
Periodicity Testing with Sublinear Samples and Space

Funda Ergun ∗ S. Muthukrishnan † S. Cenk Sahinalp ‡

Abstract

In this work, we are interested in finding representative trends in long large data streams
in the presence of computational constraints; to this end we present algorithms for discovering
periodic trends in a data stream S of length n in the combinatorial property testing model,
using o(n) samples and space.

In accordance with the property testing model, we first explore the notion of being close
to periodic by we relaxing different notions of exact periodicity and obtaining three different
notions of self-distance. An input S is then approximately periodic if it exhibits a small self-
distance (with respect to any one self-distance defined). We show that even though the different
definitions of exact periodicity are equivalent, the resulting definitions of self-distance, approxi-
mate periodicity, are not. A close investigation of the self-distances show that they are constant
approximations of each other. We then present algorithms which distinguish between the two
cases of S being exactly periodic and S being far from periodic with only a constant probabil-
ity of error. Our algorithms need to sample only O(

√
n polylog n) positions and use as much

space. They can also be used to find, using o(n) samples and space, the largest/smallest period,
andn/or all of the approximate periods of S.

Our algorithms may be viewed as working on streaming inputs where each data item is
seen once and in order, storing only a sublinear – O(

√
n polylog n) – size sample from which

periodicities are identified.

∗School of Computing Science, Simon Fraser University. fundacs.sfu.ca.
†Department of Computer Science, Rutgers University. muthu@cs.rutgers.edu.
‡School of Computing Science, Simon Fraser Univeristy. cenk@cs.sfu.ca.

1 Introduction

There is an abundance of time series data collected by a varying and ever-increasing set of current
applications. For instance, telecommunications companies collect traffic information in the form of
number of calls, dropped calls, bytes sent, connections established etc. at each of their network links
at small intervals. Such collections of data tend to be very large and usually exhibit very distinct
trends. The information obtained by analyzing these trends is used for purposes such as making
business decisions, forecasting and sizing. Similarly, time series data is crucially used in decision
support systems in many arenas including finance, weather prediction, and network management.
Time series data management involves processing these massive data sets to discover various events
and patterns.

In this paper, we are motivated by applications where the data is analyzed for discovering self-
similar trends; in particular, we study the periodicity of data. In real life, no time series is exactly
periodic; i.e., repetition of a single pattern over and over again does not occur. For example,
the number of bytes sent over an IP link in a network is almost surely not a perfect repeat of a
daily, weekly or a monthly trend. However, many time series data are likely to be ”approximately”
periodic; i.e., a data pattern may repeat over and over every time with small changes. The main
objective of this paper is to determine if a time series data stream is approximately periodic.

Given the large size of most time series data, it is not always realistic to assume that one will have
the necessary computational resources to store, and process the entire data to obtain precise results.
As a result, we would like to explore the discovery of these trends under computational limitations.
Most significantly, since the type of data that we consider tends to be a rather long stream, we
assume that it does not fit into the main memory in its entirety and focus on discovering periodic
trends by looking at a small portion of the input. Our approach is based on combinatorial pattern
matching and random sampling – we define notions of approximate periodicity and explore methods
for discovering approximate periodic behavior of time series data streams using a small number of
random bits from the input; the behavior of our algorithm is specified within the combinatorial
property testing context [5, 3]. 1

Our main contributions in this paper are as follows.

1. By generalizing equivalent definitions of the exact periodicity of a data stream, we obtain
three notions of self distance, each representing the self-similarity of the stream with respect
to a particular notion of exact periodicity. Our distances are either in terms of the distance
between the stream and an appropriately shifted version of itself, or in terms of the distance
between different portions of the stream. We use these distances to relax the notion of
periodicity: data streams with small self-distance are deemed to be approximately periodic
(with respect to the particular distance used).

2. We present efficient algorithms for determining if the input data stream is approximately
periodic with respect to any one particular self-distance. Our algorithms rely only on sampling
a sublinear — O(

√
n polylog n)— number of positions in the input.

1The limitations on space and the number of characters that we can sample from the input turn out to be crucial
for our algorithms, linear space and samples would make our efforts for re-using samples redundant and our algorithms
would be much simpler.

2

3. We show that our notions of approximate self-distance, as well as the notions of approximate
periodicity that they induce, are closely related.

