
Periodicity in Streams

Funda Ergun, Hossein Jowhari, Mert Sağlam

April 18, 2010

Abstract

In this work we study sublinear space algorithms for detecting periodicity over data streams. A sequence
of length n is said to be periodic if it consists of repetitions of a block of length p for some p ≤ n

2 . In the first
part of this paper, we give a 1-pass randomized streaming algorithm that uses O(log2 n) space and reports
the shortest period if the given stream is periodic. At the heart of this result is a 1-pass O(log n logm) space
streaming pattern matching algorithm. This algorithm uses similar ideas to Porat and Porat’s algorithm in
FOCS 2009 but it does not need an offline pre-processing stage and is considerably simpler.

In the second part, we study distance to p-periodicity under the Hamming metric, where we estimate
the minimum number of character substitutions needed to make a given sequence p-periodic. In streaming
terminology, this problem can be described as computing the cascaded aggregate L1 ◦F res(1)1 over a matrix
Ap×d given in column ordering. For this problem, we present a randomized streaming algorithm with
approximation factor 2 + ε that takes Õ( 1

ε2 ) space. We also show a 1 + ε randomized streaming algorithm
which uses Õ( 1

ε5.5 p
1/2) space.



1 Introduction

A sequence, informally speaking, is said to be periodic if it consists of repetitions of the same block of char-
acters. In this work we study detecting periodicity over a sequence given as a stream. We present 1-pass
randomized algorithms for discovering various periodic properties of a given stream that use sublinear (in most
cases polylogarithmic) space and per-character running time.

The study of periodic sequences and patterns has been important in its own right in many fields such
as algorithms, data mining, and computational biology. It has also generated fundamental algorithmic tools
for solving problems on sequences/strings. In particular, periodicity has been exploited as a central tool in
many efficient pattern matching algorithms [AG97]. For instance, the textbook Knuth-Morris-Pratt algorithm
[KMP77] computes the periods of all prefixes of the pattern in its pre-processing stage. Periodicity has remained
central to almost all pattern matching algorithms to this day.

Formally, a sequence s of length n is said to be p-periodic if s[i] = s[i+ p] for all i = 1, . . . , |s| − p. The
smallest p > 0 for which s is p-periodic is referred to as the period of s. By convention, if the length of the
period of s is at most n/2, then s is said to be periodic, otherwise it is aperiodic.

Given the intimate relationship between periodicity and pattern matching, we first investigate sublinear
space solutions for finding patterns. Recently Porat and Porat in a breakthrough result presented a polyloga-
rithmic space randomized algorithm for pattern matching that does not require the storage of the entire pattern
[PP09]. Briefly, given a pattern u of length m, in an off-line step, they preprocess prefixes u1, . . . , ulogm where
ui = u[1, 2i]. Then using the Rabin-Karp fingerprinting method [KR87], they build O(log n)-size sketches of
all ui and use them to find occurrences of u in the stream. One idea for computing the period is to use this
algorithm but unfortunately due to the offline preprocessing a straightforward adaptation only leads to a k-pass
O(n1/kpolylog(n))-space algorithm. In order to develop a better technique for finding the period, we start off
by developing a more streaming-friendly algorithm for pattern matching. While our solution utilizes ideas sim-
ilar in essence to those used by [PP09], it does not require an offline preprocessing stage. In fact we show that
taking only the Rabin-Karp fingerprints of the prefixes u1, . . . , ulog d is sufficient to get the sameO(log n logm)
bit space bound. Moreover our pattern matching algorithm enjoys a very clean and simple description.

Now armed with a simple, small-space, streaming pattern matching algorithm, we develop a randomized
streaming algorithm for computing the period of s. Our algorithm makes a single pass over s and usesO(log2 n)
space to find the period of s granted that s is periodic, otherwise it reports that s is aperiodic. The limitation
in computing the period for aperiodic sequences (i.e., where the period is longer than half the sequence) turns
out to be necessary as we later show a lower bound that computing the period in 1-pass for these sequences
requires linear space. On the other hand we show that an additional pass will give us aO(log2 n) space solution
for periods of any length.

In addition to periodicity, our pattern matching algorithm enables us to get sublinear solutions for frequency
moments defined over substrings.

We finally focus on distance to periodicity: we define the distance of s to p-periodicity under the Hamming
distance as the minimum number of character substitutions required to make s p-periodic.

Dp(s) = min
x is p-periodic

{H(s, x)}.

It turns out that Dp(s) can be expressed as a product-sum of a certain function defined over rows of a matrix
Ap×d where n/p = d. The problem then is to compute L1 ◦ F res(1)

1 (A) =
∑p

i=1 F
res(1)
1 (Ai) where Ai is

the ith row of A and F res(1)
1 (s), known as the residual tail of sequence s, equals |s| − F∞(s). In general

F
res(r)
k (s) =

∑m
i>r f

k
i , where f1, . . . , fm are the character frequencies in decreasing order. Note that when

r = 0 this is the same as Fk, the kth frequency moment of s. While there are space efficient algorithms for
approximating F res(1)

1 and F res(r)2 [CCF04, GKS05, BCIS09], aggregate computation of F res(1)
1 over multiple

1



streams is a new and interesting challenge. In fact this problem can be viewed as a generalization of the
Hamming distance to multiple vectors (when d = 2, we get the classical Hamming distance) and thus might be
of independent interest. For this problem, we present two 1-pass randomized algorithms. The first algorithm
approximates L1 ◦ F res(1)

1 within 2 + ε factor and uses O( 1
ε2

log 1
ε ) words of space. The second gives a 1 + ε

approximation and uses O( 1
ε5.5

(p log p)1/2 log n) words of space. For constant alphabet size, the space bound
is O( 1

ε3
(p log p)1/2).

Related Work The streaming model is well studied; see [M09] for a recent survey. Aside from the implicit
implications of [PP09], to our knowledge, our paper is the first to investigate the space complexity of computing
the period in the streaming model. In a related direction, Ergun et al. [EMS04] gave an O(

√
n) tester for

distinguishing periodic strings from highly aperiodic ones under the Hamming distance in the property testing
model. Subsequently Lachish and Newman [LN05] showed a lower bound of Ω(

√
n) for testing periodicity in

the query model. With a focus on time complexity, Czumaj and Gasieniec [CG00] presented an average case
analysis for computing the exact period. In a related work, Bar-Yossef et al. [BJKK04] studied the sketching
complexity of pattern matching. The work of Indyk et al. [IKM00] focuses on mining periodic patterns and
trends in data streams while reading data in large chunks from secondary memory. Numerous studies have been
done in the data mining community for detecting periodicity in time-series databases and online data (e.g. see
[EAE06]), typically with quite different space considerations than in our model. Streaming complexity of
cascaded norms Lk ◦ Lp over matrices is investigated in depth by Jayram and Woodruff in [JW09], also see
[CM05, MW10].

