On Distance to Monotonicity and Longest Increasing Subsequence of a Data
Stream

Funda Ergun*

Abstract

In this paper we consider problems related to the sortedness
of a data stream. First we investigate the problem of
estimating the distance to monotonicity; given a sequence
of length n, we give a deterministic (2 + €)-approximation
algorithm for estimating its distance to monotonicity in
space O(e%log?(en)). This improves over the randomized
(4 + €)-approximation algorithm of [3]. We then consider
the problem of approximating the length of the longest
increasing subsequence of an input stream of length n. We
use techniques from multi-party communication complexity
combined with a fooling set approach to prove that any O(1)-
pass deterministic streaming algorithm that approximates
the length of the longest increasing subsequence within 1+€
requires 2(y/n) space. This proves the conjecture in [3] and
matches the current upper bound.

1 Introduction

Streaming algorithms are those that are allowed to have
a small number (preferably one) of passes over the
input data and use sublinear space (and small per-item
running time). These restrictions often arise in real-
world applications that deal with massive data sets and
thus streaming algorithms have attracted considerable
attention in the past few years [8]. The main theoretical
challenges in this area are (i) reducing the space usage
as much as possible and (ii) establishing tight bounds
for the space complexity. Establishing such upper and
lower bounds poses unique challenges for which novel
techniques are required.

Among the set of problems that have been studied
in this area, estimating the sortedness of an array
has captured special attention [1, 6, 3, 9]. There are
several measures for quantifying the sortedness of an
array. Given a sequence o of length n, the number
of inversions in o, denoted by K(o), is a measure
for sortedness of o which is defined as the number of
pairs of items in ¢ which violate the natural ordering
property. Another measure for sortedness is the length

" *School of Computing Science, Simon Fraser University, BC,
Canada. funda@cs.sfu.ca.

tSchool of Computing Science, Simon Fraser University, BC,
Canada. hjowhari@cs.sfu.ca.

Hossein Jowharit

of the longest increasing subsequence in ¢, denoted by
LIS(0). One final measure is distance to monotonicity,
denoted by ED(c), defined as the minimum number
of single item deletions needed to reach a sorted
sequence o’. (It can be easily verified that in fact
ED(0) =n— LIS(0).) Both exact and approximation
algorithms have been studied for these measures in
the conventional and streaming models. Our focus in
this paper is on approximating both the distance to
monotonicity and the length of the longest increasing
subsequence.

Previous Results. The interest in longest increas-
ing subsequence and distance to monotonicity in the
streaming model is relatively recent; we start with a
brief list of known upper bounds. The first work on mea-
suring the sortedness of a sequence was on the number
of inverted pairs; Ajtai et al. in [1] showed that given an
input sequence which is a permutation of {1...n}, K (o)
can be approximated within a 1+e¢ factor by a determin-
istic algorithm that uses only O(% loglogn) space. In a
subsequent work, Gupta et al. [4] gave a O(% logn®)
space randomized streaming algorithm for general se-
quences. In [6], Liben-Nowell et al. considered the LIS
problem and gave an exact deterministic algorithm for
computing LIS(o) in space O(LIS(c)). More recently
Gopalan et al. [3] gave an O(,/2) space deterministic
algorithm for approximating both LIS(o) and ED(o)
within a 14 € factor. Furthermore they described a 4+¢
factor randomized approximation algorithm for ED(0)
that uses O(% log® n) space.

In terms of lower bounds, it is known that com-
puting K(o),LIS(c) and FED(o) exactly requires
linear space even if ¢ is known to be a permutation
[1, 3, 9]. For approximating LIS (within a constant
factor) it has been conjectured by Gopalan, Jayram,
Krauthgamer and Kumar [3] that any deterministic
algorithm requires Q(y/n) space. In a work independent
of this paper, Gal and Gopalan proved this conjecture
by showing a lower bound of Q(y/n/e) which exactly
matches the current upper bound for all approximation
factors [2]. Finally Woodruff et al.[9] have shown some
lower bounds for the problem of finding the longest

increasing subsequence itself.

