
Path Protection with Pre-identification for MPLS Networks

Dan Wang, Funda Ergun
School of Computer Science, Simon Fraser University

Burnaby BC, Canada, V5A 1S6
e-mail: {danw, funda}@cs.sfu.ca

Abstract

Current approaches to providing robust network con-
nections which are tolerant to failures involve restoration
schemes which mainly focus on reserving backup paths. In
this paper we propose a technique for which avoids the ex-
tra cost for reserving, by pre- identifying (but not reserving)
the backup paths. We present and analyze an algorithm to
solve this problem and study a practical special case in de-
tail. Through simulations we show that our model is signifi-
cantly more cost-efficient than backup path reservation. We
also show how this model can fit into the MPLS architec-
ture.

1 Introduction

In order to provide high-quality service to an ever grow-
ing class of reliable, time- and data-sensitive, lucrative ap-
plications such as virtual lease line services, stock exchange
data services, video services, a fast recovery mechanism
from network failures is desired. Current routing algorithms
focus mainly on finding a path and assume that the paths
will be recomputed in the event of a link or node failure.
An alternative, more responsive approach is protecting the
links being used via backup paths.

The path supporting the transmission in normal condi-
tions is called the primary path. Backup paths (or restora-
tion paths) are secondary paths to be used in case the pri-
mary path fails. Currently, network backup schemes assume
that the backup paths are reserved; that is, even when not in
use, the links of the unused backup path cannot be used by
other applications. While guaranteeing high reliability, this
approach has two problems: 1) it unnecessarily increases
the cost of the application, and 2) it does not consider the
possibility of simultaneous failures in the primary and the
backup path. These two limitations make a reservation-
based protection scheme better suited for networks with low
failure rates and for applications where the users are willing
to pay a high premium for increased reliability.

In this paper, we are interested in investigating reliable
and cost efficient ways of allocating multiple paths for flows
in a network so that in case of a failure an (unreserved)
backup path may be quickly substituted for the original
path. Our technique is general enough to be used under
several platforms, such as Multi-Protocol Label Switching
(MPLS [9]), which was introduced mainly for providing
flexible routing services. In MPLS, a path is computed at
the source and is pre-established and implemented through
the use of labels. The flexible nature of MPLS allows the
implementation of various routing mechanisms with more
complicated criteria as well as failure detection and restora-
tion mechanisms. RFC 3469 [10] has suggested the pos-
sibility of pre-identifying backup paths without reserving
them; however, not much detailed work has been done
on this approach. The main issues in using this type of
scheme arise from the design and implementation of the
pre-identification process and the possibility that a backup
path might be unavailable when a connection needs to use
it, which we address in this paper.

In our approach, we propose to pre-identify backup paths
but not to reserve them. We present a generalized model
where the primary and the backup paths are assigned pri-
orities, consistent with a model of current networks where
flows are classified by their “importance”. 1 In this model,
higher priority flows are allowed to preempt lower prior-
ity flows whenever there is any shortage of bandwidth; this
will be our only assumption regarding how flows with dif-
ferent priorities are treated. In our model backup paths are
of lower cost and lower priority than primary paths. This
is in contrast with the reservation model where the backup
paths are priced similarly as primary paths since reservation
effectively grants the owner infinite priority.

In the presence of priorities, there is a tradeoff between
the availability of a backup path and its cost. In particular,
there is no guarantee that a backup path will be available to
a flow in case of a primary path failure since it may be in
use by a higher priority application. The reliability is fur-

1In practice, importance may solely depend on how much the owner of
the flow is willing to pay for using the network.

1

ther lessened by the possibility that the backup path itself
may be down due to a failure. In the absence of a reserva-
tion scheme and the possibility of multiple link failures, we
desire to develop a technique which obtains high reliability
in terms of the probability of finding a usable backup path.
This is achieved by pre-identifying multiple backup paths
protecting each link on the primary path.