2 Preliminaries

Throughout this paper [n] denotes the set of integers {1, . . . , n}. We assume the input stream is a sequence of
length n over the alphabet Σ = {0, 1, . . . , L}. We represent the length of a string s with |s|, the ith element of
s with s[i], and the substring of s between locations i and j (inclusive) with s[i, j]. A d-substring is a substring
of length d. The concatenation of two sequences (or vectors) u, v is written as u ◦ v and ui represents the
concatenation of i instances of u.

The smallest p > 0 for which s is p-periodic, i.e., s[i] = s[i + p] for all i = 1, . . . , |s| − p, is called the
period of s and is denoted per(s). The following lemma is folklore.

Lemma 1 If s is both p-periodic and q-periodic where p+ q ≤ |s|, then s is also gcd(p, q)-periodic.

We use Ms(t) to denote the set of all positions in s where an exact occurrence of string t starts; i.e.,
Ms(t) = {i | s[i, i + |t| − 1] = t}. The following lemma, whose proof can be found in Appendix A.1, shows
the relation between per(t) and Ms(t).

Lemma 2 Let i ∈Ms(t) and let U = Ms(t) ∩ [i, i+ |t| − 1]. The following are true.

i. Let j ∈ U where j > i and there is no k ∈ U such that i < k < j. If |i− j| ≤ |t|/2 then |i− j| = per(t).
ii. There is at most one j ∈ U such that |i− j| is not a multiple of per(t). Moreover if |i− j| is not a multiple

of per(t), then j = max (U).

Fingerprints In Section 3 we use Rabin-Karp fingerprints [KR87], a standard sketching tool which allows us
to compare strings of arbitrary length in constant time. Fix an integer alphabet Σ. Let q > |Σ| be a prime and
r ∈ Z∗q be arbitrary. The Rabin-Karp fingerprint of a string s ∈ Σ∗ is defined as

Φq,r(s) =
|s|∑
i=1

s[i] · ri−1 (mod q)

2



The following facts are well-known and the reader is referred to [KR87, PP09] for the proofs.

(P1) Φq,r(s) can be computed in one pass over s using O(log q) bits of space.

(P2) Let s 6= t be two strings and l = max(|s|, |t|). Prr[Φq,r(s) = Φq,r(t)] ≤ l
q−1 .

(P3) Given Φq,r(s) and Φq,r(t), we can obtain Φq,r(st) by constant arithmetic operations in Zq.

(P4) Given Φq,r(st) and Φq,r(s), we can obtain Φq,r(t) by constant arithmetic operations in Zq.

Henceforth we set q = Θ(n4) and assume that r is chosen uniformly at random from Z∗q at the beginning
of the respective algorithm. We also omit the subscripts and denote the fingerprint of s by Φ(s).

3 Periodicity and pattern matching

In this section first we show a streaming algorithm for pattern matching and then we present our results for
periodicity and frequency moments over substrings.

3.1 The pattern matching algorithm

We assume the input stream S = u ◦ s is the concatenation of the pattern u of length m and the text s of
length n. Here we present a 1-pass streaming algorithm that generates the starting positions of the matches
of u in s (equivalently, Ms(u)), on the fly using logarithmic space and per-item time. Strictly speaking, if
s[i−m+1, i] = u, after receiving s[i] our algorithm reports a match with high probability. Also, the probability
that our algorithm reports a match where there is no occurrence of u is bounded by n−1.

While it is easy to generate Ms(u) when u is small, the problem is non-trivial for large u. The following
lemma implies that given a streaming algorithm that finds length-m patterns, by taking advantage of the Rabin-
Karp fingerprints, we can obtain a streaming algorithm for length-cm patterns using only O(c log n) extra
space.

Lemma 3 Let k be an integer greater than m. Let A be a 1-pass algorithm that generates Ms(u) using O(g)
bits space. Given A and Φ(u), there is a 1-pass algorithm that outputs Φ(s[i, i + k]) at position i + k for all
i ∈Ms(u) using space O(g + k

m log n) bits.

PROOF: The algorithm partitions the sequence of positions in Ms(u) (as generated by A) into maximal con-
tiguous subsequences where in each subsequence the distance between consecutive positions is at most m2 . To
do this we only need to keep track of the last position in Ms(u). If the next position is more than m

2 characters
apart then we start a new maximal subsequence, otherwise the new position is appended to the last subsequence.

Now let a1, a2, . . . , ah ∈ Ms(u) be a maximal sequence of consecutive positions in Ms(u) where |al+1 −
al| ≤ 1

2m for all l ∈ [h − 1]. We claim that for this sequence we need to maintain at most four fingerprints to
generate Φ(s[al, al+k]) for all l ∈ [h]. To do this, first we launch an individual process to generate Φ(s[a1, a1+
k]) and Φ(s[a2, a2 + k]). By Property (P3) from Section 2, this can be done by adding Φ(s[a1, a1 + m − 1])
and Φ(s[a1 +m, a1 + k]). Now if h < 3, our claim is proved. So suppose h ≥ 3.

First we note that by Lemma 1, we should have |al+1 − al| = per(u) for all l ∈ [h− 1]. As a result, when
we reach the position a2 +m− 1, we have obtained the value of per(u). Now let x = u[1,per(u)]. We show
that it is possible to compute Φ(x) when we reach a3 +m−1. To this end, when we are in a1 +m−1, starting
from the next character we build a fingerprint until we reach a2 +m−1. This gives us Φ(s[a1 +m, a2 +m−1]).
Note that if per(u) divides d, then s[a1 +m, a2 +m−1] = x and we are done. Otherwise s[a1 +m, a2 +m−1]
is x shifted r times to the left (cyclic shift), where r = m (mod per(u)). Therefore

s[a1 +m, a2 +m− 1] = x[r + 1, per(u)] ◦ x[1, r].

3



Likewise we have s[a2 +m, a3 +m−1] = x[r+1,per(u)]◦x[1, r]. Therefore at location a2 +m, we know the
value of r and per(u) and consequently using this information, we can build the fingerprints Φ(x[r+1, per(u)])
and Φ(x[1, r]) when we go over s[a2 + m, a3 + m − 1]. Note that here we have used the properties (P4) and
(P5) from Section 2. It follows that we are able to construct Φ(x) when we get to a3 +m− 1.

Now observe that s[al, al + k] is equivalent to the substring s[al−1, al−1 + k] after removing a block of
length per(u) from the left-end of it and adding s[al−1 + k, al − 1] to the right-end. Therefore we can generate
Φ(s[al, al + k]) by having Φ(s[al−1, al−1 + k]), Φ(s[al−1 + k, al − 1]), and Φ(x). This proves our claim.