Our contributions. In this paper, we first consider the
problem of approximating ED(c). We give a determin-
istic streaming algorithm which approximates ED(o)
within a factor of 2 + ¢ in O(% log® en) space; this im-
proves the previous 4 + € factor randomized approxima-
tion algorithm of [3]. Our algorithm uses an improved
version of the estimator used in [3] and is based on the
characterization of distance-to-monotonicity by inver-
sions. In contrast to [3] which uses sampling, we use a
specific data structure for quantile estimation from [7]
that enables us to estimate the median in any window
over the stream without using randomization.

The second main result of this paper is a proof for
the conjecture of Gopalan, Jayram, Krauthgamer and
Kumar [3]. More specifically we show that any O(1)-
pass deterministic algorithm that approximates LIS(o)
within a factor of 1 + € for small € requires Q(y/n)
(bits of) space. Our proof is based on multi-player
communication complexity combined with a direct-
sum approach that is suggested in [3]. Although our
proof uses a similar framework to one used in [2, 3],
our method towards deriving a bit-complexity lower
bound is based on a novel primitive function. Our
primitive function enables us to get a lower bound which
holds even in the blackboard model and also directly
implies a lower bound for O(1)-pass algorithms. We use
probabilistic method to show the existence of a large
fooling set for the primitive function which can be easily
generalized to find a large fooling set for the gap version
of LIS.

2 Preliminaries

Let ¢ = o(1),...,0(n) be a sequence of n elements
from the set {1,...m}. Let LIS(c) be the length
of a longest increasing subsequence in o (sometimes
we use LIS alone to refer to the longest increasing
subsequence itself). Let ED(o) denote the distance of
o to the closest monotone sequence, i.e., ED(0) is the
minimum number of delete operations needed to reach
a monotone sequence from o. Note that this is the same
asn — LIS(o).

We use [m] to denote the set {1,...,m}. We
sometimes abuse notation and apply set operations to
lists and intervals of discrete numbers. These are to
be understood as being applied to the set of elements
comprising these lists and intervals.

3 Approximating the distance to monotonicity

In this section we present an algorithm for approximat-
ing the distance to monotonicity. Recently Gopalan
et al [3] have presented two streaming algorithms for

approximating this quantity: a deterministic (1 + €)-
approximation algorithm that uses O(y/n/€) space and
a randomized 4 + e-approximation algorithm that uses
O(ei2 log? n) space. In this paper, we improve these re-
sults by presenting a deterministic (2+e¢)-approximation
algorithm that uses O(Z% log? n) space.

3.1 Our general approach We first define an es-
timator which approximates the size of the LIS, then
design an algorithm which approximates the value of the
estimator itself. On a high level, our estimator, which
is based on a modification to an estimator in [3], iden-
tifies a set of disjoint non-increasing subsequences in o
and uses the sum of the lengths of these sequences as a
lower bound for ED(o). The following lemma shows the
relationship between these non-increasing subsequences
and ED(o).

LEMMA 3.1. Let P = {o1,...,0:} be a set of dis-

joint and non-increasing subsequences in o. We have
t

ED(0) = (3= loa]) — t.

Proof. Let m be a longest increasing subsequence in o.
It is easy to see that in any non-increasing subsequence
of length k in o, at least k—1 of the items do not belong
to 7.

Later, we show how to estimate the sum of lengths
of these subsequences and how to use this to bound
ED(o).

3.2 An improved estimator We now design an
estimator which gives a 2-approximation to L1S(c). Let
o be a sequence of length n. Let inv(i) be the set of
indices j < i such that o(j) > o(i). We say R C [n] is
a red set for o if Vi € R at least one of the following is
true:

(i) ¢ — 1 € inwv(i), or,

(ii) there is an interval I = [j,7 — 1] such that
linv(i) NI| > |RNI|.