The reliability of our scheme depends on (1) the number
of backup paths for each link on the primary path, (2) the
failure probability of each backup path, and (3) the prior-
ity/preemption schemes. We deal with (1) and (2) by choos-
ing numerous robust paths; for (3) we do not explore partic-
ular priority schemes to exploit their individual properties
(for details of different preemption schemes, one may re-
fer to [7, 8] etc); rather, we identify edge-disjoint paths so
that two different backup paths will not be preempted by
the same flow and the reliability will remain mostly inde-
pendent of the preemption scheme.

2 Our Restoration Schemes

In this section we present our unreserved restoration
model; however as a gentle introduction we start off with
our first scheme which is a generalization of two existing
schemes and can be used in a reservation-based setup.

We represent the network as a graph G(V, E). Let M =
(s = v0, v1, · · · , t = vK) be the primary path; the nodes
(resp. links) on this path are called primary nodes (resp.
links). We say vj is upstream (resp. downstream) of vi if
j < i (resp. i < j). The latency of link e, denoted d(e), is
the time for an error notification message to traverse e. The
cost of e is denoted c(e).

2.1 A Generalized Restoration Scheme

In this section, we generalize end-to-end restoration and
local restoration. We define the notion of loss-bounded
restoration where the number of packets dropped due to no-
tification delay is bounded (See Figure 1).

Definition 1 A loss-bounded restoration scheme for M up-
per bound L is a restoration scheme where, in the case of
the failure of any link (vi, vi+1), the packet loss incurred
by the signaling (notification) delay from vi ∈ M to an
upstream node vj ∈ M is at most L.

We call the maximum notification delay that the connec-
tion can afford without losing more than L packets the tol-
erance. The farthest upstream node to which a node v can
afford to send a notification message in case of a failure is
called the upstream range of v. Tolerance can be estimated
by dividing L by the transmission speed. Given the toler-
ance, the upstream range can be computed using the indi-
vidual link latencies in the network. We say a primary link

(vi, vi+1) can be protected by a backup (protection) path
starting from vk and ending at vl, if vk is in the upstream
range of vi and vl is downstream of vi+1. This model gener-
alizes that introduced in [6] where the notification messages
are allowed to travel a limited number of hops.

v1 v2 v3 v4 v5 v6 v7

(a)

v1 v2 v3 v4 v5 v6 v7

(b)

v1 v2 v3 v4 v5 v6 v7

(c)

Figure 1. Different restorations for P = (v1 · · · v7).
Each link has latency and cost 1. (a) local restoration: max
latency is 0 and cost is 6. (b) end-to-end restoration: max
latency is d(v6) = 3 and cost is 2. (c) loss-bounded restora-
tion: max latency is d(v4) = 2 and cost is 3.

2.2 Unreserved Restoration Using Pre-identified
Paths

The restoration schemes discussed in the previous sec-
tion are independent of whether backup paths are reserved.
We will now develop an unreserved loss-bounded (in short,
unreserved) restoration scheme which pre-identifies, but
does not reserve the restoration paths so that in case of a link
failure a usable restoration path satisfying the loss bound
can be found with high probability:

Definition 2 An unreserved loss-bounded restoration
scheme (in short unreserved restoration) for M with
probability T is a loss-bounded restoration scheme where,
in case of failure of any link (vi, vi+1), a usable loss
bounded alternative path will be found with probability at
least T .

To compute and bound the successful restoration proba-
bility of each link, we use the failure probabilities of restora-
tion paths. Let Pj represent the protection path starting
from node vj , and f(Pj) the failure probability of Pj . If
f(Pj) > 1 − T , we need to identify multiple paths so that
the probability that at least one will be usable will be at least
T . We will show later how we estimate the success proba-
bilities of individual as well as groups of paths.

2

We assume that we can have flows of different priorities,
represented as an ordered list (r1, · · · , rM) (rM is the high-
est priority), where a flow can preempt a lower priority one.

Integrating into MPLS The implementation of our tech-
niques require a few modifications to existing protection
schemes, such as in MPLS. In MPLS the primary and
backup paths are identified during the setup phase, where
the primary path is labeled with the highest priority and the
backup paths are with a low priority. When a backup path
becomes unusable, a notification message is distributed as
in [8]; the primary nodes will then mark this path as un-
available. When a failure occurs on the primary path, a no-
tification message is sent upstream from the failure point.
Whenever a switching node with available backup paths is
reached, the traffic is sent on this backup path.