It should be clear that at each point in time, we run at most 4k
m parallel fingerprint computations. Each

fingerprint takes O(log n) space. This finishes the proof of the lemma. 2

Our pattern matching algorithm is the result of a recursive application of Lemma 3. First as we go over u,
we build Φ(u[1, 2i]) for all i ∈ [logm]. By Property (P3) this can be done in 1-pass and using O(logm log n)
bits of space. Let Ai be an algorithm that generates Ms(u[1, 2i]) in space gi. When i < c where c is a small
constant, we can use the naive solution of storing the entire pattern which gives gi = O(log n). By Lemma 3,
we get an algorithmAi+1 for Ms(u[1, 2i+1]) in space O(gi + log n) by fingerprint comparisons. Applying this
O(log |u|) times we obtain an algorithm for Ms(u) using space O(log |u| log n) bits. The success probability
is at least 1 − logm/n2 and this is due to the Property (P4) in Section 2 and the observation that we make at
most O(n log |u|) fingerprint comparisons.

Theorem 4 There is a 1-pass streaming algorithm that generates Ms(u) in O(log |u| log n) bits of space and
O(log |u|) per-item processing time. The error probability is bounded by n−1.

Since our pattern matching algorithm only requires the fingerprints of a small set of prefixes of the pattern,
it can be used to generate Ms(s[1,m]) (where the pattern itself is a prefix of the text) in one pass and in space
O(logm log n) bits. This property of our algorithm will be essential in Section 3.3. Furthermore, in addition to
Ms(u), our algorithm generates Ms(u[1, 2i]) for each i = 1, . . . , logm, which leads to further space economy
in our algorithms in the next section. On the other hand, we note that any algorithm that generates matches for
logm prefixes of the pattern must necessarily use Ω(logm log n) space (see Appendix A.4).

3.2 Finding the period

In this section we describe an algorithm for testing periodicity and finding the period. First we start with a
simple solution that gives a weaker bound and proceed to the general case afterwards. To make the presentation
simpler, we assume that n is power of 2 (this assumption can be discarded by minor modifications to the
parameters).

Testing whether the string s is periodic or not is equivalent to testing if there is a suffix s[t, n] of size at least
n/2 that matches a prefix of s. Clearly in this case s[1, n/2] would be a prefix of s[t, n]. Defining

T = Ms(s[1, n/2]),

we can say that s is periodic if there exists i ∈ T where s[i+ 1, n] = s[1, n− i]. Now if i ≤ n/4, we can build
both Φ(s[i+ 1, n]) and Φ(s[1, n− i]) in one pass over s and thus we can test whether per(s) ≤ n/4 or not as
follows.

Run the pattern matching algorithm to find i = min (T ∩ [1, n/4]). Build Φ(s[i+ 1, n]) and Φ(s[1, n− i]).
If Φ(s[i+ 1, n]) = Φ(s[1, n− i]) then per(s) = i otherwise output that per(s) > n/4.

The reason that we only perform the test for min (T ∩ [1, n/4]) is a consequence of Lemma 2. We do not
need to check whether s[i + 1, n] = s[1, n − i] for i = cmin (T ) when c is an integer greater than 1. This is
because, in this case s[1, i] would be of the form u ◦ . . . ◦ u (a cyclic string) and thus can not be the period of
s. From these observations we get the following lemma.

4



Lemma 5 There is a 1-pass streaming algorithm that decides whether per(s) ≤ n/4 or not in spaceO(log2 n)
bits. The algorithm also outputs the exact period if per(s) ≤ n/4.

For i ∈ T where i > n/4, checking whether s[i+ 1, n] = s[1, n− i] is not straightforward. This is because
when we find out that i ∈ Ms(s[1, n/2]), we have already crossed the point n − i and lost the opportunity
to build Φ(s[1, n − i]). To solve this problem we conservatively maintain a superset of T and prune it as we
learn more about the input stream. First observe that, for i ∈ T , it is enough to build Φ(s[n/2 + 1, n − i]).
This is because s[1, n − i] = s[1, n/2] ◦ s[n/2 + 1, n − i]. Now for i ∈ [1, n/2], let si = s[n/2 + 1, n − i].
At each point in time, we maintain a dynamic set of positions R that will contain T and for each i ∈ R we
collect enough information to be able to construct Φ(si). Also in parallel we run a pattern matching process
to generate T . Finally for each position in {i ∈ R ∩ T | i 6= cmin (T ) for c ∈ N} we check whether
Φ(s[i + 1, n]) = Φ(s[1, n − i]). If Φ(s[i + 1, n]) = Φ(s[1, n − i]) holds in one case, then we declare s to be
periodic otherwise it is reported aperiodic.

Let H = H1 ∪H2 ∪ . . . ∪Hlog(n/4) where Hk is defined as follows. Let Ik = [n/2− 2k + 1, n/2− 2k−1]
and Hk = Ms(s[1, 2k]) ∩ Ik. In other words, Hk is the positions of all occurrences of s[1, 2k] that start within
the interval Ik. We have chosen the boundaries of the Ik so that there are few of them and also their union
covers T : we have T ⊆ H . More importantly, to process each interval we only use logarithmic space.

In what follows, for a fixed k we show how to compute Rk ⊆ Hk and more importantly how to maintain
Φ(si) for each i ∈ Rk. Also we guarantee that every member of T will be added to R = R1 ∪ . . . ∪ Rlog(n/4)

at some point. Initially all Rk are empty. First we distinguish two main cases. In both cases, we use the pattern
matching algorithm described in Section 3 to get the sequence of positions in H . Also, when we detect i ∈ Hk,
we add it to Rk. However we might prune Rk and remove some unnecessary elements. In the following let
p = per(s[1, 2k]).

In the first case we have p > 1
42k. By Lemma 2, we get |Hk| < 4. Moreover we detect i ∈ Hk before

reaching the end of si and thus we can build Φ(si) at the right time. In this case we let Rk = Hk. Clearly we
can maintain R and the associated fingerprints in O(log n) space.

The case where p ≤ 1
42k is a bit more complicated. First we consider that, by Lemma 1, the positions in

Hk have a succinct representation as the distance between each consecutive pair of positions is p. It follows
that we can store Rk in O(log n) space. However, in this case Hk could be large and if we maintain Φ(si) for
each i ∈ Hk individually, this might take linear space. To solve this problem, we take advantage of the periodic
structure of s[1, 2k] and possibly the substring s[2k + 1, 2k+1]. Consider that for i ∈ Hk, si is a substring of
s[i, i + 2k+1 − 1]. Now (informally) if the substrings {si} fall in a periodic region, we can maintain all Φ(si)
by saving a constant number of fingerprints. On the other hand, if the substring s[i, i+ 2k+1−1] is not periodic
then we use the period information of s[1, 2k+1] to prune Rk. To do this, we collect the following information
when we process the first half of the stream.

• Using the tester from Lemma 5, we compute p. If it is reported that p > 1
42k, then Ik falls into the

previous case. We also compute Φ(s[1, p]) and Φ(s[2k − p+ 1, 2k]).

