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Community detection in networks using graph embeddings
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Graph embedding methods are becoming increasingly popular in the machine learning community, where they
are widely used for tasks such as node classification and link prediction. Embedding graphs in geometric spaces
should aid the identification of network communities as well because nodes in the same community should be
projected close to each other in the geometric space, where they can be detected via standard data clustering
algorithms. In this paper, we test the ability of several graph embedding techniques to detect communities on
benchmark graphs. We compare their performance against that of traditional community detection algorithms.
We find that the performance is comparable, if the parameters of the embedding techniques are suitably chosen.
However, the optimal parameter set varies with the specific features of the benchmark graphs, like their size,
whereas popular community detection algorithms do not require any parameter. So, it is not possible to indicate
beforehand good parameter sets for the analysis of real networks. This finding, along with the high computational
cost of embedding a network and grouping the points, suggests that, for community detection, current embedding
techniques do not represent an improvement over network clustering algorithms.
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I. INTRODUCTION

Community structure is a common feature of many
complex systems that can be represented as networks. A com-
munity, or cluster, is traditionally conceived as a set of nodes
having a substantially higher probability to be linked to each
other than to the rest of the graph. Detecting communities is a
classic task in network analysis, that helps to uncover impor-
tant structural and functional information of networks [1–3].
It is an unsupervised classification problem, and as such it is
ill defined. Nevertheless, a huge number of algorithms have
been developed over the past two decades.

Most techniques rely on a characterization of the structural
properties of communities, typically via the density of internal
links. Another approach is spectral clustering [4], where the
nodes of the network are projected in a k-dimensional Eu-
clidean space by using the top (or bottom) k eigenvectors of
graph matrices, like the adjacency matrix or, more frequently,
the Laplacian. This way the network is embedded in a geo-
metric space, and, if it has a pronounced community structure,
clusters of nodes appear as groups of points which are close
to each other, and well separated from the points in the other
groups. Such concentrations of points can be identified via
standard data clustering techniques.

In the last decade several approaches have been devel-
oped to embed graphs in high-dimensional geometric spaces,
while preserving some of their properties [5]. Such embedding
techniques have proven to be useful to solve important tasks
with many potential applications, e.g., node classification, link
prediction, graph visualization [6]. Node classification aims at
determining the label of nodes based on other labeled nodes
and the topology of the network. Link prediction aims at

predicting missing links (e.g., because of incomplete data) or
links that are likely to occur in the future.

However, it is unclear whether such embedding strategies
make the identification of communities easier than by ap-
plying traditional network clustering algorithms. Here, we
address this specific issue. We adopt a broad collection of
embedding techniques to project in vector spaces artificial
networks with planted communities. We use the Lancichinetti-
Fortunato-Radicchi (LFR) benchmark graphs [7], which are
regularly employed to test clustering algorithms. The resulting
distributions of geometric points are divided into clusters by
using the k-means algorithm [8].

Our analysis reveals that default values of the parameters
for the embedding methods, recommended based on their
optimal performance in other tasks, lead to comparable per-
formance as traditional nonparametric community detection
methods, though performance tends to degrade for larger net-
works. A careful exploration of the parameter space often
allows superior performance than standard clustering algo-
rithms, but the results are very sensitive to little variations in
the parameters’ values and we could not find specific sets of
values leading to good solutions in most cases.

II. METHODS

A. LFR benchmark

The LFR benchmark is characterized by power-law dis-
tributions of degree and community size, reflecting the
heterogeneity of these two variables in real graphs [7]. The
parameters needed to generate the graphs are the number of
nodes N , the exponents of the distributions of degree (τ1)
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and community size (τ2), the average degree k, the maximum
degree kmax, the extremes of the range of community sizes
cmin (lower) and cmax (upper), and the mixing parameter μ.
The latter indicates how pronounced the community structure
is. If μ = 0 clusters are disjoint from each other, i.e., all links
fall within communities, and are easily detectable. For μ = 1
links fall solely between clusters, which are not communities
in the traditional sense of cohesive subsets of nodes, albeit
they might be still detectable with particular techniques [9].
Normally, the parameters are fixed at the onset, except μ

which is varied to explore different strength of communities.
For our tests we used two different sets of parameters, mostly
to explore how the clustering performance of embedding tech-
niques is affected by the network size. The two sets are as
follows:

(i) N = 1000, τ1 = 2, τ2 = 3, k̄ = 20, kmax = 50, cmin =
10, cmax = 100.