In this paper our objective is to find a min-cost set of
edge-disjoint backup paths. Several other works [4, 5] try to
minimize bandwidth use so that backup paths can be shared.
Our algorithm can be adjusted to that scenario, where two
requests can share the pre-identified paths.

3 On the Complexity of an Exact Solution

We show here that the problem is hard for both the di-
rected and undirected cases, even when cost is not an issue.

 s1

t2 t3

v4v3v2v1

s2 s3

t1 s1

s1’ v s2’ t1’ s3’ t2’ t3’

s3

t2 t3

t1

s2

Figure 2. Constructing G′: Directed, Undirected Cases

Theorem 1 Finding an unreserved restoration in an di-
rected network is NP hard.

Proof: We present a reduction from the (directed)
edge-disjoint path problem (EDP) [1], defined as follows.
Given a set of K source-destination pairs (si, ti), find K
edge-disjoint (si, ti) paths, one for each (si, ti) pair.

To solve an arbitrary instance of EDP on a network G,
we build an unreserved restoration problem for a network
G′ constructed from G as follows. We add to G a primary
path (v1, v2, · · · , vK+1) constructed from new nodes vi. We
then add links (vi, si) and (ti, vi+1) for each i (See Figure
2 for an example). We set the loss bounds small enough
(e.g., 0) so that the required loss-bounded restoration de-
generates into local restoration. We set the failure proba-
bility to 0 for all links. The only valid protection for this

is where, for all primary nodes, each protection path starts
at link (vi, si), and ends at (ti, vi+1). To see this, consider
a valid unreserved (local) restoration on G′. Consider the
first restoration path from the left starting at vi and ending
at vj such that i �= j − 1. Then, there must be a restoration
path starting at vk and ending on vj−1 such that j − 1 < k,
a contradiction. Thus, EDP has a solution on G if and only
if unreserved restoration has a solution on G′.

The next theorem shows that the undirected unreserved
restoration problem is NP-hard. The proof of Theorem 1
can not be extended directly to undirected networks, since
by omitting the directions, the protection path may start
from vi to si and come back through si+1 to vi+1, as well
as from vi to ti−1, coming back through ti to vi+1. This is
not a valid solution for the edge-disjoint path problem.

Theorem 2 Finding an unreserved restoration in an undi-
rected network is NP hard.

Proof: We reduce from the undirected edge-disjoint
path problem (UEDP) [3]. For each instance of UEDP on
a network G with source-destination pairs (si, ti), (e.g.,
Figure 2) construct network G′ by adding a new primary
path (s′1, v, s′2, t

′
1, s

′
3, t

′
2, · · · , s′i, t′i−1, · · · , s′k, t′k−1, t

′
k). For

each i, add links (s′i, si) and (t′i, ti). All links have a fail-
ure probability 0. Set the latencies so that each notification
message can be sent to at most one node upstream.

There is a unique solution for unreserved restoration
where the restoration paths start at s′i, go through (s′i, si),
(ti, t′i) and end at t′i, i.e., all (s′i, si) are outgoing and all
(ti, t′i) are incoming links for the protection. Deleting all
the added links in the solution for unreserved restoration,
the solution for edge-disjoint paths is obtained.

We call a primary node outgoing (resp. incoming), if
it is the starting (resp. ending) node of a protection path.
Observe that, (a) the number of outgoing nodes is equal to
that of incoming nodes, (b) except for the final node and the
one preceding it, any incoming node ui must be followed
by an outgoing node ui+1 so that the link (ui+1, ui+2) is
protected, c) for any node u in the primary path the number
of outgoing nodes minus the number of incoming nodes up-
stream of u is at most 2; otherwise, due to (a), (b) would be
violated.

We now consider the primary nodes. s′1 and s′2 must be
outgoing; otherwise either (s′1, v) or (s′2, t

′
1) is unprotected.