In searching for periodic trends, we make no initial assumptions as to what the period might be if
the stream is to be found approximately periodic. In fact, we assume that the period could be as
short as a single character or as long as half the size of the stream. Our algorithms obtain a small
pool of random samples from the input initially, and use this pool to discover the periodicities. We
show that there is always a subset of this pool sufficiently large to compute the self-distance under
any potential period. In this scheme, a sample is typically used in determining whether the input
is approximately p-periodic for multiple values p. For two notions of approximate periodicity we
define here, our methods are quite simple; for the third notion, the sampling (in Section 3.1) is
more involved with two stages where the second stage depends on the first.

Related Work Algorithmic literature on time series data analysis mostly focuses on indexing
and searching problems based on various distance measures amongst multiple time series data.
Common distance measures are Lp norms, hierarchical distances motivated by wavelets, etc. 2

Although most available papers do not consider the combinatorial periodicity notions we explore
here, one relevant paper [6] aims to find “average period” of a given time series data in a combi-
natorial fashion. This paper describes O(n log n) space algorithms to estimate average periods by
using sketches.

Our work here deviates from that in [6] in a number of ways. First, we present the first known
o(n), in fact, O(

√
n · polylog n) space algorithm for periodic trend analysis in contrast to the ω(n)

space methods in [6]. We do not know of a way which partitions the input and uses sketches of all
the partitions as in [6] which yields the guarantees that we obtain. Rather, sampling seems to be
ideal for us here; with a small number of samples we are able to perform computations for multiple
period lengths–this can be viewed as sketching a small portion of the input. Second, we consider
more general periodic trends than those in [6].

Sampling algorithms are known for computing Fourier coefficients with sublinear space [2], which
can be used in the determining of approximate periods. However the algorithm in [2] is quite
complex and expensive, using (B log n)O(1) samples for finding B significant periodic components
– the O(1) factor is also rather large. In general, there is a rich theory of sampling in time
series data analysis [10, 9]; our work is interesting in the way that it recycles random samples
among multiple computations, and adds to this growing knowledge. Our methods are more akin
to sublinear methods for property testing. In particular, in parallel with this work, authors in [1]
present sublinear sampling methods for testing whether the edit distance between two strings is at
least linear or at most nα for α < 1 by obtaining a directed sample set where the queries are at
times evenly spaced within the strings.

2A survey is in the tutorial offered at KDD 2000 [7]; see also [8].

3

2 Notions of Approximate Periodicity

Our definitions of approximate periodicity are based on the notion of exact periodicity from com-
binatorial pattern matching. We will first review that notion before presenting our main results.

Let S ∈ Σn denote a time series data stream where Σ denotes a constant size alphabet. S[i] refers
to the ith character of S and S[i : j] to the segment S[i]S[i + 1] . . . S[j]. The size p prefix (resp.
suffix) of S is the segment S[1 : p] (resp. S[n−p+1, n]). It is folklore that the exact periodicity of a
data stream S with respect to a period of size p can be described in two alternative but equivalent
ways as follows.

Definition 1 A data stream S ∈ Σn is said to be exactly p-periodic if for some p ∈ {1, .., ⌊n/2⌋}
either

a. The size n − p suffix and size n − p prefix of S are identical; i.e., S[1 : n − p] = S[p + 1 : n],
or, alternatively,

b. S consists of repetitions of the same block B of size p; i.e. S = BkB′ where B ∈ Σp, B′ is a
prefix of B and k = ⌊n/p⌋.

When examining the p-periodicity of a data stream S, we denote by bp
i the ith block of S of size

p, that is, S[(i − 1)p + 1 : ip]. Notice that S = bp
1, b

p
2, . . . b

p
k, b

′ where k = ⌊n/p⌋ and b′ is the
length n − kp suffix of S. When the choice of p is clear from the context, we drop it; i.e. we write
S = b1, b2, . . . bk, b

′. For simplicity, unless otherwise noted, we assume that the stream consists
of a whole number of blocks, i.e., n = kp for some k > 0, for any p under consideration. If an
unfinished block at the end of the stream is padded with don’t care symbols until the desired format
is obtained; our proofs still remain valid.