(ii) N = 10 000, τ1 = 2, τ2 = 3, k̄ = 20, kmax = 200,
cmin = 10, cmax = 1, 000.

The similarity between the planted partition of the bench-
mark and the one found by the clustering algorithm can
be measured in various ways. We opted for the normalized
mutual information (NMI) [10], a measure borrowed from
information theory, which is regularly used in this type of
tests. For each value of μ we generated 20 configurations of
the benchmark and report the average value of the NMI for
such set of configurations as a function of μ.

For a thorough assessment of clustering performance, we
also carried out tests on the popular benchmark by Girvan
and Newman [11], where communities have the same size
and nodes have the same degree. The results are reported in
Appendix A and confirm the conclusions of our work.

B. Data clustering

After obtaining the embedding, k-means clustering is
adopted to group the points into clusters. k means is very
popular in data clustering. To make sure our message is not
strongly dependent on the choice of the specific clustering
method, we used Gaussian mixture models [12] as well, which
leads to similar results. k-means clustering minimizes the
squared distance between each data point (corresponding to
a network node) and its centroid, which is a virtual point
representing its cluster.

In the high-dimensional spaces where the network is em-
bedded, the distance between points becomes less and less
useful and the concept of proximity may not be meaningful, as
different notions of distances may select different neighbors
for the same point. For instance, the ratio of the distances
of the nearest and farthest neighbors to a given target in a
high-dimensional space is almost one for a wide variety of
data distributions and distance functions [13]. For this rea-
son, in our calculations we have used both the standard k
means, based on the Euclidean distance, as well as spherical
k means [14], which uses the spherical distance. Given two
points i and j identified by the vectors of coordinates xi =
(x1

i , x2
i , x3

i , . . . , xd−1
i , xd

i ) and x j = (x1
j , x2

j , x3
j , . . . , xd−1

j , xd
j ),

where d is the number of dimensions, the two distance metrics
are defined as follows:

(i) Euclidean distance:

distE (i, j) =
√√√√ d∑

l=1

(
xl

i − xl
j

)2
. (1)

(ii) Spherical distance:

distS (i, j) = 1 −
∑d

l=1 xl
i xl

j√∑d
l=1

(
xl

i

)2 ∑d
l=1

(
xl

j

)2
. (2)

Data clustering techniques typically require the knowledge
of the number of clusters beforehand. Instead of inferring this
number via some criterion, we feed the procedure with the
correct number of clusters of the benchmark graphs. This way
we will actually assess the optimal performance of the embed-
ding techniques. This is a luxury that we do not have when
analyzing real networks, for which the number of clusters is
unknown.

To improve the quality of the clustering, for each network
the procedure is run 100 times, and the partition corre-
sponding to the minimum distance between points and their
centroids is selected.

C. Community detection

We compare the cluster analysis via embedding algorithms
with the performance of widely adopted methods for com-
munity detection. We specifically show the comparison with
Infomap [15] and the Louvain algorithm [16], that are known
to be especially accurate to identify the planted partition of
LFR benchmark graphs [17]. Other methods have similar
performances and we report them in Appendix B. Infomap
is based on diffusion dynamics: if the graph has a pronounced
community structure, a random walker will spend a lot of time
within a community before finally finding a bridge taking it to
another community. This way, the description of an infinitely
long random walk can be reduced by using the same labels for
nodes of different clusters, much like it is done in geographic
maps for the names of towns belonging to different regions
and states. The partition leading to the cheapest description of
the random walk is the best, by construction. The method does
not require any parameter. It has some shortcomings, like the
inability to detect clusters smaller than a certain scale [18] and
the tendency to split nonclique structures with large diameters,
such as strings and lattices [19]. Nevertheless, it is frequently
used in applications. The code was taken from the IGRAPH
[20] library.