When ¢ € R we say ¢ is a red index; every red
index has a witness in the form of another index (if (i)
is satisfied) or an interval (if (ii) is satisfied). We call the
red set R total if Vi € R, i does not have a witness. The
above definition is similar to the definition used in [3]
except that the membership of an index in R depends
not only on inversions but also on the number of red
indices to its left in o. Our main observation is the
following lemma, which links the size of the red set to
the distance to monotonicity.

LEMMA 3.2. Let R be a red set for the sequence o.
We have |R| < ED(o). Moreover if R is total then
R > LED(o).

Proof. For the first part, suppose the set R = {j1, ..., j¢ }
is a red set for 0. Let G = (V, E) be a graph where
V = {o(1),...,0(n)}. We now introduce an inductive
procedure that defines the edge set E. Initially E = ().
We scan o from left to right, and for every index ¢ which
is in R, find some k < ¢ such that k € inv(i) and the
indegree of o(k) is zero in G. We then add a directed
edge (0(i),0(k)) to G. By induction over the indices in
R, we prove that this procedure is possible at every step.
The base case is trivial and we can add an arbitrary
edge (0(j1),0(j1)) to E when ji € inv(j1). Suppose
the claim is true for up to j._;. Consider the index j,.
Since j, € R, by definition, we are in one of two cases.
The first case is when j,. — 1 € inv(j,), in which case
we can add the edge (o(j,),0(j- —1)) to E. The second
is when there exists an interval I = [I, j,, — 1] such that
linv(j,) N I| > |RNI|. Suppose for Vz € I Ninv(j,),
indegree(z) is nonzero. This is not possible since the
edges only originate from the vertices that belong to
R and this implies that |R N I| > |I Ninv(j,)| which
contradicts our assumption. Therefore we will be able
to add an edge starting from j, as well.

Now consider the graph G = (V,E) at the end
of the above process and make the edges undirected
(with a little notational abuse, we call the new graph
G as well). It is easy to observe that G is com-
posed of a set of disjoint paths. Consider any max-
imal path p = (0(j;), ..., 0(Ji+k)); p represents a de-
creasing subsequence of length k. Additionally, we have
{jix1s s Jitk} € R. By using Lemma 3.1, we can con-
clude that |R| is a lower bound for ED(o).

Now we prove the second part of the lemma. Let R
be a total red set for . We define an iterative pruning
procedure that deletes at most 2|R| elements from o
and leaves a sorted sequence, similar to that used in [3]
for showing the lower bound. First let ¢ = n + 1 and
o(n+1) = m where m is larger than all of the elements
in the sequence. Then iteratively do the following until
o is exhausted: If i — 1 ¢ R then proceed to i — 1 and
repeat. If i —1 € R; let j be the largest index such that
j <iandj ¢ RUinv(i). Prune the interval [j+1,i—1],
proceed to j, and repeat.

It is easy to see that at the end of this procedure
the resulting sequence is sorted. To bound the number
of elements pruned, observe that when we delete an
interval, at least half of the elements in the interval
belong to R. Thus in total we delete at most 2|R|
elements. The proof follows.

3.3 Approximating the estimator We now show
a deterministic algorithm for approximating our es-
timator. Even though the estimator has similarities
to that in [3], due to its definition involving the

comparison of |inv(i) N I| with |R N I], we must design
a novel algorithm to compute it. Notice that the exact
computation of this quantity can be quite costly if
the two quantities are close to each other, or are very
small. We show below that an efficient deterministic
algorithm which gives an inexact estimate of the
quantities suffices to construct a good approximation
algorithm. To be precise, we use an algorithm, which,
instead of comparing |inv(i) N I| and |R N I|, checks
for two conditions: whether the number of inversions is
in the majority and the red indices are far from being
majority in an interval. If the test for ¢ passes for any
one interval then we make the index i a red index.
The detected red set might not be total, however we
show that it is large enough to give us a 2 + O(e)
approximation.