After this, all t′i are incoming and all s′i are outgoing, by
induction on the primary nodes, left to right on the primary
path. Consider some s′i. To the left of s′i is ti−2, which by
induction, is incoming. Thus, by (b), s′i must be outgoing.
Now, consider some t′j . To its left is s′j+1, which is out-
going, which, due to our inductive hypothesis and the first
nodes s′1, s

′
2, implies that the number of outgoing nodes to

the left of tj is two more than incoming nodes. So as not to

3

violate (c), tj cannot be outgoing. It cannot be unused ei-
ther, since this would leave (tj , sj+2) unprotected. Thus it
must be incoming. Finally, due to (a), tK must be incoming.

To see that the restoration will match all si to ti, consider
any restoration path from si to tj . It must be that i ≤ j+1 to
make the restoration valid. If i = j + 1 then the (tj , sj+2)
is unprotected, thus we must have i ≤ j. With an argu-
ment similar to the proof of Theorem 1, this implies that
any restoration path starting at si must end at ti. Removing
the added nodes/links will give a solution for UEDP.

Our algorithm works for both the directed and undirected
cases. We will present the undirected case, pointing out any
differences from the directed.

4 A Special Case

In this section, we set the failure probability of every
backup path to be the same, and estimate the failure proba-
bility of a set of backup paths as the product of their indi-
vidual failure probabilities. We then obtain the number of
paths, say I, that we need to pre-identify for each primary
link. In addition to its usefulness when the information is
scarce or when the preemption probabilities for different
priority classes vary dramatically (see Section 6), more im-
portantly, the solution for this special case will later be used
as a building block for solving the general problem.

First consider protecting one primary link (vi, vi+1). We
start off by calculating the upstream range, say vj . We then
add a new node s and links (s, vj), (s, vj+1), · · · , (s, vi), as
well as a new node t and links (t, vi+1), · · · , (t, vK). Set-
ting all links to unit capacity and solving a min-cost flow
problem of sending I units of flow from s to t solves the
problem efficiently. Unfortunately, for the general problem,
repeating the above procedure for all K primary links is too
costly, since adjacent primary links on the primary path can
share backup paths.

Integer Programming Formulation. Let cij denote the
cost on link (i, j). Let primary nodes vk, vl denote the
source and destination of a backup path, where 1 ≤ k <
l ≤ K . xkl

ij denotes the flow on link (i, j) of backup path
from vk to vl. N is a boolean matrix such that Nkl

j = 1 iff
the backup path from vk to vl protects link (vj , vj+1) and
akl denotes the number of backup paths selected.

min
∑

∀i,j

K∑

k=1

K∑

l=k

cijx
kl
ij

s.t. ∀k, l ∈ M,
∑

j

xkl
kj −

∑

j

xkl
jk = akl (1)

∀k, k′, l ∈ M, k �= k′,
∑

j

xkl
k′j −

∑

j

xkl
jk′ = 0 (2)

∀i
∑

j,k,l

xkl
ij −

∑

j,k,l

xkl
ji = 0 (3)

∀k, l ∈ M,
∑

j

xkl
lj −

∑

j

xkl
jl = −akl (4)

∀k, l, l′ ∈ M, l �= l′,
∑

j

xkl
l′j −

∑

j

xkl
jl′ = 0 (5)

∀i, j
∑

kl

xkl
ij ≤ 1 (6)

∀j ∈ M aklN
kl
j ≥ I (7)

(1) says that the output flow of a backup path between
vk, vl on the primary path must be akl, which is constrained
by (7). (2) says that v′k doesn’t send flow for backup path
vk to vl. (3) says that the input and output flow on each
intermediate link (i, j) must be balanced. (4) and (5) are
the destination based equivalents of of (1) and (2). (6) en-
forces edge-disjointness and (7) says that all primary links
(vj , vj+1) are protected by I backup paths.

4.1 The Algorithm: General Approach

Without (7) and modified (1), (4), the above integer pro-
gram reduces to edge-disjoint paths with the set of source-
destination pairs decided by akl. We develop an algorithm
which relaxes inequality (7) and iteratively approaches the
min-cost solution. We start off by finding a set of (possibly
non-disjoint) paths providing a lower bound on the optimal
cost, then refine this solution to achieve a set of disjoint
paths. We present our algorithm in two steps.

