99.2% 99.0% 98.6% 98.7%

TABLE III. Greedy selection of optimal spreaders in synthetic
temporal networks. We report the average outbreak size of the seeds
found by the greedy algorithm on random temporal networks rel-
ative to the optimal solution found with brute-force optimization.
The results are averaged over random temporal networks created
with all combinations of the parameters N = 200, T ∈ {5, 10}, and
k ∈ {1.3, 1.4, 1.5, 1.6, 1.7, 2.0, 2.5}.

λ μ |A| = 2 |A| = 3 |A| = 4

1.00 1.00 99.2% 98.4% 98.1%
0.50 1.00 97.9% 97.6% 97.1%
0.25 1.00 100.0% 100.0% 100.0%
0.50 0.50 99.6% 99.4% 98.7%
0.25 0.50 99.7% 99.3% 98.9%
0.10 0.50 100.0% 100.0% 100.0%
0.25 0.25 99.4% 99.4% 99.4%
0.10 0.25 99.7% 99.8% 99.8%
0.050 0.25 100.0% 100.0% 100.0%

034301-9



ERKOL, MAZZILLI, AND RADICCHI PHYSICAL REVIEW E 106, 034301 (2022)

APPENDIX B: ADDITIONAL RESULTS

In Fig. 9, we report the frequency of violations of the in-
equality (10) on synthetic network models for different values
of the parameters N, T, and k. The spreading process is initi-
ated by randomly selected seeds. Specifically, we compare the
results for a temporal network created with r = 0.2 against a
network created with independent layers. In Fig. 10, we show

the results for the frequency of violations of the inequality
(9) on synthetic network models for different values of the
parameters N, T, and k. Also here, the spreading process is
initiated by randomly selected seeds. In Table II, we report
the average performance of the greedy algorithm relative to
brute-force optimization in real-world temporal networks. In
Table III, we report the same results for random temporal
networks.
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