The majority test. Given some z and an interval
I, we want to check whether the number of elements
in I that are larger than x is more than |I|/2 or not.
One can perform this test by comparing x with the
median of the elements in I. Since we only require
a relaxed version of the majority test, we can use an
approximate median for this purpose. The problem of
finding the approximate median (and other quantiles)
deterministically in a stream is well studied in the
literature. Since we need to obtain the approximate
median for all widow sizes over the stream, we use a
special algorithm from Lu et al [7], whose properties we
describe below.

Let S be a set with N elements. A ¢-quantile
(¢ € (0,1]) of S is the element of rank [¢N]. An
element is said to be e-approximate ¢-quantile if its rank
isin [[(1 —€)¢NT, [(1 + €)$N]]. The below theorem is
a modified version of the theorem of [7]

THEOREM 3.1. There is a deterministic streaming al-
gorithm which, given an input stream of length N, us-
ing O(e%logz(eN)) space forms a sketch of the stream
and can output on demand, using this sketch, an e-
approzimate quantile of the n most recent elements of
the given stream in for any n.

Let A be the algorithm described in the above
theorem. Our algorithm will be making queries to
A as follows. Let the output of A(S,k,¢) be an
e-approximation for the ¢-quantile of the k& most recent
elements in stream S. While going over the sequence,
we assume that we generate a binary sequence that
represents the red elements detected so far. let R’ be
the sequence of these elements, i.e. R'(i) = 1 if and
only if the algorithm has identified i*" element as a
red element. We apply the subroutine A to both the
input stream (o) and the sequence R’. We present the

algorithm below for a particular interval size ¢ — j.

Procedure RedTest(j,1)

1. Let a = A(o,i— j, 5 —e).

2. If a < (i) return FALSE.

3. Let o' = A(R,i—j, % +e).

4. If a’ = 0 then return TRUE otherwise return
FALSE.

In the following lemma, we analyze the procedure
RedTest.

LEMMA 3.3. Let I = [j,4 — 1]. If the majority of
elements in I are not in inv(i) then RedTest(j,i)
returns FALSE. If more than (% +2¢)|I| of the elements
in I are in inv(i) and the number of (detected) red
elements in I is less than (3 —2¢€)|I| then RedTest(j, 1)
returns TRUE.

Proof. First part: if the majority of the elements in I
are not in ¢nv(i) then the median of I is at most o (7)
and since the rank of a is in the range (3 — 2¢,3)|I
then we should have a < o(7); the test returns FALSE.
Second part: since more than (1 + 2¢) fraction of I are
in inv(i) and the rank of a is in the range (3 — 2¢,)|1],
it follows that a > o(i). Also since the rank of o’ is in
the range (1,1 + 2¢)||, we should have a’ = 0 and the
test returns TRUE.

We now give the main algorithm.

Main Algorithm. Upon arrival of element () do the
following.

1. For each j € [1,i—1], do RedTest(j,1). If there exists
j such that RedTest(j,i) = TRUE then let d = d+1
and R/(¢) = 1; otherwise R'(i) =0

2. Proceed to i + 1%t element.

At the end, output d.

LEMMA 3.4. At the end of Main Algorithm we have
(3 = O(e)ED(0) <d < ED(0).
Proof. Let ¢ € R'. By Lemma 3.3 there exists an
interval I = [j,i— 1] such that |inv(i)NI| > |R'NI|. It
follows that this interval is a witness for ¢ and hence R’
is a red set for 0. By Lemma 3.2 d = |R'| < ED(0).
Now we show the lower bound. The set R’ is not
necessarily total. However we show that it is big enough
to be bigger than (3 — 2¢)ED(c). We use the same
pruning procedure that we used in the proof of Lemma
3.2. Consider the point where ¢ ¢ R’ and we eliminate