The Louvain algorithm is a fast greedy method to optimize
the modularity of Newman and Girvan [21], a function that
estimates the goodness of a partition of a graph in commu-
nities. It is a very popular technique but, like Infomap, it
has important limitations, like the inability to detect clusters
smaller than a certain scale [22]. This is why here we consider
the partition derived in the first step of the algorithm (the one
with the smallest clusters), rather than the one with the largest
value of modularity, which gives poor performance [2]. We
used the PYTHON-Louvain [23] package for NETWORKX.
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D. Genetic optimization

Several graph embedding algorithms have multiple free
parameters that have to be chosen. In the case of a single free
parameter, an exhaustive search can be done over the range of
parameter values to pick the one giving the best clustering per-
formance. However, for other algorithms, exhaustive search
over all free parameters becomes computationally infeasible.
To find the best set of parameters we use a simple genetic
algorithm outlined in Ref. [24] and use the PYTHON package
DEAP [25] to implement the algorithm. The parameters used
for the optimization procedure are as follows:

(1) Number of individuals in the population = 50.
(2) Number of generations = 20.
(3) Mutation function: normal distribution with mean 0

and standard deviation 3.
(4) Mutation probability = 0.2.
(5) Probability of an individual being produced by

crossover = 0.5.

III. RESULTS

In this section we present the results of our tests. Each of
the following subsections reports the results for a different
class of embedding techniques.

A. Matrix-based methods

The approach consists in projecting nodes onto a high-
dimensional vector space via eigenvectors of graph matrices,
which is the same principle of spectral clustering [4].

1. Laplacian eigenmap (LE)

The Laplacian eigenmap (LE) [26] minimizes, under some
constraints, the objective function

ELE =
∑

i j

|xi − xj|2Ai j, (3)

where xi is the vector indicating the position of the point
representing node i in the embedding and A is the adjacency
matrix of the graph, whose elements weigh the square dis-
tance between the corresponding points. Nodes that have a
higher link weight will consequently be closer together in
the embedding. The constraint xT Dx = 1, where D is the
diagonal matrix of the degrees of the graph nodes, is added
to remove an arbitrary scaling factor in the embedding. If we
wish an embedding in d dimensions, it can be shown that the
desired one is obtained via the eigenvectors corresponding
to the d lowest eigenvalues (except the zero eigenvalue) of
the problem L̃x = λDx, where L̃ = D− 1

2 (D − A)D− 1
2 is the

normalized Laplacian matrix of the graph. The projection xi

is the vector whose components are the ith entries of the
d eigenvectors. LE has a single parameter, the embedding
dimension d , making it straightforward and easy to use. In
Fig. 1 we show how LE performs for different values of d
(i.e., 32, 128, 256) and the two k-means clustering procedures
we have chosen. The panels correspond to the different sets
of parameters of the LFR benchmark listed in Sec. II A. The
performance of Infomap is generally superior, despite the fact
that the latter has no parameters and ignores the number of
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FIG. 1. Performance of Laplacian eigenmap on LFR networks of
1000 nodes (a) and 10 000 nodes (b). The NMI values are averaged
over 10 realizations of the same LFR configuration for each μ.
The baseline performances are those of Infomap (star) and Louvain
(filled triangle). The shaded area of the Infomap curve in (a) reflects
the large fluctuations of the NMI when the performance declines:
here the partition found by the algorithm oscillates between one
correlated with the planted one and the partition into one cluster, so
the distribution of the NMI for those values of μ is bimodal (with
peaks near 1 and 0), which gives a large variance. The spherical
distance metric (bullet) performs better than Euclidean distance (x)
in the regime of low μ and high embedding dimension d . The best
possible performance (filled square) is found by doing an exhaustive
search across 50 different values of d ranging from 2 to 500 for each
network and selecting the one with the largest NMI.

clusters, which is derived by the algorithm itself. By doing an
exhaustive optimization, for each single network (even when
μ is the same) we have identified the value of d giving the
best performance. The resulting performance curves are a bit
better than those of Infomap on the smaller networks, while
on the larger ones Infomap has still an edge. However, the
optimal d value varies with μ. It is well known that, in spectral
clustering, the ideal number of eigenvectors to use to obtain a
good clustering typically matches the number of clusters to
be found [4]. We find that this is mostly true here, but not
always. Louvain has comparable perfomance as LE on LFR
graphs with 1000 nodes, while its curve worsens on the larger
graphs.

We remark that for low values of μ the performance is
unexpectedly poor, given that communities are well separated
from each other. It turns out that in these cases some nodes of
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FIG. 2. Performance of locally linear embedding on LFR net-
works of 1000 nodes (a) and 10 000 nodes (b). The NMI values
are averaged over 10 realizations of the same LFR configuration for
each μ. The baseline performances are those of Infomap (star) and
Louvain (filled triangle). The cosine distance metric (bullet) performs
better than the Euclidean distance (x) in the regime of low μ and high
embedding dimension (d). The best possible NMI (filled square) is
found by doing an exhaustive search across 50 different values of d
ranging from 2 to 500, for each network and selecting the one with
the largest NMI.

different clusters are projected close to each other, making it
hard to correctly classify them (see Appendix C).