2.1 Self Distances and Approximate Periodicity

The above definitions of exact periodicity can be relaxed into a notion of approximate periodicity.
Intuitively, a data stream S can be considered approximately periodic if it can be made exactly
periodic by changing a small number of its entries. To formally define approximate periodicity, we
present the notion of a “self-distance” for a data stream. We will call a stream S approximately
periodic if its self-distance is small. We will also have that a stream S is exactly periodic if its self
distance is zero. In what follows we introduce three self-distance measures, (shiftwise, blockwise
and pairwise distances, denoted respectively as σp, βp and πp) each of which is defined with respect
to a “base” distance between two streams. We will first focus on the Hamming distance h() as the
base distance for all three measures and subsequently discuss how to generalize our methods to
other base distances.

2.1.1 Shiftwise Self Distance

We will relax Definition (a) of exact periodicity to obtain what we call the shiftwise self-distance
of a data stream. As a preliminary step we define a simple notion of self-distance that we call the
single-shift self-distance as follows.

4

Definition 2 The single-shift self-distance of a data stream S with respect to period size p is
ρp(S) = h(S[p + 1 : n], S[1 : n − p]).

If one assumes for the sake of simplicity that n = kp, then it is possible to write S = bp
1b

p
2 . . . bp

k,
and alternatively define the single-shift self-distance of S as ρp(S) =

∑k−1
i=1 h(bp

i , b
p
i+1). Note that S

is exactly p-periodic if and only if ρp(S) = 0.

Unfortunately the single-shift self-distance of S fails to provide a satisfactory basis for approximate
periodicity. A small ρp(S) does not necessarily imply that S can be made exactly p-periodic by
changing a small number of its entries: Let p = 1 and S = 00000000001111111111. It is easy to see
that ρ1(S) = 1. However, to make S periodic with p = 1 (in fact with any p) one needs to change
a linear number of entries of S.

Even though S is “self similar” under ρ1(), it is far from being exactly periodic as stipulated
in Definition 1 (b). Thus while Definition 1 (a) and (b) are equivalent in the context of exact
periodicity, that one stream is “close” (with respect to ρ()) to satisfying (a) does not necessarily
mean that it is close to satisfying (b). Our goal here is to define a self-distance from each definition
of periodicity which will give us a notion of approximate periodicity. If we use ρ() as such a distance,
we run the risk that the two notions of approximate periodicity obtained from (a) and (b) will be
too different.

To make our notion of single-shift self-distance of S a more robust measure of self-similarity, we
now incorporate more information into our understanding of self-similarity. Observe that if a
data stream S is exactly p-periodic, it is also exactly 2p-, 3p-, ... periodic; i.e., if ρp(S) = 0,
then ρ2p(S) = ρ3p(S) = . . . = 0. However, when ρp(S) = ℓ > 0 one cannot say much about
ρ2p(S), ρ3p(S), . . . in relation to ℓ. In fact, given S and p, ρip(S) can grow linearly with i: observe
in the example above that ρ1(S) = 1, ρ2(S) = 2, . . . ρi(S) = i . . . ρn/2(S) = n/2. A more robust
notion of shiftwise self-distance can thus consider the self-distance of S with respect to all multiples
of p as follows.

Definition 3 The shiftwise self-distance of a given data stream S of length n with respect to p is
defined as

σp(S) = max
j=1,...n/(2p)

h(S[jp + 1 : n], S[1 : n − jp]).

In the subsequent sections we show that the shiftwise self-distance can be used to relax both
definitions of exact periodicity up to a constant factor.

2.1.2 Blockwise Self Distance

Shiftwise self-distance is based on Definition [a] of exact periodicity. We now define a self-distance
based on the alternative definition, which relates to the “average trend” of a data stream S ∈ Σn

([6]) defined in terms of a “representative” block bp
j of S. More specifically, given block bp

j of S,
we consider the distance of the given streamg from one which consists only of repetitions of bp

j .
Define βp

j (S) =
∑

∀ℓ h(bp
ℓ , b

p
j). Based on this notion of average trend, our alternative measure of

self-distance for S (also used in [6]) is obtained as follows.

5

Definition 4 The blockwise self-distance of a data stream S of length n with respect to p is defined
as βp(S) = mini βp

i (S).

Blockwise self-distance is closely related to the shiftwise self-distance as will be shown in the fol-
lowing sections.