Step 1. Let S be a set of primary node pairs 〈vj , vi〉,
with cost c(vj , vi), where a corresponding backup path for
this pair can protect the links between vj and vi. Find a
min-cost Ssub ⊆ S that provides a valid protection for M.
This may lead the resulting backup paths (corresponding to
pairs 〈vj , vi〉) not disjoint (min-cost infeasible).

Step 2. Find edge-disjoint paths for Ssub, where sources
and destinations are 〈vj , vi〉 ∈ Ssub. The resulting backup
paths are feasible but may not be min-cost.

Clearly, Steps 1 and 2 have a primal-dual relationship as
a result of relaxing inequality (7) of the integer program to
obtain two separate problems which aim to improve the cost
and feasibility respectively.

As an example, consider Figure 3. Set the upstream
range to 1 and obtain one backup path for each primary
link. First we compute the initial value for each 〈vj , vi〉,
where vj is within the upstream range of vi, which is the
min-cost path from vj to any node downstream of vi. For
instance, the backup path for 〈v1, v2〉 is (v1, b1, b4, b6, v3)
of cost 4, which, by connecting an artificial node to
v2, v3, v4, v5, can be computed by one-round of Dijkstra,
breaking ties arbitrarily. Figure 5 shows the paths chosen

4

1

1

1

1

2

1 1

1 1

1

1 1

1
2

1

2

3

2

2

1

b1

b4

b2 b3

v1 v2 v3

b6

b10

b5

b8

b7

b11 b9

v5v4

Figure 3. The network with link costs.

v1 v2 v3 v4 v5

Figure 4. Auxiliary network GA for Step 1

and their costs. During Iteration 1, in Step 1 we compute
Ssub = {〈v1, v3〉, 〈v3, v5〉} with cost 10. In Step 2, we
calculate edge-disjoint paths for the pairs in Ssub, obtain-
ing 〈v1, b1, b4, b6, v3〉 and 〈v3, b10, b6, b7, b8, b9, v5〉. We
then modify the costs, setting c(v1, v3) = 4, c(v3, v5) =
10. (Others remain unchanged). In Iteration 2, in Step
1 Ssub = {〈v1, v3〉, 〈v2, v4〉, 〈v4, v5〉} with cost 13.
In Step 2, disjoint paths for Ssub are 〈v1, b1, b4, b6, v3〉,
〈v2, b3, b4, b5, b8, b7, v4〉 and 〈v4, b9, v5〉. We then set
c(v1, v3) = 4, c(v2, v4) = 6, c(v4, v5) = 3. In Iteration
3 the paths remain unchanged; we halt.

4.2 The Building Blocks

We now present the building blocks for our algorithm.
Step 1: Algorithm Build Assignment

Construct a directed auxiliary graph GA (Figure 4): Set
the primary links in the opposite direction of the primary
path. 2 For each primary node pair 〈vj , vi〉, add link (vj , vi)
with cost c(vj , vi). Set the cost of the primary links in re-
verse direction to 0. Set the capacity to 1 on each link. Com-
pute the min-cost flow on GA where I units of flow is sent
from for s = v1 to vK = t.

Step 2: Algorithm Edge Disjoint
1 repeat
2 for each input pair 〈vj , vi〉
3 Compute the shortest path from vj to vi.
4 if disjoint, exit.
5 else
6 increase the cost of the overlapping link
7 by l where there are l paths crossing it.
8 if the number of iteration ≥ MAX ,
9 output no disjoint path exists.

2Notice that we build an intermediate directed graph for our algorithm.

vj − vi pairs path c(vj , vi)
〈v1, v2〉 (v1, b1, b4, b6, v3) 4
〈v1, v3〉 (v1, b1, b4, b6, v3) 4
〈v2, v3〉 (v2, b2, b4, b6, v3) 5
〈v2, v4〉 (v2, b2, b4, b6, b7, v4) 6
〈v3, v4〉 (v3, b6, b7, v4) 3
〈v3, v5〉 (v3, b6, b7, b8, b9, v5) 6
〈v4, v5〉 (v4, b9, v5) 3

Figure 5. 〈vj , vi〉 pairs.