2. Locally linear embedding (LLE)

Locally linear embedding (LLE) [27] minimizes the objec-
tive function

ELLE =
∑

i

∣∣∣∣∣xi −
∑

j

Ai jxj

∣∣∣∣∣
2

, (4)

where each summand is the square distance between vectors.
Each point in the embedded space xi is approximated as a
linear combination of its neighbors in the original graph.
To make the problem well posed, the solutions are required
to be centered at the origin, i.e.,

∑
i xi = 0, and have unit

variance, i.e., 1
N xT x = I . With these constraints the solution

is approximated by the eigenvectors corresponding to the
lowest eigenvalues (disregarding the zero eigenvalue) of the
matrix M = (I − A)T (I − A). Like LE, LLE too has a sin-
gle parameter, the embedding dimension. The results are in
Fig. 2, where we again consider up to three values for the

0.00 0.25 0.50 0.75 1.00

Mixing parameter μ

0.00

0.25

0.50

0.75

1.00

N
M

I

Louvain

Infomap

Optimum parameter set (Euclidean)

Optimum parameter set (spherical)

d = 149 β = 0.0224 (Euclidean)

d = 149 β = 0.0224 (spherical)

FIG. 3. Performance of higher-order preserving embedding on
LFR networks with 1000 nodes. The baseline performances are those
of Infomap (star) and Louvain (filled triangle). For each value of
the mixing parameter μ, the average NMI over 10 configurations is
reported. The best parameters are found by employing a genetic op-
timization in two different ways: finding the best parameters for each
configuration separately (brown) and finding the optimum parameter
set across all values of μ (green and red, the optimal parameters
are indicated) by optimizing the area under the curve. The spherical
distance metric (dashed) performs better than the Euclidean metric
(solid lines).

number of dimensions (i.e., 32, 128, 256) and derive the best
performance curve by identifying the best d value for each
benchmark graph via exhaustive optimization. The conclusion
is similar as for LE: LLE generally underperforms Infomap.
The optimal performance curve is better but the values of the
best number of dimensions vary with the network. Louvain is
comparable to the best LLE curve for N = 1000, while it is
worse for N = 10 000.

3. Higher-order preserving embedding (HOPE)

Higher-order preserving embedding (HOPE) [28] aims to
preserve the similarity between nodes. In its general formu-
lation, the function that is optimized is ||S − xxT || where S
is the similarity matrix and the matrix distance is the sum
of the squares of the differences between the corresponding
matrix elements. Although the authors try several different
similarity metrics, we found Katz similarity [29] to be the
best performing one and used it in our experiments here. Katz
similarity is defined as

SKatz = β

∞∑
l=1

Al , (5)

where β < 1 is a decay parameter. The other parameter d is
the embedding dimension.

Figure 3 shows the results of the analysis, where we only
considered the smaller LFR graphs, with 1000 nodes, as ex-
periments on the larger networks have a high computational
cost. The colored curves correspond to the optimal perfor-
mance, which is obtained by using the genetic algorithm
described in Sec. II D. We followed two different approaches:
(1) optimization of the parameters for each individual net-
work; (2) optimization of the parameters for the whole curve,
so that their values are fixed for every μ and graph. This is to
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FIG. 4. Performance of modularized non-negative matrix factor-
ization for LFR benchmark graphs of 1000 nodes (a) and 10 000
nodes (b). The baseline performances are those of Infomap (star)
and Louvain (filled triangle). The performance obtained by using the
default parameters (blue and orange) is almost as good as the best
performance obtained by doing an evolutionary optimization over the
parameters. The latter can be done optimizing NMI for each graph
configuration separately (brown) or optimizing the area under the
curve (green and red). For graphs of 10 000 nodes the default param-
eters lead to a poor performance. There is no significant difference
between the two different metrics (Euclidean and spherical).

check whether we can recommend specific pairs of values for
clustering purposes. Also, we considered both k-means algo-
rithms. By construction, the graph-based optimization offers
a superior performance than the optimization based on the
whole curve, though the difference is not big.

The Infomap curve is better than all optimal ones until
μ ∼ 0.7, then it undershoots them for larger μ, though in that
region the overall performance is quite poor because commu-
nities are well blended with each other. Louvain is comparable
to both best performance curves.