• Let u1 ◦u2 ◦ . . .◦ut ◦u′ be a decomposition of s[2k + 1, 2k+1] into consecutive blocks of length p except
possibly for the last block. Let x to be the maximum j such that s[1, 2k] ◦ u1 ◦ . . . ◦ uj is p-periodic. We
compute x.

Now let b1, b2, . . . , br be the elements of Hk in increasing order. Since |Ik| ≤ 1
22k, we have |bi+1− bi| = p

for all i ∈ [r − 1]. Let v1 ◦ v2 ◦ . . . ◦ vl ◦ v′ be a decomposition of the substring s[br + 2k, n/2 + 2k] into
consecutive blocks of length p except possibly the last block (see Figure 1 for a pictorial presentation of the
substrings). Note that the right endpoint of si for i ∈ Hk is located within [br + 2k, n/2 + 2k]. Now let y be
the maximum j such that s[br, br + 2k − 1] ◦ v1 ◦ . . . ◦ vj is p-periodic. We consider two cases. If y = l then

5



︷ ︸︸ ︷Ik

n
2

n
2−2k−1n

2−2k+1 n
2 +2k−1 n

2 +2k

q
b1

q
b2

q
b3

q
br−1

q
br

p p p q q q q q a
eb1

a
eb2

aaa
ebr

s[br+2k,n/2+2k]︷ ︸︸ ︷

Figure 1: A sample run of the algorithm in Section 3.2.

{si | i ∈ Hk} are substrings of a periodic interval. Let eb1 be the right endpoint of sb1 , i.e. eb1 = n− b1. Note
that we have eb1 > eb2 > . . . > ebr . In this case, all the following substrings (except possibly the last one) are
equal: s[ebr + 1, ebr−1 ], s[ebr−1 + 1, ebr−2 ], . . . , s[eb2 + 1, eb1 ]. Therefore to compute Φ(sbj ), we just need to
maintain Φ(sb1) and Φ(s[eb2 +1, eb1 ]). We compute Φ(sb1) individually. So in this case Rk = Hk. In the other
case, we have y < l. We make the following claim.

Claim 6 If y < l and |r − j|+ y 6= x then bj /∈ T .

PROOF: If bj ∈ T then s[bj , bj + 2k+1− 1] = s[1, 2k+1− 1] and the claim follows from the definition of x and
y. 2

The main consequence of Claim 6 is that at most one member of Hk is a member of T . Given this, we can
ignore the rest and just maintain Φ(sbj ) when |j − r|+ y = x and Φ(sb1). So in this case |R| = 2.

It remains to state how to compute x and y. To compute x, we need to know p and Φ(s[2k−p+1, 2k]). This
information can be obtained in one pass (see the observations before Lemma 5). Computation of y is similar
to x. In this case, before reaching the block vy+1, we maintain the fingerprint of the si (that we passed so far)
using the periodic structure we described in the previous case.

Given the above discussion, for each k ∈ {1, 2, . . . , log(n/4)}, we need to keep O(1) number of finger-
prints to maintain Rk and its associated fingerprints which makes the total space O(log2 n) bits. Hence, we get
the following result.

Theorem 7 There is a 1-pass randomized streaming algorithm that given s ∈ Σn outputs per(s) if s is periodic,
otherwise it reports that s is aperiodic. The algorithm uses O(log2 n) bits of space and has O(log n) per-item
running time. The error probability is at most O(n−1).

The following theorem shows that in general finding the period in one pass requires linear space. With
one additional pass however, the period of an arbitrary string can be found in O(log2 n) space, as we show in
Appendix A.2.

Theorem 8 Every 1-pass randomized algorithm that computes per(s) requires Ω(n) space.

PROOF: Consider the communication game between Alice and Bob, respectively holding strings a and b, both
of length n, where the goal of the game is to compute per(a ◦ b). We show that any one-way protocol that
computes per(a ◦ b) requires Ω(n) communication by a reduction from the augmented indexing problem (see
Appendix A.3). Suppose Alice and Bob are given an instance of INDn

2 as follows. Alice gets an x ∈ {0, 1}n,
and Bob gets an index i ∈ [n − 1] and y ∈ {0, 1}i with the promise that y = x[1, i − 1]. Alice sets a = x
and Bob sets b = w ◦ y ◦ 1, where w is n − i repetitions of the binary negation of y[1]. One can show that
per(a ◦ b) = i if and only if x[i+ 1] = 1 w.h.p. This proves our theorem. 2

6



3.3 Frequency moments over substrings

Let s be a string of length n, and k ≥ 0, d ≤ n be integers. We define the kth frequency moment of d-substrings
of s as

Fk,d(s) =
∑
u∈Σd

|Ms(u)|k.

To approximate Fk,d, one can create a fingerprint for each d-substring and feed this stream of fingerprints
to a standard Fk algorithm. Thus, using the algorithms of [IW05, BGKS06, I06, KNW10] one can (1 + ε)-
approximate Fk,d with Õ(d+n1−2/k) space and Õ(1) per item processing time for any k ≥ 0. It is not possible
to obtain a o(d) algorithm however, if we insist on constructing a fingerprint for each d-substring1. We note
that by replacing the reservoir sampling procedure of [AMS96] with the pattern matching algorithm above, one
can (1 + ε)-approximate Fk,d using space Õ( 1

ε2
n1−1/k), in particular independent of d.

Unfortunately, the estimator of [AMS96] does not give a bound for F0,d which is perhaps the most com-
monly used moment for substrings, also known as the q-gram measure. Here we present an Õ(1

ε

√
n) space

randomized algorithm that (1 + ε)-approximates F0,d.

Theorem 9 There exists a 1-pass streaming algorithm that (1 + ε)-approximates F0,d using Õ(1
ε

√
n) space.

PROOF: Let s ∈ Σn be the stream. Let K be the set of all d-substrings of s and n′ = n − d + 1. Our basic
estimator X is defined as follows. Let i be random position between 1 and n′. We set X = 0 if there exists a
j > i such that s[i, i+d−1] = s[j, j+d−1], we setX = n′ otherwise. We have E[X] = 1

n′
∑

w∈K n
′ = F0,d.

Also, Var(X) ≤ E[X2] = 1
n′
∑

w∈K n
′2 ≤ n · F0,d. Let Y be the average of 3

ε

√
n repetitions of X . By

Chebyshev’s inequality,

Pr[|Y − F0,d| ≥ εF0,d] ≤
Var(Y )
ε2F 2

0,d

≤
√
n

3εF0,d
.