2.1.3 Pairwise Self-Distance

We finally present our third definition of self-distance, which, for a given p, is based on comparing
all pairs of size p blocks. We call this distance the pairwise self-distance and define it as follows.

Definition 5 Let S consist of k blocks bp
1, . . . , b

p
k, each of size p. The pairwise self-distance of S

with respect to p and discrepancy δ is defined as

πp(S, δ) =
1

k2
|{(bi, bj) : h(bi, bj) > δp}|.

That is, πp(S, δ) is the ratio of dissimilar block pairs (i.e., pairs which differ by more than a given
factor δ) to the number of all block pairs. A pairwise self-distance of ǫ reflects an accurate measure
of the number of entries that need to be changed to make S exactly p-periodic up to an additive
factor of O((ǫ + δ)n) and thus is closely related to the other two self-distances.

2.1.4 Approximate Periodicity

Given the three notions of self-distance that we defined in the previous sections, we now describe
an approximately periodic stream as one having a small self distance.

Definition 6 A data stream S ∈ Σn is ǫ-approximately p-periodic with respect to σp (resp. βp and
πp) if σp(S) ≤ ǫn (resp. βp(S) ≤ ǫn and πp(S, δ) ≤ ǫn) for some p ≤ n/2.

2.2 Relationships Between Three Notions of Self-Similarity

In this section we explore the relationship between the three notions of self similarity that we
have defined in terms of our three distances σ(), β(), and π(). We do this by relating approximate
periodicity with respect to the three distances to each other as well as to the distance to an exactly
periodic stream. We first show that, even though the blockwise self-distance βp(S) seems to be
quite different from shiftwise self-distance σp(S), the two measures are within a factor two of each
other.

Theorem 1 Given S ∈ Σn and p ≤ n/2, βp(S)/2 ≤ σp(S) ≤ 2βp(S).

Proof. We first show the upper bound.
Let bi = bp

i be the representative trend of S (of size p), that is, i = argmin1≤j≤k
∑k

ℓ=1 h(bℓ, bj). By

definition, σp(S) = max1≤j≤k ρjp(S) = maxj
∑k−j

ℓ=1 h(bℓ, bℓ+j).

6

By the triangular inequality, σp(S) ≤ maxj[
∑k−j

ℓ=1 h(bℓ, bi)+
∑k−j

ℓ=1 h(bi, bℓ+j)] ≤ maxj [
∑k

ℓ=1 h(bℓ, bi)+∑k
ℓ=1 h(bi, bℓ)]. Since h is symmetric, this is at most 2

∑k
ℓ=1 h(bi, bℓ), which is exactly 2 · βp(S).

For the lower bound, note that βp(S) ≤ 1
k

∑k
j=1

∑k
ℓ=1 h(bℓ, bj).

But σp(S) ≥ 1
k

∑k
j=1

∑k−j
ℓ=1 h(bj , bj+ℓ) ≥ 1

2k

∑k
j=1

∑k
ℓ=1 h(bℓ, bj) ≥ βp(S)/2.

Our notions of approximate periodicity seem to be different from each other, however, they relate
to whether changing a small number of characters of S would make S periodic. The following
lemmas explore this relation.

Lemma 2 If a data stream S is ǫ-approximately p-periodic with respect to βp then S can be made
exactly p-peridoic by changing γn of its entries for ǫ/2 ≤ γ ≤ ǫ.

Proof. Let B = argminb∈Σp

∑k
ℓ=1 h(bℓ, b). Clearly S is almost p-periodic if

∑k
ℓ=1 h(bℓ, B) ≤ γn.

Similarly let bi = bp
i be the representative trend of S; i.e. i = argmin1≤j≤k

∑k
ℓ=1 h(bℓ, bj). However:

kǫ = k
k∑

ℓ=1

h(bℓ, bi) ≤
∑

∀ℓ

∑

∀j

h(bℓ, bj) ≤
∑

∀ℓ

∑

∀j

h(bℓ, B) + h(B, bj) ≤ 2k
k∑

ℓ=1

h(bℓ, B) = 2kγ.

The second part of the inequality is trivial.

Lemma 3 If a given data stream S is ǫ-approximately p-periodic with respect to πp then S can be
made exactly periodic by changing O((δ + ǫ)n) of its entries.