4. Modularized non-negative matrix factorization (M-NMF)

Modularized non-negative matrix factorization (M-
NMF) [30] incorporates modularity [31] into the optimization
function. Modularity is a function expressing how good
a partition in communities is, based on the comparison
between the network and randomized versions of it, which are
supposed not to have community structure. The minimization
of the optimization function guarantees that nodes are
projected near each other if they are similar and, at the
same time, if they belong to clusters of high-modularity

0.00 0.25 0.50 0.75 1.00

Mixing parameter μ

0.00

0.25

0.50

0.75

1.00

N
M

I

(a)

Louvain

Infomap

Optimum parameter set (Euclidean)

Optimum parameter set (spherical)

Default parameter set (Euclidean)

Default parameter set (spherical)

Optimum single parameter set (Euclidean)

0.00 0.25 0.50 0.75 1.00

Mixing parameter μ

0.00

0.25

0.50

0.75

1.00

N
M

I

(b)

Louvain

Infomap

Default parameter set (Euclidean)

Default parameter set (spherical)

Optimum single parameter set (1k)

FIG. 5. Performance of DeepWalk on LFR benchmark graphs of
1000 nodes (a) and 10 000 nodes (b). The baseline performances
are those of Infomap (star) and Louvain (filled triangle). The per-
formance of the algorithm using the default parameter set is better if
we adopt the Euclidean distance (blue, solid) instead of the spherical
distance (orange, dashed). The default parameter performance is not
significantly worse than the optimum performance found by doing an
evolutionary optimization over each configuration (filled square) or a
single parameter set across all configurations (star). For each value of
μ, 10 different LFR graphs are generated and the NMI value shown
is the average across them.

partitions. The similarity between two nodes is the cosine
similarity of vectors whose entries are the overlaps between
the neighborhoods of the nodes. Although the original paper
does not mention a default set of parameters, we use the
following ones for the experiments in this paper: dimension
d = 128, λ = 0.2, α = 0.05, β = 0.05, η = 5.0, number of
iterations Ni = 200.

The results are in Fig. 4. In Fig. 4(a) we show the curve
obtained with the default parameters above and the ones ob-
tained by optimizing the NMI for each individual graph and
for the whole range of μ values. The optimization is carried
out with the procedure described in Sec. II D. All curves are
better than those of Infomap. However, when we use the
default parameters for the larger LFR graphs [Fig. 4(b)], the
performance degrades considerably and Infomap does much
better. On such graphs we could not derive the optimal curves.
Due to the high number of parameters, the optimization is
very costly, computationally, so we only report the curve
with the default parameters. Louvain offers closer perfor-
mances on both network sizes, though it is clearly superior for
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FIG. 6. Performance of node2vec on LFR benchmark graphs of
1000 nodes (a) and 10 000 nodes (b). The baseline performances
are those of Infomap (star) and Louvain (filled triangle). The per-
formance of the algorithm using the default parameter set is better if
we adopt the Euclidean distance (blue, solid) instead of the spherical
distance (orange, dashed). The default parameter performance is not
significantly worse than the optimum performance found by doing an
evolutionary optimization over each configuration (filled square) or a
single parameter set across all configurations (star). For each value of
μ, 10 different LFR graphs are generated and the NMI value shown
is the average across them.

N = 10 000 and low μ values, where it is capable to detect the
correct partition, while MNMF fails to do so consistently.

B. Random walk embeddings

In this section we present tests carried out by using embed-
dings that rely on random walks performed on the graph. We
chose the two most popular techniques of this class, described
below.

1. DeepWalk

DeepWalk [32] applies language modeling techniques
from deep learning on graphs instead of words and sentences.
The algorithm uses local information obtained from truncated
random walks to learn latent representations by treating walks
as the equivalent of sentences in the word2vec [33] language
model. The default parameters used for the experiments here
are dimension d = 128, window w = 10, random walk length
t = 40, number of walks per node n = 80.

