
Online Load Balancing for MapReduce with
Skewed Data Input

Yanfang Le†, Jiangchuan Liu†, Funda Ergün‡, Dan Wang∗
† Simon Fraser University, BC, Canada, Email: {yanfangl, jcliu}@cs.sfu.ca
‡Indiana University Bloomington, Indiana, USA, Email: fergun@indiana.edu

∗ The Hong Kong Polytechnic University, Hong Kong, Email: csdwang@comp.polyu.edu.hk

Abstract—MapReduce has emerged as a powerful tool for
distributed and scalable processing of voluminous data. In this
paper, we, for the first time, examine the problem of accommodat-
ing data skew in MapReduce with online operations. Different
from earlier heuristics in the very late reduce stage or after
seeing all the data, we address the skew from the beginning of
data input, and make no assumption about a priori knowledge
of the data distribution nor require synchronized operations. We
examine the input in a continuous fashion and adaptively assign
tasks with a load-balanced strategy. We show that the optimal
strategy is a constrained version of online minimum makespan
and, in the MapReduce context where pairs with identical keys
must be scheduled to the same machine, there is an online
algorithm with a provable 2-competitive ratio. We further suggest
a sample-based enhancement, which, probabilistically, achieves a
3/2-competitive ratio with a bounded error.

I. INTRODUCTION

With the rapid growth of information in such applications
as social networking and bioinformatics, there is an urgent
need for large-scale data analysis and processing. With recent
advances in Cloud Computing, MapReduce has emerged as
a powerful tool for distributed and scalable processing of
voluminous data [1]. The standard MapReduce framework
consists of two steps [2], namely, Map and Reduce. In the
Map phase, a master node takes the input, divides it into
smaller sub-problems, and distributes them to worker nodes.
A worker node processes the smaller problem, and passes the
answer back to its master node. In the Reduce phase, the
master node collects the answers to all the sub-problems and
combines them to form the output for the original problem.
This divide-and-conquer process enables MapReduce to work
on huge datasets with distributed server clusters. Yet a user
of MapReduce only needs to write the map and the reduce
functions, which effectively hides the operation details of large
server clusters, offering a highly flexible, scalable, and fault
tolerant solution for general big data processing applications.

The generic and simple interface also implies that MapRe-
duce can be a bottleneck in the overall processing with specific
applications or specific data. Significant efforts have been
demonstrated on relieving blocking operations [3], improving
energy efficiency [4], [5], enhancing scheduling [6], [7], or
relaxing the single fixed dataflow [8], [9], [10], [11]. There
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have also been recent works on efficient scheduling of massive
MapReduce jobs running in parallel [12], [13], [14]. Most
of these studies have assumed that the input data are of
uniform distribution, which, often being hashed to reduce
worker nodes, naturally leads to a desirable balanced load in
the later stages.

The real world data, however, are not necessarily uniform,
and often exhibit remarkable skew. For example, in PageRank,
the graph commonly includes nodes with much higher degrees
of incoming edges than others [15], and in Inverted Index, cer-
tain content can appear in many more documents than others
[16]. Such skewed distribution of the input or intermediate
data can make a small number of mappers or reducers take a
significantly longer time to complete than others [17]. Recent
experimental studies [15], [17], [16] have shown that, in the
CloudBurst application with a biology dataset of a bimodal
distribution, the slowest map task takes five times as long
to complete as the fastest; PageRank with the Cloud9 data
is even worse, where the slowest map task takes twice as
long to complete as the second slowest, and the latter remains
five times slower than the average. Our experiments with the
WordCount application also show similar phenomena. Given
that the overall finishing time is bounded by the slowest task,
it can be dramatically prolonged with such skewed data.

In distributed databases, data skew is a known common
phenomenon and there have been such mature solutions as
joining, grouping, aggregation, and etc. [18], [19]. Unfortu-
nately, these can hardly be applied in the MapReduce context.
The map function transfers the input raw data into (key, value)
pairs, and the reduce function merges all intermediate values
associated with the same intermediate key. In the database
case, the pairs sharing the same key are not necessary to be
processed in a single machine; MapReduce, on the other hand,
must guarantee that these pairs belong to the same partition,
in other words, be distributed into the same reducer.