Non-Hamming Measures. We showed above how to test whether a data stream S of size n is
ǫ-approximately p-periodic using self-distances σp() and βp(). We assumed that the comparison of
blocks was done in terms of the Hamming distance. We now show how to use other distances of
interest.

First, consider the L1 distance. Note that, since our alphabet Σ is of constant size, the L1 distance
between two data streams is within a constant factor of their Hamming distance. More specifically,
let q = |Σ|. Then, for any R,S ∈ Σn, q · h(R,S) ≥ L1(R,S). Thus, the method of estimating the
Hamming distance will satisfy the requirements of our test for L1 albeit with different constant
factors. Let σ′ and β′ be the self-distance measures which modify the Hamming distance based
measures of σ and β by the use of L1 distance. Then, for any given p our estimate σ′p(S) will still
be within at most a constant factor of β′p(S).

Now consider the L2 distance. Again, assuming that our alphabet Σ is of size q one can observe
that, if h(R,S) = p, then

√
p ≤ L2(R,S) ≤ q

√
p. Thus, by making the necessary adjustments to

the allowed distance, one can obtain a test with different constant factors as with the L1 distance.
In fact, a similar argument holds for any Li distance.

Similar discussions apply for πp as well and are hence omitted.

7

3 Sublinear Algorithms for Measuring Self-Distances and Approx-

imate Periodicity

In this section, we present sublinear algorithms for testing whether a given data stream S is ap-
proximately periodic under each of the three self-distance measures. By the results in the previous
section, these algorithms can be used to estimate the minimum number of entries that must be
changed to make S exactly periodic.

3.1 Checking Approximate Periodicity Under σp

We now show how to check whether a given stream S ∈ Σn is ǫ-approximately p-periodic for a
fixed p ≤ n/2 under σp. We generalize this to the case where p is not known in advance (such as
finding the smallest p for which S is ǫ-approximately p-periodic) following the discussion on the
other similarity measures.

Note that the definition of approximate periodicity with respect to σp leads to the following property
analogous to that of exact periodicity.

Property 1 If S is ǫ-approximately p-periodic under σp then it is ǫ-approximately ip-periodic under
σp for all i ≤ n/2p.

We remind the reader that as typical of probabilistic tests, our method distinguishes self-distances
of over ǫn from those below ǫ′n. In our case, ǫ′ = cǫ for some small constant 0 < c < 1 which
results from using probabilistic bounds. 3 The output of our algorithm is not constrained when
the self-distance is between ǫn and ǫ′n; that is, both answers of the form “S is p-approximately
periodic” and “S is not p-approximately periodic” will be considered equally acceptable in that
case.

We first observe that to estimate ρp(S) within a constant factor, it suffices to use a constant
number of samples from S. More precisely, Given S ∈ Σn and p ≤ n/2, one can determine whether
ρp(S) ≤ ǫn or ρp(S) ≥ ǫ′n with constant probability using O(1) random samples from S – all one
needs to do is to estimate whether h(S[p + 1 : n], S[1 : n − p]) is below ǫ′n or above ǫn. A simple
application of Chernoff bounds shows us that comparing a constant number of sample pairs of the
form (S[i], S[i + p]) is sufficient to obtain a correct answer with constant probability.

Recall that to test whether S is ǫ-approximately p-periodic with respect to σp, we need to estimate
each ρip(S) for ip ≤ n/2. When p is small, there are a linear number of such distances that we
need to compute. If we choose to compute each ρip(S) separately, with different random samples,
together with the addition of a logarithmic factor for guaranteeing correctness for each period tested
this translates into a superlinear number of samples. In that case one might more easily choose
to read the entire stream. Instead, we choose to economize on the number of samples from S by

3Depending on ǫ, one has an amount of freedom in choosing c; for instance, c = 1/2 can be achieved using Chernoff
bounds and the confidence can be boosted by increasing the number of samples logarithmically in the confidence
parameter. Thus for the rest of this paper we will use ǫ and ǫ′ without mentioning their exact relationship with this
implicit understanding.

8

“recycling” a sublinear pool of samples. This is viable as our analysis does not require the samples
to be determined independently.

With the ultimate goal (among others) of finding the smallest p for which S is ǫ-approximately
p-periodic, we now explore how many samples are needed to estimate ρp(S) in the above sense for
all p = 1, 2, · · · n/2.