Right hand side is smaller than 1/3 when F0,d ≥ 1
ε

√
n. Note that we can compute each X in O(log n log d)

space in one pass using the pattern matching algorithm of Section 3.1. In Lemma 19 (see Appendix A.1)
we show that F0,d can be calculated exactly, in space Õ(F0,d). Therefore we compute 3

ε

√
n estimates for X ,

while we run the exact algorithm in parallel. If at any point in the stream the exact algorithm detects that
F0,d ≥ 1

ε

√
n we terminate it and output the sampling estimate, otherwise we output the value computed by the

exact algorithm. 2

4 Approximating the distance to periodicity

Recall that Dp(s) is the minimum number of character changes on s ∈ Σn to make it p-periodic. Assume
WLOG that p divides n where n = dp, and view s as a p × d matrix A where A(i, j) = s[(i − 1)p + j].
If p does not divide n, s can be represented by two matrices. Then, Dp(s) is the the minimum number of
substitutions in A to make every row consist of d repetitions of the same character. Also, Dp(s) = L1 ◦
F
res(1)
1 (A) =

∑p
i=1 F

res(1)
1 (Ai). It is challenging to compute this quantity since we receive A in the column

order: A(1, 1), . . . , A(p, 1), A(1, 2), . . . , A(p, 2), . . . To compute L1 ◦ F res(1)
1 (A) exactly, one can compute

the residual tail of each row in parallel using independent counters, in O(|Σ|p) words of space. On the other
hand, one can estimate F res(1)

i (Ai) within 1− ε factor in O(1/ε) words of space in several ways. For instance,
using the Heavy Hitters algorithms in [MG82, BKMT03] we can approximate F∞(Ai) with additive error
εF

res(1)
1 (Ai), giving the following bound.

1An easy information theoretic observation shows that sliding a fingerprint for d-substrings that preserves equality with high prob-
ability requires Ω(d) space.

7



Theorem 10 There is a deterministic streaming algorithm that approximates L1 ◦ F res(1)
1 (A) within 1 − ε

factor using O(pε ) words of space.

Now we turn our attention to randomized algorithms. In the following, let F (A) denote L1 ◦ F res(1)
1 (A).

4.1 A (2 + ε) algorithm

The idea of this algorithm is to reduce F (A) to L0 of a vector where each item in s represents a set of updates
to this vector. Let fi(a) be the number of occurrences of a ∈ [m] in Ai. We first observe the following.

Fact 11 F
res(1)
1 (Ai) ≥ 1

d

∑
a<b fi(a)fi(b) ≥ 1

2F
res(1)
1 (Ai).

PROOF: Notice that 1
d

∑
a<b fi(a)fi(b) = 1

2(d − 1
d

∑
a f

2
i (a)). Clearly 1

d

∑
a f

2
i (a) ≤ max{fi(a)}. This

proves the right hand side inequality. To prove the left inequality, we need to show d ≥ 2 max{fi(a)} −
1
d

∑
a f

2
i (a). This is true because the RHS is maximized when max{fi(a)} = d. 2

One way to produce
∑

a<b fi(a)fi(b) is to compare each location of Ai with all other locations and sum up
the mismatches. To express this in terms of L0, let vi be an all zero vector of length d2 with a coordinate for
each (j, k) ∈ [d] × [d]. Given Ai(j) = l, add l to vi(j, k) and subtract l from vi(k, j) for all k ∈ [d]. Then,
L0(vi) = 2

∑
a<b fi(a)fi(b). We generate the updates to vector v = v1 ◦ . . . ◦ vp as we go over A and estimate

L0 using the following result by Kane et al. [KNW10].

Theorem 12 [KNW10] Let x = (x1, . . . , xn) be an initially zero vector. Let the input stream be a sequence of t
updates to the coordinates of x of the form (i, u) where u ∈ {−M, . . . ,M} for an integer M and i is an index.
There is a 1-pass streaming algorithm for (1 + ε)-approximating L0(x) using space O(1/ε2 log n(log(1/ε) +
log log(tM))), with success probability 7/8, and with O(1) per-item processing time.

By Theorem 12 and Fact 11, we get a 2 + ε approximation for F (A) in space O(1/ε2 log(1/ε) log(n)) bits.
However, per-item processing time is Ω(d). To overcome this, we pick a random set S of coordinates from [d]
of size O( 1

ε2
log p) and align Ai(j) with entire Ai only when j ∈ S, obtaining a new vector v′i with dimension

d|S|. Now fix an i and consider random variable L0(v′i). Let Yj be an indicator random variable which is 1
iff j ∈ S. We have E[L0(v′i)] =

∑d
j=1 E[Yj ]

∑d
k=1H(Ai(j), Ai(k)) = 2|S|

d

∑
a<b fi(a)fi(b). Since {Yj} are

independent, using Chernoff bounds,

Pr
[
|L0(v′i)− E[L0(v′i)| > εE[L0(v′i)

]
≤ 1

8p
.

By the union bound, the probability that 1
2|S|L0(v′) is away from 1

d

∑p
i=1

∑
a<b fi(a)fi(b) by a factor of ε is at

most 1/8. Given this and the fact that the underlying L0 estimation itself gives a 1 + ε approximation we get a
(1 + ε)2 = 1 + θ(ε) approximation using polylogarithmic space and O(1/ε2 log p) per-item processing time.

Theorem 13 Let ε > 0. There is a 1-pass randomized streaming algorithm that approximates L1 ◦ F res(1)
1 (A)

within 2 + ε factor using O(1/ε2 log(1/ε)) words of space. The error probability is at most 1/4.

4.2 A (1 + ε) algorithm

To find a better estimate for F (A) we use a combination of naive sampling and exact sparse recovery. If F (A)
is high, naive sampling gives us a good estimate. If F (A) is low, then A has few non-uniform rows (we call
Ai non-uniform if F res(1)

1 (Ai) > 0) and in space roughly proportional to the number of non-uniform rows, we
can use sparse recovery to find all non-uniform rows with high probability. In the latter case, we obtain F (A)

8



exactly, or with a large alphabet, to within 1 + ε factor. A generic implementation of this gives a Õ(n1/2) space
solution, where n = dp. Below we describe a Õ(p1/2) space algorithm which is in line with this this approach
but uses a combination of sampling, exact sparse recovery, and the 2 + ε algorithm described earlier.

Let F ′(Ai) = 1/d
∑

a<b fi(a)fi(b). Recall that in the previous algorithm we used F ′(Ai) as an approxi-

mation for F res(1)
1 (Ai). The worst case for this approximation happens when F res(1)

1 (Ai) is maximized, i.e.,
F∞(Ai) = d/F0(Ai). On the other hand, when F res(1)

1 (Ai) is low, the above quantity gives us a good estimate.
This is because F ′(Ai) is lowerbounded by 1

d(d− F∞(Ai))F∞(Ai) which implies the following.

Fact 14 Let ε ≥ 0. Suppose F res(1)
1 (Ai) ≤ εd. We have F ′(Ai) ≥ (1− ε)F res(1)

1 (Ai).