End Algorithm
Many relaxation-based heuristics can be found for the

edge-disjoint path problem. We just simply increase the
cost of overlapping links to discourage paths from using
them (line 6-7).

4.3 Putting It Together: The Main Algorithm

Algorithm UBP
1 initialization
2 add destinations t1, t2 · · · , tK−1.
3 connect ti to vi+1, vi+2, · · · , vK .
4 set c(vi+j , ti) = 0, ∀j = 1 · · ·K .
5 ∀vi, compute upstream range of vi.
6 for each node vj and vi within its range
7 compute the shortest path p from vj to ti−1

8 set c(vj , vi) = c(p).
9 repeat
10 run Build Assignment
11 run Edge Disjoint 3

12 if no change in paths terminate.
13 else if new cost > previous cost
14 ĉ(vi, vj) = 1

k cf (vi, vj) + k−1
k cn(vi, vj)

15 else
16 ĉ(vi, vj) = 1

2cf (vi, vj) + 1
2cn(vi, vj).

End Algorithm
During initialization we set the cost of the 〈vj , vi〉 pairs

to the cost of the shortest paths. Recall that a backup path
that can protect pair 〈vj , vi〉 will start at vj and end at any
point downstream vi; thus we add destinations ti, where ti
is connected to vi and all the primary nodes downstream of
vi. In line 11, Edge disjoint receives a subset of 〈vj , vi〉
pairs to find disjoint backup paths. To do this, we keep in
mind that vi might not be the destination for this backup
path. Therefore, we extend vi to ti−1, and compute edge-
disjoint paths for 〈vj , ti−1〉 instead.

3We need to find edge disjoint paths for 〈vj , vi〉 pairs that are provided
by Build Assignment. The vi should be extended to the corresponding
ti−1, since a protection path for 〈vj , vi〉 pairs can end at any point down-
stream of vi.

5

We now specify how we adjust the costs during each it-
eration so that the primal and dual will converge towards
each other. We maintain the initial cost cf the previous cost
cp
i , the new cost cn

i , and the relaxed cost ĉi during each it-
eration i. 4 If the new cost cn

i is less than the previous
cost cp

i , i.e. we obtain an improved solution, the previous
cost for next iteration cp

i+1 is set to the current new cost cn
i

and the relaxed cost ĉi+1 is set to 1
2 (cf + cn

i). Otherwise
we keep the previous cost, and the relaxed cost is set as
ĉi+1 = 1

k cf + (k−1)
k cn

i , giving more weight to the changed
cost to sacrifice cost for feasibility. 5

4.3.1 Analysis of the Algorithm

We first show the optimality of the output.

Theorem 3 Given a set of 〈vj , vi〉 pairs, representing a set
of backup paths which can protect all primary links be-
tween vj and vi, as well as I, the number of protection path
needed to ensure the failure probability, Build Assignment
can precisely find a subset of the paths with optimal cost.

Proof: First, we prove that our algorithm outputs a
feasible protection. In GA, for every primary link, there are
no ”artificial” protection links that are out of the upstream
range. Therefore, if there are enough protection links cover-
ing any primary link, it is enough to say that the protection
is feasible. To see this, note that we send I number of units
of flow from the source to the destination. If we cut GA

into two, where the first piece includes vi and all nodes up-
stream of it, and the second piece vi+1 and its downstream
nodes, there will be at least I units of flow across the cut,
indicating that (vi, vi+1) is protected I times.

To prove optimality, assume that there is a cheaper feasi-
ble protection. By using this protection choice, we must be
able to send I units of flow from s to t. This contradicts the
optimality of our min cost flow.

Note that the cost of each 〈vj , vi〉 pair is non-increasing
after the first iteration, thus Algorithm UBP will terminate.