the interval I = [j,¢ — 1]. By definition of pruning
procedure, the elements in I are either in inv(i) or
in R'. Suppose [I N R'| < (3 —2¢). Then we should
have |inv(i) N I| > (3 4 2¢) and hence by Lemma 3.3
RedTest(j,i) should output TRUE. This contradicts
i ¢ R'. Tt follows that in every interval that we delete,
the fraction of red elements is at least % — 2¢ and hence
in total we delete at most 2+O(e)|R’| elements from the
sequence and we get a sorted subsequence. This proves
the lower bound.

Improving the running time. The running time
of the above algorithm is O(n) per-item because the
algorithm checks every interval. An observation shows
that for some small enough ¢; < 1, checking O(% logn)
number of intervals is enough. To see this, note that
an ej-approximate ¢-quantile of an interval with length
|I| is also an (e; + e3)-approximate ¢-quantile for all
intervals with lengths |I| + 1, ..., (1 4+ €2)|I|. Hence with
the appropriate choice of €; and ez (where €1 4 €2 < ¢€)
and by checking only intervals of length 1,2,...,(1 +
€) (1 4+ €)1, .. ,n, we can obtain an e-approximate
quantile for every interval. Given this, we can state the
following theorem.

THEOREM 3.2. Given a sequence o of length n, there
a deterministic streaming algorithm that outputs a
2 + O(e) approzimation of ED(c) and uses space
O(% log®(en)) and O(% log® n) per-item running time.

4 Space lower bound for approximating LIS

In this section we prove the conjecture of Gopalan et al.
[3] which states a lower bound of (y/n) for the space
complexity of streaming algorithms that approximate
LIS(o) within a small constant factor. Our proof is
based on multi-player communication complexity com-
bined with a direct-sum approach that is suggested in
[3]. Before we begin with detail of the proof, we briefly
describe the idea of [3]. Gopalan et al. defined a
specific distribution (1) of sequences of length t? such
that for each sequence o € p either LIS(c) = ¢ or
LIS(o) = (1 + €)t where € is a positive constant less
than one. Gopalan et al. showed that the problem of
distinguishing between the two types of the sequences
in p can be reduced to function g which is defined as
the disjunction (OR) of ¢ instances of identical primi-
tive functions (g = Vi_;h;(0;)). The input to the prim-
itive functions, o1, ..., 04, are disjoint interleaving subse-
quences of o which means that o; = o(j1)o(j2)...0(jt)
where ji = i + (k — 1)t. This definition helps that one
can use a t-player one-way game to compute g where
i-th player holds the i-th elements of the subsequences
01,...,0¢. The idea behind this reduction is that com-
puting a lower bound for communication complexity of

g through a direct-sum approach would give us a lower
bound for streaming algorithms that distinguishes the
inputs in p and hence it applies to approximating LIS
in general.

Gopalan et al. used the above setting but they were
not succeeded to prove a bit-communication complexity
lower bound, instead they obtained a lower bound
of Q(?) for the total communication complexity of g
through a restricted class of protocols. This result
implies a lower bound of Q(t) for approximating LIS
through the so called Natural algorithms which are one-
pass streaming algorithms that can only store some
subset of input symbols and nothing else with additional
few auxiliary bits.

Here we use the framework of Gopalan et al. [3] and
we derive a bit-communication complexity lower bound.
The idea behind our proof is defining a new primitive
function A which admits a large fooling set. We show
the existence of such fooling set through probabilistic
method. Finally we show that the fooling set for h can
be extended to create a large fooling set for g.

4.1 Some definitions and basic facts Let U be
some finite universe. Let f : U' — {0,1} and let X
be a k x t matrix. Let X;; € U denote the element at
coordinate (4,j) in X. Let X, be the set of elements
that appear in the j column of X. We define Y (X) =
{y e U'Vi € [t] y; € X;} and we call it the span of the
matrix X. ! Now we define the notion of a k-fooling set
for function f which is a generalization of a standard
fooling set definition (see [5]).