Define F ′(A) =
∑p

i=1 F
′(Ai). From the definitions, we get

F ′(A) +
1
2d

p∑
i=1

((F res(1)
1 (Ai))2 + F

res(1)
2 (Ai)) = F (A). (1)

Now let F ′′(Ai) = 1
2d((F res(1)

1 (Ai))2 + F
res(1)
2 (Ai)). From (1) it follows that if we are given F ′′(A) =∑p

i=1 F
′′(Ai), by using the algorithm from the previous section, we get a 1 + ε approximation for F (A). On

the other hand, Fact 14 tells us that we only need to compute F ′′(Ai) for rows with high contribution. For t ≤ d
define Ht to be the set {j | F res(1)

1 (Aj) ≥ t}. The following is a consequence of Fact 14 and (1).

F (A) ≥ F ′(A) +
∑
i∈Hεd

F ′′(Ai) ≥ (1− ε)F (A). (2)

In our algorithm we do not compute F ′′(Ai) forHεd but approximate them with error proportional to F (Ai).
This is achieved by sampling a few columns from A and using a sparse recovery procedure to find non-uniform
rows in the sampled matrix. For our sparse recovery procedure, we use the following result from [LP07].

Theorem 15 [LP07] Let x, y ∈ Σn. There is a randomized 1-pass streaming algorithm that, given the coordi-
nates of x and y in arbitrary order, can check if H(x, y) > r or not using O(r(log n + log |Σ|)) bits of space
and O(log n) per-item time. Moreover in case H(x, y) ≤ r, the algorithm finds all pairs (x[i], y[i]) where
x[i] 6= y[i]. The probability of error is at most n−1.

Now we are ready to describe our algorithm. Let ε be an arbitrary constant smaller than 1. Let δ < ε (we
determine the value of δ later) and k ≥ 8 logn

δ2
. For r ≤ p, denote by SR(r) the exact sparse recovery algorithm

from Theorem 15. We run the following three threads in parallel.

T1 Run the 2 + ε-approximation algorithm from Section 4.1. Let t1 be the output.

T2 Let K ≥ 8k(p log p
ε )1/2. Let B be K sampled rows of A (picked uniformly and independently). Compute a

1− ε approximation of F (B) using the algorithm from Theorem 10. Let t′ be the answer. Let t2 = pt′

K .

T3 Let r0 > 4 log p be an odd integer. Run the following r0 times in parallel.

In run j, let r = 8
ε1.5

( p
log p)1/2. Sample k columns of A uniformly and independently, obtaining matrix

C. Run SR(r) over consecutive columns in C. If more than r non-uniform rows are detected, abort the
run. Otherwise for each non-uniform row Ci do the following. Let fCi(a) be the frequency of a in Ci.
Use f ′i(a) = d

kfCi(a) to estimate fi(a). Let A′i be a sequence corresponding to the frequency vector f ′i .

Compute Xi = d2

2(k2)
∑

a fCi(a)(fCi(a) − 1) and let Yi = 1
2d(F res(1)

1 (A′i))
2 + 1

2d(Xi − F 2
∞(A′i)). At the

end we let Gj = {(i, Yi) | F res1 (A′i) ≥ εd}.

9



In the end, if the majority of the runs have aborted, the algorithm outputs t2. Otherwise, WLOG, assume
the first l > 2 log n runs have survived. Let G be the set of pairs (i, g(Ai)), where i appears in all G1, . . . , Gl
and g(Ai) is the median of Yi’s produced by the surviving runs. Then we output t3 = t1 +

∑
i∈G g(Ai).

Lemma 16 Assuming p is greater than a large enough constant, the above algorithm gives a 1 ± 3ε approxi-
mation for F (A) with probability is at least 3/4.

PROOF: We first consider the case when we ignore T3 and take the answer of T2. For each aborting run
we have F (C) > r. Based on the observation that E[ dkF (C)] ≤ F (A), and by Markov inequality, we have
Pr[ dkF (C) > 8F (A)] < 1/8. Since in this case more than half of the runs have aborted, using Chernoff bound,
with probability at least 1 − 1/p2 we have F (A) ≥ rd

8k . On the other hand, by Chebyshev’s bound, we have
Pr[|t2 − F (A)| ≥ 2εF (A)] < pd/(ε2F (A)K). Assuming the event F (A) ≥ rd

8k and after plugging the values
of r and K, we get that the probability is bounded by 1/8 + 1/p2.

Now consider the case where the output is t3. In this case, we need to analyze the quality of the approxi-
mation of F ′′(Ai) produced by a fixed run. The below claim follows by Chernoff bounds.

Claim 17 For a ∈ Σ, with probability at least 1− 1
8n2 , |f ′i(a)− fi(a)| ≤ δd.

From Claim 17 it follows that, with probability at least 1 − 1/(8np), the error of the first term in Yi, i.e.,
1
2d(F res(1)

1 (A′i))
2, is bounded by 2δd. To bound the error of the second term in Yi, we use Chebyshev bound

and the variance analysis of [BKS01] (cf. Lemma 5.3) to estimate F2. From [BKS01], we have E[Xi] = F2(Ai)
and Var(Xi) ≤ d

k (F2(Ai))3/2. Using Chebyshev’s inequality, we get

Pr[|Xi − F2(Ai)| > δd2] ≤ (F2(Ai))3/2

δ2kd3
.

Given that k > 8
δ2

log n, this probability is bounded by 1/(8 log n). Therefore, with probability at least
1 − 1/(8 log n), the second term of Yi has error at most 3δd. Since we took the median of at least 2 log p
outcomes, with probability at least 1 − 1/(p2 log n), for i ∈ G, we have |g(Ai) − F ′′(Ai)| < 5δd. Also with
probability at least 1− (log p)/(2n), we have

H(ε+δ)d ⊆ G, ([p] \H(ε−δ)d) ∩G = ∅ (3)

Now we choose δ so that 5δd ≤ ε(ε− δ)d. This gives us δ = O(ε2) and now we guarantee that, for all i ∈ G,
g(Ai) is away from F ′′(Ai) by at most εF res1 (Ai). Putting these observations and (1),(2), and (3) together we
get |t3 − F (A)| ≤ 3εF (A). This proves our lemma. 2

Threads T2 and T3 dominate our space complexity. The sampling algorithm in T2 takes O(1
εK) space with

O(1) time per item. The runs in T3 take O(r0rk) space in total. However since the decoding time of the sparse
recovery isO(r log n), this makes the worst-case per-item timeO(r0r log2 n). Since δ = O(ε2), our final space
bound becomes O(1/ε5.5(p log p)1/2 log n). Note that with a consant alphabet, eliminating the repetitions in
T3 and choosing parameters differently, we can get O(1/ε3(p log p)1/2) space.

Theorem 18 There is a randomized 1-pass streaming algorithm that outputs a 1 ± ε approximation of L1 ◦
F res1 (Ap×d) with probability at least 3/4 using O(1/ε5.5(p log p)1/2 log n) words of space.

References

[AMS96] N. Alon. Y. Matias and M. Szegedy. Space complexity of approximating the frequency moments.
STOC 1996.

10



[AG97] A. Apostolico, Z. Galil. Pattern matching algorithms. Oxford University Press. 1997

[BKS01] Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar. Sampling algorithms: lower bounds and
applications. CCC 2002.