5 General Unreserved Restoration

We now show how to solve the general problem without
advance knowledge on how many backup paths are needed.
We use the failure probability of each link to compute our
restoration paths. We estimate the failure probability of a
path as the product of the failure probabilities of its links,
and that of a a group of paths as the product of the failure
probability of each path. That our backup paths are edge-
disjoint helps with the independence of these likelihoods.

4The subscripts are not used in the algorithm.
5This is one relaxation technique that we found to be efficient and sim-

ple to implement; other usable relaxation methods can also be used.

Here we describe our general technique by presenting
the changes to be made to the algorithms we previously pre-
sented. Our implementations cover both the special and the
general cases.

In Build Assignment, we use augmenting paths to solve
the min-cost flow problem. Here we augment paths one
by one and, when the process complete, we estimate the
success probabilities and remove the extra paths. 6 In
Edge Disjoint, we use the probability as an additional con-
straint. Thus, we add a weight to the probability and com-
bine it with the cost, so that when the algorithm chooses
the links, it can rule out the links with high cost as well as
high failure probability. The weight factor is explained in
the next section. The main algorithm remains unchanged.

6 Simulation Results

|V | pi avg len # paths suc ratio
40 99% 6 2 99.66%
40 90% 6 7 99.50%
40 80% 6 16 99.23%
40 90% 6 3 89.71%
40 80% 6 8 91.21%
40 70% 6 18 89.49%

100 99.9% 12 2 99.99%
100 97% 12 8 99.99%
100 90% 12 23 99.99%

Figure 6. Success ratios. Column 2 denotes the proba-
bility of not being preempted; Column 3 the average length
of a backup path; Column 4 the number of backup paths
needed for each primary link.

Figure 6 shows the relationship between the preemption
probabilities and the number of paths needed. We see that if
the preemption robustness (probability of non preemption)
is 90% (vs. 99 %), the number of backup paths needed
increases to 7 from 2. In practice, if we expect even larger
difference between different preemption probabilities, it is
more practical to buy higher priorities for the links than try
to pre-identify many links. In that case, our algorithms for
the special case apply after the priority is chosen, and the
number of backup paths and the failure probability of a path
can be approximately decided in advance.

6Picking out a min cost path from a set of paths such that the failure
probability is bounded is hard; however, we start with a bounded number
of such paths and in our implementation remove those with the highest
failure probability.

6

6.1 Simulations

To test our technique, we performed extensive simula-
tions using the widely adopted Waxman Model [11] to gen-
erate random networks. The network consists of 40 to 70
nodes which reflects a realistic network [2]. Parameters
α and β which respectively reflect the density of the short
links and the density of the network are set to 0.3 and 0.6.
The grid is 30 × 30 and the cost on each link its Euclidean
length. The latency on each link is 100 so that we will not
switch our focus to the loss-bound constraint; our algorithm
will work for varying latencies as well.

We set the primary path as the shortest path between two
randomly chosen nodes s and t. The cost of a restoration is
the sum of the cost of each reserved link. In the unreserved
case, the cost applies only when the path is used. The likeli-
hood, duration, and cost of the usage of protection paths are
usually small. We consider the worst case and assume that
one protection path is always in use. Thus, in our experi-
ments, the cost of an unreserved restoration is total cost of
the links divided by the number of protection paths. Each
data point is the average of 100 experiments.

Figure 7. Special case; 2 paths are pre-identified. Max
latency is 150, one jump upstream is allowed

Figure 8. Special case; 2 paths are pre-identified. Varying
number of upstream jumps.

We first compare the costs of unreserved restorations vs.
reservation (Figure 7); the cost of unreserved restoration is
over 30% lower than the loss-bounded restoration. This
trend is present in all our experiments, not surprisingly,
since in unreserved restoration, only one path is in use at
any time, as opposed to several. We then consider how the
different upstream ranges affect the cost. As the upstream
range becomes larger, the scheme approaches end-to-end
restoration, which is less costly. The ”percentage” of the
unreserved links becomes larger and the gain we have for
the unreserved restoration reduces (Figure 8).