In Fig. 5 we show the performance curves for the de-
fault parameters for both standard (Euclidean) and spherical
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FIG. 7. Performance of large-scale information network embed-
ding on LFR benchmark graphs for 1000 nodes. The baseline
performances are those of Infomap (star) and Louvain (filled tri-
angle). The curves show the optimal performance of the three
implementations of the method. The first implementation, LINE-1, is
clearly the best and outperforms Infomap, albeit by a small margin.

k means, as well as the optimal curves obtained by max-
imizing the NMI for each single LFR graph and using a
single parameter set for the whole range of μ values. The
curves are similar: the default parameter curves are worse than
those of Infomap and Louvain, while the optimal performance
when the parameters are adjusted for each single network
is superior. For the larger LFR graphs (bottom panel) the
performance optimization is very expensive, so we only report
the curves obtained by using the default parameters and the
optimal parameter set found on the smaller graphs. The latter
closely follows the curve of the default parameters (Euclidean
distance). Infomap is clearly superior here, while Louvain has
comparable performance as DeepWalk’s default curves.

2. node2vec

node2vec [34] uses the same optimization procedure as
DeepWalk, but the process to generate the “sentences” is dif-
ferent. Instead of using simple random walks as in DeepWalk,
node2vec uses biased random walks. The walk consists of a
mixture of steps following breadth-first and depth-first search,
with parameters p and q regulating the relative weights of the
two approaches. The default parameters used for the experi-
ments here are dimension d = 128, window w = 10, random
walk length t = 10, number of walks per node n = 80, biased
walk weights p = 1 and q = 1.

In Fig. 6 we show the performance curves for the de-
fault parameters for both standard (Euclidean) and spherical
k means, as well as the optimal curves obtained by maximiz-
ing the NMI for each single LFR graph and using a single
parameter set for the whole range of μ values. For the de-
fault parameters the results are very similar as for DeepWalk
since for those parameters the two techniques are equivalent
(Fig. 5). For the larger LFR graphs we include the curve with
the optimal single parameter set found for the smaller net-
works, which is significantly worse than the default parameter
curves in this case. This shows that the optimal parameter set
is strongly dependent of the network size, along with other
features.
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TABLE I. Comparison of the performances of Infomap and the embedding-based clustering algorithms we have adopted in our tests, for
LFR benchmark graphs of 1000 nodes. Performance is estimated by computing the area under the curve (AUC). We started computing the
AUC from μ = 0.1 because in some cases we do not have results for lower μ values. Each value in the table is the higher score between
the one obtained using the Euclidean distance and the one obtained using the spherical distance. The AUC of the best traditional community
detection method is indicated in boldface.

Area under curve

Algorithm Default parameter set Optimum parameter set Optimum single parameter set

Infomap 0.60
Louvain 0.62
Laplacian eigenmap 0.64
LLE 0.64
HOPE 0.64 0.62
M-NMF 0.63 0.65 0.64
DeepWalk 0.59 0.64 0.61
node2vec 0.62 0.66 0.64
LINE 0.62

C. Large-scale information network embedding (LINE)

Large-scale information network embedding (LINE) [35]
projects nodes the closer to each other the higher their simi-
larity. It considers both first order similarity, based on whether
nodes are adjacent or not, and second order similarity, based
on the overlap of the neighborhoods of two nodes.

There are two different ways to obtain the embeddings,
denoted LINE-1 and LINE-2. The authors also suggest con-
catenating the two embeddings to obtain a 2d dimensional
embedding which we denote by LINE-1 + 2.

In Fig. 7 we show the results for the LFR graphs with 1000
nodes. The method is very slow so we could not produce the
analogous curve for benchmark graphs with 10 000 nodes. For
each of the three different implementations of the method we
have derived the optimum parameters via the genetic algo-
rithm of Sec. II D, for each LFR network. For LINE-1 the
optimal performance exceeds those of Infomap and Louvain,
though the curves are very close, the other two implementa-
tions are far worse. We do not show the curves corresponding
to the default parameters because they are very poor.

In Tables I and II we summarize our comparative analy-
sis by reporting the performances of the various techniques,
measured via the area under the curve.

TABLE II. Same as Table I, but for LFR benchmark graphs of
10 000 nodes. The AUC of the best traditional community detection
method is indicated in boldface.