Above we observed that in order to estimate ρp(S) for a specific p we need to compare O(1) sample
pairs of the form (S[i], S[i + p]). We now would like to determine the number of samples required
to guarantee that a sufficient number of sample pairs (S[i], S[i + p]) will be available for each
n/2 ≥ p ≥ 1. The following lemma states that a pool of O(

√
n · polylog n) samples suffices.

Lemma 4 A uniformly random sample pool of size O(
√

n ·polylog n) from S has Ω(1) sample pairs
of the form (S[i], S[i + p]) for every 1 ≤ p ≤ n/2 with constant probability.

Proof. For any given p, one can use the birthday paradox to show that the presence of O(
√

n)
uniform samples from S will guarantee, with constant probability (say, at least 1−ρ), the availability
of Ω(1) sample pairs of the form (S[i], S[i + p]).

For all possible values of p, the probability that at least one of them will not have enough samples
is at most 1 − (1 − ρ)n/2. Repeating the sampling O(polylog n) times, this failure probability can
be reduced to any desired 1/poly (n).

The lemma above demonstrates that by using O(
√

n ·polylog n) independent random samples from
S one can test whether S is ǫ-approximately p-periodic for any p. The theorem below then follows
immediately from the definition of approximate periodicity.

Theorem 5 It is possible to test whether a given S ∈ Σn is ǫ-approximately p-periodic or is
not ǫ′-approximately p-periodic under σp by using O(

√
n · polylog n) samples and space with high

probability.

3.2 Checking Approximate Periodicity Under βp

As Theorem 1 implies, the two notions of self-distance (under Hamming measure) are equivalent
up to a factor of 2. We have shown how to test whether the shiftwise self-distance of S, σp(S) is
no more than some ǫn for any given p by using only a sublinear (O(

√
n · polylog n)) number of

samples from S and similar space. The above lemma implies that this is also doable for βp(S); i.e.
one can test whether the blockwise self-distance of S is no more than some ǫn for any given p by
using O(

√
n · polylog n) samples from S and similar space.

The method presented in [6] can also perform this test by first constructing from S a superlinear
(O(kn log n)) size pool of “sketches”; here k is the size of an individual sketch which depends
on their confidence bound. Since this pool can be too large to fit in main memory, a scheme is
developed to retrieve the pool from secondary memory in smaller chunks. In contrast, our overall
memory requirement (and sample size) is sublinear; this comes at a price of some small loss of
accuracy.

9

Due to the fact that σp() and βp() are within a factor 2 of each other, they can be estimated in the
same manner. Thus, the theorem below follows from its counterpart for σp, (Theorem 3), which
states that approximate p-periodicity can be efficiently checked.

Theorem 6 It is possible to test whether a given S ∈ Σn is ǫ-approximately p-periodic or is
not ǫ′-approximately p-periodic under βp by using O(

√
n · polylog n) samples and space with high

probability.

Here the “gap” between ǫ and ǫ′ is within factor 4 of the gap for σp().

3.3 Checking Approximate Periodicity Under πp

Recall that πp is a measure of the frequency of dissimilar blocks of size p in S. In this section, we
show how to efficiently test whether S is ǫ-approximately p-periodic under πp for any p where p is
not known a priori. In order to be able to estimate πp(S, δ) for all p, we would like to explicitly
compare pairs of blocks of size p. This requires comparing as many as polylogarithmic sample
pairs for each pair of blocks (bp

i , b
p
j). Unfortunately, our pool of samples from the previous section

turns out to be too small to yield enough sample pairs of the above kind for all p – in fact, it can
be seen easily that a sublinear uniform random sample pool will never achieve the desired sample
distribution and the desired confidence bounds in this case. The problem stems from the fact that
we need several identically distributed samples within the two blocks every time we compare a pair.
To fix this problem, we will force our sampling to obtain identically distributed points from our
block choices. Our technique will still use a sublinear size sample pool, but with some dependence
between where the locations of the samples are picked.

A Two-Phase Scheme to Obtain The Sample Pool for Estimating πp. To achieve a
sublinear sample pool from S which will have enough per block samples, we obtain our samples in
two phases.

In the first phase we obtain a uniform sample pool from S, as in the previous section, of size
O(

√
n · polylog n); these samples are called primary samples.