Figure 9. The latency is set to 150, one jump upstream is
allowed

In end-to-end restoration, only one cheapest backup path
is needed for protection. This leads one to expect that the
unreserved restoration might possibly perform worse than
end-to-end restoration since the cost of unreserved restora-
tion is the average of multiple paths. However, this is not
the case as shown in Figure 8. We can see that when we set
the upstream range to infinity, effectively using end-to-end
restoration, unreserved restoration still outperforms end-to-
end restoration, although by a smaller margin. The reason
is that in unreserved restoration, we only use a bridge (i.e.
part of the backup path where only the starting and end-
ing node are on the primary path) each time. In end-to-end
restoration, we need to reserve a ”path” to protection the
entire primary path. This restoration path may well consist
of several bridges (Figure 1). Figures 8 and 9 show that as
the length of the primary path increases, this trend is even
more obvious. In Figure 9, we can see that the cost of the
primary path itself grows higher than the restoration cost as
the size of the network is greater than 50.

Figure 10 shows the general case. We can see that to en-
suring 90% success is costlier than to ensuring 80% success.
However, compared to loss-bounded restoration, the cost is
much smaller. Figure 11 is the general case corresponding
to the special case in Figure 8. We see that the upstream
range increases, the cost reduction ratio reduces; however,
even in the extreme case, i.e. with end-to-end restoration,

7

Figure 10. The latency is set to 150, one jump upstream
is allowed

Figure 11. The latency is set to 150, one jump upstream
is allowed

the unreserved scheme is still much more cost efficient than
the reservation based scheme. The trend is clearer in larger
networks.

7 Conclusion

In this paper we consider a restoration scheme which
does not reserve bandwidth in advance, but tries to guaran-
tee the availability of a backup path by identifying multiple
possibilities a priori. This leads to a more cost-efficient way
of achieving path protection where applications can have a
certain level of traffic guarantees. The restoration scheme
bridges the gap of the crucial applications and the general
applications by exploring the tradeoff between cost and dif-
ferent degrees of reliability. We show in our simulations that
the cost of our scheme is substantially lower than reserved
restoration schemes.

References

[1] S. Fortune, J. Hopcroft and A. Wyllie The Di-
rected Subgraph Homeomorphism Problem, Theo-
retical Computer Science, Vol. 10, No.2 pp.111-121,
1980.

[2] A. Juttner, B. Szviatovszki, I. Mecs and Z. Rajko La-
grange Relaxation Based Method for the QoS Routing
Problem, IEEE, INFOCOM 2001.

[3] R. Karp, On the Computational Complexity of Com-
binatorial problems, Networks 5, pp. 45-68 1975.

[4] M. Kodialam and T. V. Lakshman, Dynamic Routing
of Bandwidth Guaranteed Tunnels with Restoration,
IEEE, INFOCOM 2000.

[5] M. Kodialam and T. V. Lakshman, Dynamic Routing
of Locally Restorable Bandwidth Guaranteed Tunnels
Using Aggregated Link Usage Information, IEEE, IN-
FOCOM 2001.

[6] L. Li, M. Buddhikot, C. Chekuri and K. Guo Routing
Bandwidth Guaranteed Paths with Local Restoration
in Label Switched Networks, IEEE ICNP, Nov. 2002.

[7] J. Oliveira, et al, A New Preemption Policies
for Diffserv-Aware Traffic Engineering to Minimize
Rerouting, IEEE INFOCOM 2002.

[8] J. Oliveira, JP. Vasseur, L. Chen and C. Scoglio,
LSP Preemption Policies for MPLS Traffic Engineer-
ing, IETF Internet Draft draft-deoliveira-diff-te-
preemption-02.txt.

[9] E. Rosen, A. Viswanathan, and R. Collan, Multipro-
tocol Label Switching Architecture, IETF RFC 3031,
Jan. 2001.

[10] V. Sharma and F. Hellstrand, Framework for Multi-
Protocol Label Switching (MPLS)-based Recovery,
IETF RFC 3469, Feb. 2003.

[11] B. M. Waxman, Routing of multipoint connections,
IEEE Journal on Selected Areas in Cummunications,
6(9): 1617-1622, 1988.

8