DEFINITION 4.1. Let S C Ut. For some positive integer
k, S is a k-fooling set for f iff f(x) =0 for each xz € S
but for each subset of S’ of S with cardinality k, the
span of S’ contains a member y where f(y) = 1.

We define the t-player one-way game G(f,t) which
consists of players Pj,..., P, such that P; holds the
element a; € U and the goal of the game is to compute
f(a) where a = (ay,a2,...,a;). The course of the
communication is from P; to P;yq (here t + 1 = 1)
where the players speak in turn. We emphasize that
our lower bounds apply to the stronger model where
the players speak in turn - in natural order of 1,...,n-
and they write exactly one message on a board that is
visible to all. The game ends when a player announces
the answer.

We define CC!°(f) (total communication complex-
ity of f) as the minimum number of bits required to be

TTn some places we use the span operator for sets of tuples (or

sequences); in these situation the set of tuples or sequences are
regarded as a matrix where rows are the tuples (sequences).

sent by the players (or the total length of the messages
written on the shared board) in every deterministic com-
munication protocol that always outputs a correct an-
swer for the game G(f,t). The following fact is folklore
and it is an easy consequence of the fact that a k-fooling
set requires at least log(|S]/(k—1)) monochromatic rect-
angles to be covered (see chapters 1 and 6 from [5]).

FacT 4.1. Let S be a k-fooling set for f. We have
CC{'(f) = log(|S]/(k —1)).

Let P be a correct protocol for G(f,¢) and let
maz(P) be the maximum number of bits sent by a
player in P taken over all inputs of f. We define
CC*(f) (maximum communication complexity of
f) as min{max(P;)} where P; ranges over all correct
protocols for G(f,¢). It is clear that C/"**(f) >
1CCI(f)-

REMARK 4.1. In this section, we assume that an in-
creasing subsequence does not contain repetition.

4.2 The proof of the conjecture We start with
the definition of the primitive function h. Let t be an
even integer. Let o be a sequence of length ¢ where
Vi,o(i) € T = {0,...,t} and nonzero elements of o
form a strictly increasing sequence. In other words, o
represents the characterization vector of some subset of
[t]. Here we assume that the elements {1,¢} are always
appear in o. We define h(o) = 0 if no consecutive non-
zero elements appear in o. It is clear that in this case
LIS(o) < £+ 1. We define h(s) = 1 when o has an
increasing subsequence of length at least at where « is
some constant greater than % Note that we restrict the
inputs of h to the sequences having one of the above
properties.

Now similar to [3], we define the function g which
is the OR of ¢ parallel and independent copies of h. Let
hi, ha, ..., hy be t identical copies of h. 2 Let Bbeatxt
matrix where B; is the i'" row of B and it represents
an input for function h;. We assume that the universe
of the rows of B are disjoint except for the zero element
which is shared by all of them. In another words, we
assume that B; is a sequence that represents a subset of
[(i — 1)t 41, it] in the manner we described above. Now
we define g(B) = hy(B1) V ha(Ba) V ... V hy(By).

Let s be the sequence of length ¢?> which is formed
by the concatenation of the columns of B in the natural
order. Formally speaking let C; = By;Baj...By;; we let
s = (C1(5...Cy. Now consider an increasing sequence
in s and trace the elements of this sequence in B.

2Their description are the same though their domain are

different.

For now lets assume that the increasing subsequence
should not contain the zero element (we later remove
this assumption). It is easy to see that any increasing
sequence in s can only take a right or downward
direction in the matrix B. This implies that the length
of the longest increasing sequence in S is at most 2t — 1.
For the case when g(B) = 0, since we do not have two
consecutive nonzero elements in a row, the length of
each step along a row is at least two. This implies that
LIS(s) is at most 3¢ in this case. Now consider the
case when g(B) = 1. Here we have a row, say B;, that
contains an increasing subsequence of length at least
at. In this case, the increasing subsequence can take
the first column down to the row B; and then take the
increasing subsequence in B; up to the last column and
then go down the rest of the last column. Therefore
when ¢(B) = 1, we have that LIS(s) > (1 + a)t (recall
that we defined o > 1).