In the second phase, we obtain, for each primary sample S[i], a polylogarithmic set of secondary
samples distributed identically around i except when a secondary sample falls outside the boundaries
of S, in which case we do not take that sample. To do this, we pick O(polylog n) offsets relative
to a generic location i as follows. We pick O(log n) neighborhoods of size 1, 2, 4, 8, ... n around
i.4 Neighborhood k refers to the interval S[i− 2k−1 : i + 2k−1 − 1]; e.g., neighborhood 3 (of size 8)
of S[i] is S[i − 4 : i + 3]. From each neighborhood we pick O(polylog n) uniform random locations
and note their positions relative to i. Note that the choosing of offsets is performed only once for
a generic i; the same set of offsets will later be used for all primary samples.

To obtain the secondary samples for any primary sample S[i], we sample the locations indicated by
the offset set with respect to location i (as long as the sample location is within S). 5 As a result,

4Since we are only choosing offsets, we allow neighborhoods to go past the boundaries of S. We handle invalid
locations during the actual sampling. Also, for simplicity, we assume n to be a power of 2.

5For bookkeeping, for each secondary sample the size of its relevant neighborhood is noted.

10

the secondary samples for any two primary samples S[i] and S[j] will be distributed identically
around respective locations i and j.

Estimating πp. We can now use standard techniques to decide whether πp(S, δ) is large or small.
We start by uniformly picking primary sample pairs (S[i], S[j]) such that i− j is a multiple of p. 6

Let bk and bl of size p denote the blocks containing S[i] and S[j] respectively. We can now proceed
to check whether h(bk, bl) is large by comparing these two blocks at random locations. To obtain
the necessary samples for this comparison, we use our sample pool and the neighborhoods used in
creating it as follows. We consider the smallest neighborhood around S[i] which contains bk and
use the secondary samples of S[i] from this neighborhood that fall within bk. We then pick samples
from bl in a similar way and compare the samples from bk and bl to check h(bk, bl). We repeat the
entire procedure for the next block pair until sufficient block pairs have been tested.

To show that this scheme works, we first show that we have sufficient primary samples for any given
p to compare enough pairs of blocks. To do this, for any p, we need to pick O(polylog n) pairs
of size p blocks uniformly, which is possible given our sample set as the following simple lemma
demonstrates.

Lemma 7 Consider all sample pairs (S[i], S[j]) from a set of O(
√

n · polylog n) primary samples
uniformly picked from a data stream S of length n. Given any 0 < p ≤ n/2, the following hold with
high probability:

(a) There are Ω(polylog n) pairs (S[i], S[j]) such that i − j is a multiple of p.

(b) Consider block pair (bi, bj) containing a sample pair (S[i], S[j]) as described in (a). (bi, bj) is
uniformly distributed in the space of all block pairs of of S of size p. 7

Proof. (a) follows easily from Lemma 4.

To see (b), consider two block pairs (bi, bj) and (bk, bl). There are p sample pairs which will induce
the picking of the former pair, and the same holds for the latter pair. Thus, any block pair will be
picked with equal probability.

Thus, our technique allows us to have, for any p, a polylogarithmic size uniform sample of block
pairs of size p. Now, consider the secondary samples within a block that we pick for comparing two
blcoks as explained before. It is easy to see that these particular samples are uniformly distributed
within their respective blocks, since secondary samples within any one neighborhood are uniformly
distributed. Additionally, they are located at identical locations within their blocks. All we need
is there to be a sufficient number of such samples, which we argue below.

Lemma 8 Let S[i] and S[i + rp] be two primary samples. Let bl and bm be the blocks of size p
that contain S[i] and S[i+rp] respectively. Then, with the sampling scheme described above we will
have picked sufficient secondary samples to tell whether h(bl, bm) ≥ δp high probability.

6There are several simple ways of doing this without violating our space bounds which involve time/space tradeoffs
that are not immediately relevant to this paper. Additionally, picking the pairs without replacement makes the final
analysis more obvious but makes the selection process slightly more complicated.

7For simplicity we assume that p divides n; otherwise one needs to be a little careful during the sampling to take
care of the boundaries.