Area under curve

Algorithm Default parameter set Optimum parameter set

Infomap 0.62
Louvain 0.58
Laplacian eigenmap 0.66
LLE 0.64
M-NMF 0.57
DeepWalk 0.60
node2vec 0.59

IV. CONCLUSIONS

We have evaluated the performance of graph clustering
techniques mediated by embeddings of networks in high-
dimensional vector spaces. The identification of the clusters in
the vector space is done via data clustering methods, specif-
ically k means. Overall we found that the several embedding
strategies we have adopted do not help to resolve the com-
munity structure of LFR benchmark graphs better than the
best performing community detection algorithms, Infomap
and Louvain, which act directly on the network, without any
embedding. The parameters of the embedding procedure can
be optimized such to get close or even outperform the curve of
those algorithms. However, the optimal parameters generally
vary with the mixing parameter μ, so we could not come
up with a single parameter set that we can recommend for
clustering applications. Besides, the optimal parameter values
are affected by the network size as well, so there would not
be a “one-size-fits-all” parameter set. This means that, for a
given real network, we cannot know which parameters are
best to reveal its modular structure, which results in noisy
partitions. Finally, the combination of embedding techniques
plus data clustering is a computationally expensive procedure.
While some embedding algorithms can scale up to very large
graphs, data clustering techniques (like k means) typically
scale superlinearly with the graph size. As a result, the full
procedure is much more computationally demanding than fast
graph clustering methods, like Infomap and Louvain.

We acknowledge that the embedding is just a component
of the overall clustering algorithm, and that the performances
we observe might be due to the data clustering approach used
to group the points into clusters. We have used k means and
Gaussian mixture models (results not shown), which are regu-
larly adopted for data clustering, without finding significant
differences. Still, the number of clusters, which is usually
unknown in practice, needs to be specified as input, and we set
it equal to the correct value for the planted partition. By doing
that we have significantly helped the performance, whereas
many network clustering algorithms (including Infomap and
Louvain) are able to infer the number of clusters. This means
that the curves we have shown in our plots are better, in
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FIG. 8. Performance of all the considered embedding methods
on a stochastic block model (SBM) of 20 groups of 50 nodes each.
The average degree is set to 20. The mixing parameter μ is reported
on the x axis, for each μ value 10 graphs are generated and the aver-
age NMI over them is shown on the y axis. (a) Curves corresponding
to the default parameters. (b) Best curves obtained via the genetic
optimization over the parameters (Sec. II D).

general, than the ones we would obtain if the number of
clusters were inferred via some criterion. We also recognize
that the concept of distance becomes problematic in high-
dimensional spaces and work is in progress to alleviate the
drawbacks deriving from that.

Embedding techniques have not been designed to tackle
specifically the clustering task, so it is not surprising that they
do not excel in this task. To improve their clustering per-
formance embedding strategies that focus on preserving the
modular structure of networks should be developed. Spectral-
based embeddings seem particularly promising in that regard
because of the provable optimal performance of spectral
clustering in synthetic graphs with communities built with
stochastic block models [9] and because they provide ways
to estimate the number of clusters [36–40].
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FIG. 9. Performance of all the considered embedding methods
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each. The average degree is set to 20. The mixing parameter μ is
reported on the x axis, for each μ value 10 graphs are generated and
the average NMI over them is shown on the y axis for the default
parameters.

APPENDIX A: COMPARATIVE ANALYSIS
OF EMBEDDING METHODS ON SBM’s

We also performed tests on networks generated by the
classic stochastic block model (SBM) [9] (Fig. 8). The SBM
is a model of graphs with built-in community structure. The
probability to form a link between two nodes only depends
on the groups the nodes belong to. The LFR benchmark is a
special case of SBM. We considered graphs with 20 groups
with 50 nodes each, the average degree is 20. The mixing
parameter μ is again the ratio between the external degree
of a node and its total degree. The best parameters of the
embedding methods are chosen after genetic optimization in
the manner outlined in Sec. II D: the optimum NMI curves
are plotted in Fig. 8(b). Like for the LFR benchmark tests,
the performance curves of Infomap and Louvain are shown
for comparison. Embedding techniques do a bit better there
(except LINE). In Fig. 9 we show the performance curves
of the embedding clustering methods for graphs with 10 000
nodes, with 200 groups of 50 nodes each. Average degree is
still 20. For LE and LLE the number of dimensions, their
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FIG. 10. A comparison of traditional community detection meth-
ods: Infomap, Louvain, Label propagation, and OSLOM on the LFR
benchmark. The average degree, k = 20, and number of nodes N =
1000. The additional parameters for the LFR benchmark are τ1 = 2,
τ2 = 3, kmax = 50, cmin = 10, and cmax = 100.
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FIG. 11. Problem of spectral embeddings for well-separated
communities. The network is generated by an SBM with two blocks,
pin = 1 and pout = 0.0001, and N = 500 in each block. Laplacian
eigenmap is applied for dimensions d = 20, 50, 100 (top to bottom).
The cosine similarity for within cluster node pairs overlaps with that
of the node pairs across clusters for higher embedding dimension,
making the identification of the clusters hard even for this straight-
forward example.

only parameter, is set to the number of clusters, 200. We see
that the embedding methods’ performance worsens a bit here,
while Infomap improves and outperforms all of them. Lou-
vain’s performance degrades considerably. We remind that the
correct number of clusters is fed into the embedding-based
methods, in contrast to the standard clustering techniques,
which are capable to guess it. This confers a major advantage
to embedding-based clustering methods over the traditional
ones.