Now consider the game G(g,t) where P; holds the
it" column of B. Let A be a deterministic streaming
algorithm that approximates the length of LIS within
a factor better than 1+ 1(a — $) using p(t) space. We
show that we can use A as a deterministic protocol for
deciding ¢g with p(¢) maximum communication. First
suppose each player replaces the zeros in her input
with distinct negative numbers in a way the negative
numbers form a decreasing subsequence in the big
sequence. Let s’ be the new sequence. Consider that
any increasing subsequence in s’ can only take one of
the negative numbers and hence the above argument
regarding the output of ¢ and LIS(s') is still valid. Tt
follows that A can be used to distinguish g(B) = 0 from
g(B) = 1. From this we get the following lemma.

LEMMA 4.1. There exists some € < 1 such that any de-
terministic streaming algorithm for approzimating LIS
within a (1+¢€) factor requires at least CCJ"**(g) space.

Now in order to prove a lower bound for CC[***(g),
we first prove a lower bound on CC{°!(h) which is
obtained by a fooling set argument. We then show that
the product of fooling sets of h;’s is actually a fooling
set for g. Finally from Observation 4.1 we derive a lower
bound for CC{°*(g); this value divided by ¢ gives us a
lower bound for CC}™**(g).

LEMMA 4.2. Let k > 320. There is a k-fooling set for
function h of size ¢t where ¢ > 1.

Proof. Note that a k-fooling set for h consists of se-
quences of length £+ 2 such that no consecutive nonzero
elements appear in those sequences and in addition to
that the span of any k sequences contains a sequence

with at least at nonzero elements. For this it is enough
to find a collection of an exponential number of distinct
subsets of T' =1, ..., t, say F, such that no s € F' con-
tains two consecutive members of 7' and the union of
any k members of F' covers at least « fraction of [¢] (re-
member that « is constant bigger than %) Consider
that since we have assumed that elements {1,¢} appear
in any input for A, for our purpose, we require to pick
subsets from the set 3,...,t-2. For the sake of simplicity
lets assume that we choose our subsets from [t] as we
can simply extend the size of the input sequences by a
constant number without harming the final bounds.

We use probabilistic method to prove the exis-
tence of such collection of inputs. Consider the ran-
dom process of picking subsets of [t] where each ele-
ment is picked independently with probability p. Sup-
pose we pick M subsets in this manner. Consider a
random subset. Let b(¢) be the probability that no
two consecutive members of [t] are picked for this sub-
set. When a subset satisfies this property we refer to
it as a good subset. Using induction we can show that
b(t) > (1 — p*)t. To see this, consider the recurrence
b(t) = (1 —p)b(t — 1) + p(1 — p)b(t — 2) where b(1) =1
and b(2) = 1 — p?. Now let the random variable Z
represent the number of good subsets. It follows that
E(Z)=(1-p*)'M.

Now we need to find a upper bound on the prob-
ability that the union of k random subsets cover less
than « fraction of the universe. Let Jy,..., Ji be k ran-
dom subsets. Note that each element is included in
J =JyUJyU...UJy with probability v = 1 — (1 — p)*.
Hence the expected size of J is «yt. Since the inclusion
of the elements are independent, we can use Chernoff
bound to bound the probability that |J| < (y—¢)t where

€€ (0,77%).