11

Proof. Consider t such that 2t−1 < p ≤ 2t. The (t + 1)-neighborhood of S[i] is of size at most 4p,
and contains bl. Since bl occupies at least 1/4 of this neighborhood, it is expected to contain at
least a quarter of the secondary samples of S[i] from this neighborhood, which will be uniformly
distributed in bl. The case is the same for bm and the samples it contains. As a result, we have
Ω(polylog n) uniform random samples from both bl and bm, which, as we argued before, can be
viewed as pairs of points located identically within their respective blocks. Then, one can test
whether h(bl, bm) ≥ δp with high probability by comparing the corresponding sample pairs from
each block.

Combining the choice of blocks and the comparison of block pairs, we obtain the following theorem.

Theorem 9 It is possible to test whether a given S ∈ Σn is ǫ-approximately p-periodic or is
not ǫ′-approximately p-periodic under πp by using O(

√
n · polylog n) samples and space with high

probability.

Since our algorithm does not require advance knowledge of p, to find all periods, the smallest period,
etc. under this measure, it suffices to try the test with different values of p without increasing the
sample size, as we argue in the next section.

3.4 Checking Periodicity for All Periods

In general we do not have access to a hypothetical period and may want to know whether a data
stream S is ǫ-approximately periodic with any period, and/or what its smallest period p is. These
can easily be determined once the particular similarity measure is evaluated for all possible p. Since
σp and βp involve computing similarities for all p, for these two measures it is easy to extend the
computation to all p. As for πp, checking for approximate periodicity for a fixed p is easy, but the
trivial technique of picking blocks and sampling will not extend to efficiently checking for all p.
However, our technique as described in the previous section is specially designed so that its sample
set will work with high probability for any and every valid p. Thus, checking periodicity for varying
periods is now possible by using sublinear samples.

Theorem 10 Given S ∈ Σn, it is possible to perform any of the following tasks under σp, βp, and
πp by using O(

√
n · polylog n) independent random samples from S and similar space:

a) to find out if S is ǫ-approximately p-periodic,
b) to find all periods p (and thus the smallest period) for which S is ǫ-approximately p-periodic.

Note that if the smallest approximate period of S is determined to be p then we guarantee that
σp(S) ≤ ǫ′n and there exists no j < p such that σj(S) < ǫn. The same holds for βp and πp as well.

4 Concluding Remarks

We introduced new notions of time series data streams being approximately periodic based on sig-
nificance of combinatorial scores in terms of self-distances. We presented the first known sublinear–
O(

√
n polylog n) space– algorithms for detecting such approximate periodicities in time series data

12

streams based on sampling, and reusing these random samples for multiple potential period lengths.
Besides such periodicities, there may be other representative trends in a data stream; it could be
interesting to develop efficient, sublinear sampling algorithms for detecting such trends.

5 Acknowledgements

The authors would like to thank the anonymous referees for significantly improving the presentation
of this paper.

References

[1] T. Batu, F. Ergun, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld and R. Sami. A sublinear
algorithm for weakly approximating edit distance. STOC 2003, 316–324.

[2] A. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan and M. Strauss. Near-optimal sparse fourier repre-
sentations via sampling. Proc. STOC 2002. 152–161.

[3] O Goldreich, S. Goldwasser and D. Ron. Property testing and its connection to learning and approx-
imation, Journal of the ACM 45(4):653–750, 1998.

[4] R. Rubinfeld. Talk on sublinear algorithms. http://external.nj.nec.com/homepages/ronitt/

[5] R. Rubinfeld and M. Sudan, Robust Characterization of Polynomials with Applications to Program
Testing, SIAM Journal of Computing 25(2):252–271, 1996.

[6] P. Indyk and N. Koudas and S. Muthukrishnan Identifying Representative Trends in Massive Time
Series Data Sets Using Sketches. Proc. VLDB 2000. 363–372.

[7] G. Das and D. Gunopoulos. Time Series Similarity Measures.
http://www.acm.org/sigs/sigkdd/kdd2000/Tutorial-Das.htm

[8] G. Kollios. Timeseries Indexing. http://www.cs.bu.edu/faculty/gkollios/ada01/LectNotes/tsindexing.ppt

[9] F. Olken and D. Rotem. Random sampling from databases: A Survey. Bibliography at
http://pueblo.lbl.gov/ olken/mendel/sampling/bibliography.html

[10] S. Chaudhuri, G. Das, M. Datar, R. Motwani and V. Narasayya. Overcoming Limitations of Sampling
for Aggregation Queries. Proc. ICDE 2001.

13