[BJKS02] Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar. Information theory methods in communication
complexity. STOC 2001.

[BJKK04] Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, R. Kumar. Sketching complexity of pattern matching.
RANDOM 2004.

[BCIS09] R. Berinde, G. Cormode, P. Indyk, and M. Strauss. Space-optimal heavy hitters with strong error
bounds. PODS 2009.

[BGKS06] L. Bhuvanagiri, S. Ganguly, D. Kesh, C. Saha. Simpler algorithm for estimating frequency mo-
ments of data streams. SODA 2006.

[BKMT03] P. Bose, E. Kranakis, P. Morin, and Y. Tang. Bounds for frequency estimation of packet streams.
Proceedings of the 10th International Colloquium on Structural Information and Communication Com-
plexity. 2003.

[CCF04] M. Charikar, K. Chen, M. Farach-Colton. Finding frequent items in data streams. Theor. Comput.
Sci. 312(1): 3-15 (2004).

[CM05] G. Cormode, S. Muthukrishnan. Space efficient mining of multigraph streams. PODS 2005. 271-282

[CT91] T.M. Cover and J.A. Thomas. Elements of information theory. John Wiley & Sons Inc. 1991.

[CG00] A. Czumaj, L. Gasieniec. On the complexity of determining the period of a string. CPM 2000.

[EAE06] M. G. Elfeky, W. G. Aref, A. K. Elmagarmid. STAGGER: periodicity mining of data streams using
expanding sliding windows ICDM 2006.

[EMS04] F. Ergun, S. Muthukrishnan, C. Sahinalp. Sublinear methods for detecting periodic trends in data
streams. LATIN 2004.

[GKS05] S. Ganguly, D. Kesh, C. Saha, Practical algorithms for tracking database join sizes. FSTTCS 2005.

[I06] P. Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. J.
ACM, 53(3): 307-323 (2006).

[IKM00] P. Indyk, N. Koudas and S. Muthukrishnan. Identifying representative trends in massive time series
datasets using sketches. VLDB 2000.

[IW05] P. Indyk, D. Woodruff. Optimal approximations of the frequency moments of data streams. STOC
2005.

[JW09] T.S. Jayram, D. Woodruff. The data stream space complexity of cascaded norms. FOCS 2009.

[KNW10] D. M. Kane, J. Nelson, D. Woodruff. An optimal algorithm for the distinct elements problem. PODS
2010.

[KR87] R.M. Karp and M.O. Rabin. Efficient randomized pattern matching algorithms. IBM Journal of Res.
and Dev., p 249:260, 1987.

11



[KMP77] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comp. 6:323–350,
1977.

[LN05] O. Lachish and I. Newman. Testing periodicity. APPROX-RANDOM 2005.

[LZ77] A. Lempel and J. Ziv. A universal algorithm for sequential data compression. IEEE Transactions on
Information Theory. Vol. 23 (1977), pp. 337-343.

[LP07] O. Lipsky, E. Porat. Improved sketching of hamming distance with error correcting. CPM 2007.

[M09] S. Muthukrishnan. Data stream algorithms. The Barbados Workshop on Computational Complexity.
2009.

[MG82] J. Misra and D. Gries. Finding repeated elements. Technical Report, Cornell University. 1982.

[MW10] M. Monemizadeh, D. Woodruff. 1-Pass relative-error Lp-sampling with applications. SODA 2010.

[PP09] B. Porat, E. Porat. Exact and approximate pattern matching in the streaming model. FOCS 2009.

A Appendix

A.1 Missing proofs

PROOF: (Lemma 2) First we prove claim (i). Let p = per(t). By the definition of period, t is |i− j|-periodic.
This implies that p ≤ |i − j|. Suppose p < |i − j|. We prove that there exists a k ∈ Ms(t) where i < k < j.
Since |i− j| ≤ 1/2|t|, by Lemma 1, we get that t is gcd(p, |i− j|)-periodic and thus |i− j| is a multiple of p.
This means that all the consecutive blocks

s[i, i+ p− 1], s[i+ p, i+ 2p− 1], . . . , s[j − p, j − 1], s[j, j + p− 1]

are equal. Take k = j − p. Clearly k ∈Ms(t). This contradicts with our assumption and proves the first claim.
To prove the second claim, we proceed as follows. Let |t| = lp + r, where l is an integer and 0 ≤ r < p.

Define i0 = i + |t| − r − p. If j ∈ U and j < i0, then |j − i| is a multiple of p by applying Lemma 1 twice.
Suppose for contradiction that there are j1 < j2 in U such that both |j1 − i| and |j2 − i| are indivisible by p.
From the previous sentence j1 ≥ i0. Also, by definition of period |j1 − j2| ≥ p. Let s1 = s[i0, i + |t| − 1].
Since s1 is both |j1 − i0|- and p-periodic and |j1 − i0|+ p ≤ |s1|, by Lemma 1 s1 is gcd(|j1 − i0|, p)-periodic.
In particular, s[i, i+ p− 1] = s[i0, i0 + p− 1] = um for some m > 1, a contradiction. This proves that there
can be at most one j ∈ U such that |i− j| is not divisible by p.

Now we show j1 = max (U) if |i−j1| is not divisible by p. Assume for contradiction that there is a j2 ∈ U
such that j2 > j1. From the previous paragraph, |j2− i| is a multiple of p and j1 > i0. Hence j2 = i0 + p. This
means that t is (j2 − j1)-periodic, which is a contradiction since |j2 − j1| < p. 2

Lemma 19 There is a 1-pass randomized algorithm that computes F0,d(s) with high probability using space
O(F0,d(s) log2 n) bits.

PROOF: First we show for |s| ≤ 2d, how to build the fingerprints of every distinct d-substrings of s in
O(F0, d(s) log2 n) bits of space, and handle the general case afterwards. Suppose |s| ≤ 2d. We claim that
s can be divided into three substrings s = u1 ◦u2 ◦u3, where |u1| and |u3| are O(F0,d(s)) and per(u2) ≤ F0,d.
Assume F0,d(s) < d/4, otherwise the claim is trivially true. Now let t = F0,d(s) + 1 and let s1, . . . , sh be the
consecutive d-substrings of s. By assumption there exists si and sj such that i < j ≤ t and si = sj . Again by

12



assumption there exists sk and sl where (j+d−3t−1) ≤ k < l ≤ (j+d−2t) and sk = sl. This implies that sl
overlaps with sj in at least 2t− 1 characters. Moreover both per(sj) and per(sl) are less than or equal to t− 1.
Using Lemma 1, it can be shown that any r-substring of a string with the period p, has period p if r ≥ 2p. By
this fact, we conclude that the last 2t− 1 characters of sj has period per(sj). Consequently per(sj) = per(sl).
Therefore per(s[j, l+ d− 1]) = per(sj) ≤ t− 1 = F0,d(s). We let u1 = s[1, j − 1], u2 = s[j, l+ d− 1], and
u3 = s[l + d, |s|]. This proves our claim.