Pr(lJ| < (y—e)t) <6 =el"71,

We now set p = % Since v > 1 — 1/e setting
o = v — ¢ for some ¢ € (0,4 — 1) satisfies our
requirement for a. Now since we require the union of
any k random subsets to cover « fraction of the universe,
using the union bound, if (A,f)é < 1 then with a positive
probability there are (1—p?)! M many good subsets that

form a k-fooling set for h. By plugging in the values we
€y

get (1— k%)t(%)% = (= (1— 77))" many good subsets.
One can inspect that for some big enough k (depending

520t
on €) e (1 — %) is bigger than one. (For e = 0.1,
taking k > 320 works.) This completes the proof.

The following lemma shows that one can construct
a large fooling set for g from a fooling set for h.

LEMMA 4.3. Let F; be a k-fooling set for h;. Then

F=(F x Fy x ... x Fy) is a k'-fooling set for g.

Proof. Note that the members of F' are tuples of length
t such that each coordinate is itself a sequence of length
t (here the coordinates are rows of the input matrix for
g). First of all, by the definition of fooling set for h and
the definition of g, we have that g(B) = 0 for all B € F.
Now let I’ be an arbitrary collection of k* members of
F. Let H; be the set of elements from F; that appear
in F’'. Note that H; is a subset of inputs for h;. Since
the size of F’ is at least k' there exists some j € [t]
such that |H;| > k. Now let W be some subset of k
members of F’ that cover H;. Here we regard W as a
set of k matrices of order ¢ x ¢t. (Note that g is defined
as the OR of h’s applied to the rows of those matrices).
Consider Y (W). Note that in each B € Y(W), the i*"
column of B is picked from the i*" column of the one of
the matrices in W. From the fact that F} is a fooling set
for hj, it follows that there exists y € Y/(H;) (the span
of H;) such that h;(y) = 1. It implies that there exists
some B € Y(W) such that g(B) = 1. We conclude that
F is a k'-fooling set for g.

To finish the proof of the main theorem, consider
that CC{°(g) > log %‘ > log |Fk—tlf From the result of
Lemma 4.2 and the fact that CC["**(g) > 1CC°!(g),
it follows that CCa(g) = Q(t). Taking |s| =t = n,

we derive the following theorem.

THEOREM 4.1. There exists some € < 1 such that
any O(1)-pass deterministic streaming algorithm for
approximating LIS within 1 + € factor requires at least

Q(y/n) space.

5 Acknowledgement

The authors would like to thank Cenk Sahinalp, Ravi
Kumar and Gabor Tardos for their useful comments and
suggestions. Special thanks to Cenk Sahinalp for his
help on the writing of an earlier draft of this paper.

References

[1] M. Ajtai, T.S. Jayram, Ravi Kumar, D. Sivakumar.
Approximate counting of inversions in a data stream.
Proceedings on 34th Annual ACM Symposium on The-
ory of Computing, STOC 2002.

[2] A. Gal, P. Gopalan. Lower bounds on streaming al-
gorithms for approximating the length of the longest
increasing subsequence. In 48th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS
2007.

[3] P. Gopalan, T. S. Jayram, R. Krauthgamer, R. Kumar,
Estimating the sortedness of a data stream. In Pro-
ceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2007.

(4]

[5]

A. Gupta, F. Zane. Counting inversions in lists.
In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA 20083.

E. Kushilevitz and N. Nisan. Communication Com-
plexity. Cambridge University Press, 1997.

D. Liben-Nowell, E. Vee, and A. Zhu. Find-
ing longest increasing and common subsequences in
streaming data. Journal of Combinatorial Optimiza-
tion, 11(2):155-175, 2006.

X. Lin, H. Lu, J. Xu, J.X. Yu. Continuously maintain-
ing quantile summaries of the most recent N elements
over a data stream. In ICDE 200/.

S. Muthukrishnan. Data Streams: Algorithms and
Applications. Now Publishers Inc., 2005.

D. Woodruff, X. Sun. The Communication and
Streaming Complexity of Computing the Longest Com-
mon and Increasing Subsequences. In Proceedings of
the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2007.