APPENDIX B: COMPARISON OF TRADITIONAL
COMMUNITY DETECTION METHODS

Here, we compare the performance of four clustering al-
gorithms on the LFR benchmark. Aside from Infomap and
Louvain the other algorithms are:

FIG. 12. Problem of spectral embeddings for well-separated
communities. The network is generated by an SBM with two blocks,
pin = 1 and pout = 0.001, and N = 500 in each block. Laplacian
eigenmap is applied for dimensions d = 20, 50, 100 (top to bottom).
The cosine similarity for within cluster node pairs has limited overlap
with that of the node pairs across clusters for higher embedding
dimension, making the identification of the clusters easier.

(i) The order statistics local optimization method
(OSLOM) [41] seeks statistically significant clusters in
networks. We use the OSLOM code [42], with default
parameters.

(ii) The label propagation algorithm (LPA) [43]. It is a
technique that assigns nodes to the community to which the
majority of its neighbors belong to. The code was taken from
the IGRAPH library.

Fig. 10 shows that Infomap, Louvain, and OSLOM have
comparable performance, whereas label propagation is worse.
We used Infomap and Louvain in the tests of the main text
as representative of well-performing algorithms on the LFR
benchmarks, and for no other reason.
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FIG. 13. Improving Laplacian eigenmap. The network is gener-
ated by the same SBM as in Fig. 11. A modified version of Laplacian
eigenmap for d = 100 is applied, in that the eigenvector components
are multiplied by the (inverse) eigenvalue. In the first row we show
analogous diagrams as in Figs. 11 and 12, for the Euclidean distance
(top row) and the cosine similarity (bottom row). The clusters are
now well separated.

APPENDIX C: FAILURE OF SPECTRAL METHODS
AT HIGH DIMENSIONS FOR μ → 0

In Figs. 1 and 2 we have seen that the performance for
spectral embedding methods like Laplacian eigenmap and
locally linear embedding is not very good for low values
of μ. This is against intuition, as clusters there are well

separated from each other and fairly easy to resolve. To check
what happens we have considered a relatively simple graph
with two communities, built via the stochastic block model
(SBM) [9]. Here, we consider only two communities, with
500 nodes each. The probability of having links within the
groups is pin = 1, the probability of having links between
the groups is pout = 0.0001, so that the communities are well
separated from each other. In this example we expect that
the embedding generates two sets of points well separated
from each other. In Fig. 11 we see what happens if we do
the embedding of this network using Laplacian eigenmap for
different numbers of dimensions: d = 20, 50, 100. Each row
of plots refers to a value of d (growing from top to bottom).
For each d , we compute the cosine similarity of all pairs of
nodes, computed via their respective vectors. Red and black
(gray) indicate pairs in the same versus different groups.
The expectation is that node pairs in the same cluster have
higher similarity than pairs in different clusters. The left plot
shows the actual similarity values for each pair and indeed
we see that pairs of nodes in the same community are very
similar, while pairs of nodes in different communities are
very dissimilar. This is further indicated by the right diagram,
showing the probability distribution of the similarities. We see
that, as d increases, the difference between within-community
and between-community pairs reduces. For d = 100 pairs of
nodes have very low similarity, regardless of their group mem-
berships, which makes it difficult to separate the nodes. This is
due to the peculiar behavior of the eigenvectors of the Lapla-
cian when the clusters are almost disjoint. On the other hand,
in Fig. 12, we consider an SBM like that in Fig. 11, but with
pin = 1 and pout = 0.001. Now we see that the two groups can
be identified even at high dimensions. In the special case of
Laplacian eigenmap, we can modify the embedding strategy
by multiplying the eigenvector components by the inverse of
the corresponding eigenvalue. By doing that we see that the
two groups are clearly separated (Fig. 13). This trick, how-
ever, cannot be easily extended to other embedding strategies
relying on graph spectra.
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