By the properties of u1, u2 and u3, it should be clear that s can be encoded using at most O(F0,d(s) log n)
bits. Such encoding can be constructed in spaceO(F0,d(s) log2 n) bits in 1-pass using a compression procedure.
In fact one can show that LZ(s) = O(F0,d(s) log2 n) where LZ(s) is the number of codewords output for s by
the Lempel-Ziv compression algorithm [LZ77]. This algorithm can be implemented in space O(LZ(s)) with

˜O(1) per-item processing time. To count the number of distinct substrings, as we compress we generate the
next fingerprint and we add it to the stack of stored fingerprints if it does not already exist.

For |s| > 2d, we divide s into blocks of length at most 2d where each d-substring of s belongs to exactly
one block and moreover constant number of blocks intersect with each other. We handle each block separately
but we keep a unique storage for all the fingerprints. Since constant number of blocks overlap and clearly the
number of distinct substrings in a block is less than F0,d(s), we use at most O(F0,d(s) log2 n) space in total.
This proves our lemma. 2

A.2 The 2-pass algorithm for the period

Here we present a 2-pass O(log2 n) space algorithm using the pattern matching algorithm we described in
Section 3. Let x and y be two strings of length n. Let λ(x, y) be the length of largest suffix of y[2, n] that is a
prefix of x. We show how to compute λ(x, y) in two passes when the input stream is the following sequence.

x[1], y[1], x[2], y[2], . . . , x[n], y[n]

By the definition of λ and per(·), if we replace y with x, we get a 2-pass algorithm for per(x). Now suppose
there is a streaming algorithm A, using d(n) space, for function λ′(x, y) defined below.

λ′(x, y) =
{
λ(x, y) if λ(x, y) ≥ bn2 c
0 otherwise.

It must be clear that given A, we get a O(d(n) log n) space solution for streaming computation of λ(x, y).
In fact in what follows we give a simple 2-pass O(log2 n) space algorithm to compute λ′(x, y) using the result
of Theorem 4. Observe that if λ′(x, y) is non-zero then the longest suffix of y[2, n] that matches a prefix of
x must have x[1, n/2] as a prefix. Let R = My[2,n](x[1, n/2]). Therefore to find the location of such longest
suffix, it is enough to check all i ∈ R. Formally λ′(x, y) = max(S) where

S = {n− i | y[i, n] = x[1, n− i] and i ∈ R}

If S is empty then λ′(x, y) = max(S) = 0. By Theorem 4, we can outputR in the first pass usingO(log2 n)
space. However to compute S we need to know R which might have linearly many elements. However, by
Lemma 2, the elements of R form an arithmetic progression (except possibly the last element), hence can be
encoded using O(log n) bits. Given this encoding, in the second pass we compute S and finally the value of
λ′(x, y). In a naive manner, by running this procedure for λ′(x[1, 2i], y[n − 2i + 1, n]) in parallel, we obtain
a O(log3 n) space algorithm for λ(x, y). However we do not really need the parallel runs. This is because of
the property of the pattern matching algorithm. Remember that the algorithm in Section 3 not only finds the
occurrences of u in s but also the occurrences of the prefixes u[1, 2i] as well. This is exactly what we need in
each parallel run.

13



A.3 Augmented indexing problem

Consider the following variant of indexing problem. Alice is given a string s of length n over the alphabet
Σ = [k]. Bob is given an index i ∈ [n] and the string s[1..i − 1]. Bob is required to output s[i]. We
denote this problem by INDn

k . In the following lemma, we show a lower bound for CC→δ (INDn
k), the δ-error

one-way communication complexity of INDn
k . The proof is a straightforward adaptation of the method from

[BJKS02, BJKK04].

Lemma 20 The one-way communication complexity of INDn
k is Ω((1− δ)n log k).

PROOF: Alice is given a string X chosen uniformly at random from [k]n. Bob is given an uniformly random
integer I from [n] and the prefix of X of length I − 1. Assume there is an δ-error private coin protocol. Let
A(X) denote the message Alice sends when X is given as input. By Fano’s inequality (see [CT91])

H2(δ) + δ log(k − 1) ≥ H(XI | A(X), X1X2 . . . XI−1, I) (4)

=
1
n

n∑
i=1

H(XI | A(X), X1X2 . . . XI−1, I = i) (5)

=
1
n

n∑
i=1

H(Xi | A(X), X1X2 . . . Xi−1) (6)

=
1
n
H(X | A(X)) (7)

≥ 1
n

(n lg k −H(A(X))) (8)

At step (7) we used the chain rule for entropy H(Z|Y ) = H(Z, Y )−H(Y ). Since we chose X uniformly
at random from [k]n, we have H(X) = n lg k. Arranging, we obtain

CC→δ (INDn
k) ≥ H(A(X)) ≥ (1− δ)n log k − nH2(δ)

2

A.4 A lower bound for pattern matching

We define a two-player communication game G as follows. Alice and Bob are given strings of length m and
n respectively over the alphabet Σ. Call these strings s and t respectively. Alice sends a single message
to Bob and Bob is required to output logm binary vectors b1, bs, . . . blogm of size n such that bi[j] = 1 iff
s[1, 2i] = t[j, j + 2i− 1]. A protocol is said to have constant error if with constant probability all vectors bi are
correct in each position.

Theorem 21 The one-way communication complexity of G is Ω(logm log n), provided that m1+ε < n for
some ε > 0.

PROOF: Suppose Alice and Bob are given an instance of the INDlogm
n/m problem as follows. Alice gets a string

s ∈ [n/m]logm and Bob gets an integer i and a string t ∈ [n/m]i−1 with the promise that s[1, i−1] = t[1, i−1].
Bob is required to output s[i]. Alice and Bob construct an instance of G as follows. Alice creates a pattern x by
writing sj , 2j−1 times next to each other for j = 1, . . . , logm. Namely,

x = s1 ◦ s2
2 ◦ . . . ◦ s

m/2
logm

14



Bob creates n/m strings y1, . . . , yn/m, each of length at most m as follows.

yk = t1 ◦ t22 ◦ . . . ◦ t2
i−2

2 ◦ k2i−1

Bob’s text is the concatenation of all yk for k = 1, . . . , n/m. Using a protocol for G, Bob is able to deduce
s[i]. Lemma 20 implies a lower bound of Ω(logm log n

m), which is Ω(logm log n), when m1+ε < n. With a
slight modification of this proof one can show that G requires Ω(logm log n) communication even for binary
alphabets. 2

Given a 1-pass pattern matching algorithm that outputs Ms(u[1, 2i]) for i = 1, . . . , logm, we convert it to
a one-round protocol that solves G. Therefore Theorem 21 implies a lower bound of Ω(logm log n) for such
pattern matching algorithms.

15