There have been pioneer works dealing with the data skew
in MapReduce [20], [16], [21]. Most of them are offline
heuristics, either waiting for all the mappers to finish so as
to obtain the key frequencies, or sampling before the map
tasks to estimate the data distribution and then partitioning
in advance, or repartitioning the reduce tasks to balance the
load among servers. These solutions can be time-consuming
with excessive I/O costs or network overheads. They also lack
theoretical bounds for the solutions given that most of them
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are heuristics.
In this paper, we, for the first time, examine the problem of

accommodating data skew in MapReduce with online opera-
tions. In contrast with earlier solutions in the very late reduce
stage [16] or after seeing all the data [20], we address the skew
from the very beginning of data input, and make no assumption
about the a priori knowledge of the data distribution, nor
require synchronized operations. We examine the keys in a
continuous fashion and adaptively assign the tasks with a
load-balanced strategy. We show that the optimal strategy
is a constrained version of the online minimum makespan
problem [22], and demonstrate that, in the MapReduce context
where tasks with identical keys must be scheduled to the
same machine, there is an online algorithm with a provable
2-competitive ratio. We further suggest that the online solution
can be enhanced by a sample-based algorithm, which identifies
the most frequent keys and assigns associated tasks in advance.
We show that, probabilistically, it achieves a 3/2-competitive
ratio with a bounded error.

We evaluate our algorithms on both synthetic data and
a real public data set. Our simulation results show that, in
practice, the maximum loads of our online and sample-based
algorithms are close to that of the offline solutions, and are
significantly lower than that with the naive hash function in
MapReduce. They enjoy comparable computation times as the
hash function, which are much shorter than those of the offline
solutions.

The rest of the paper is structured as follows. Section II
introduces the background and motivation. Section III presents
the problem formulation with the online model. Section IV
illustrates our online algorithm and derives the 2-competitive
ratio. The Sample-based algorithm is discussed in Section V.
Section VI offers the results for performance evaluation. We
discuss further enhancements in Section VII. We briefly review
related work in Section VIII and finally conclude the paper in
Section IX.

II. BACKGROUND AND MOTIVATION

In this section, we present an overview of MapReduce and
also discuss the skew issues therein that motivate our study.

The MapReduce libraries have been written in differ-
ent programming languages. Taking Apache Hadoop (High-
availability distributed object-oriented platform), one of the
most popular free implementations, as an example. Hadoop is
based on a master-worker architecture, where a master node
makes scheduling decisions and multiple worker nodes run
tasks dispatched from the master.

In the Map Phase, the master node divides a large dataset
into small blocks and distributes them to the map workers.
The map workers generate a large amount of intermediate (key,
value) pairs and report the locations of these pairs on the local
disk to the master, who is responsible for forwarding these
locations to the reduce workers.

A hash function then assigns the values to different worker
nodes to process in the Reduce Phase. In Hadoop, the default
hash function is simply Hash(HashCode( intermediate key)
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Figure 1. An illustrative example for key assignment in MapReduce. There
are three machines in this example. The “Hash”, “Optimal” rows represent
the result load distribution of each scheduling, respectively.

mod ReducerNumber), which is highly efficient and naturally
achieves load balance if the keys are uniformly distributed.
This however can fail with skewed inputs. For example, in
WordCount, a classical MapReduce application, popular words
such as “the,” “a,” and “of” appear much more frequently,
which, after hashing, impose heavier workloads to the corre-
sponding reduce workers. Consider a toy example shown in
Figure 1 with a skewed input. The naive hash function will
assign keys a, d and g to the first machine, keys b and e to the
second machine, and keys c and f to the third machine. As
a result, the first machine achieves a maximum load with 19,
six times more than that of the least load, while the maximum
load of the balanced solution would be 12 as shown in the
“optimal” row. Since the overall finishing time is bounded by
the slowest, such a simple hash-based scheduling is simply
not satisfactory.

It is worth noting that Hadoop starts to execute the Reduce
phase before every corresponding partition is available, i.e.,
it is activated when only part of maps has been completed
(5% by default) [16]. The rationale behind this synchronous
operation is to overlap the map and reduce and consequently
reduce the maximum finishing time; yet it can prevent from
making a partition in advance. In fact, the Reduce phase further
consists of three subphases: shuffle, in which the task pulls
the map outputs; sort, in which the map outputs are sorted by
keys; and reduce function executing, in which a user-defined
function takes the map outputs with each key, and, after all
the mappers finish working, starts to run and generates the
final outputs. In Figure 2, we show a detailed measurement of
processing times of all the phases for a WordCount application
running on Amazon EC2. The Map phase starts at time zero
and then the Reduce phase, the shuffle subphase, starts at about
200s. We can see that the shuffle finishing time is much longer
than the reduce function executing time, for the reduce workers
should wait for the map workers to generate intermediate
pairs while using remote procedure calls to read the buffered
data from the local disks of the map workers. Also note that
the maximum map finishing time is quite close to that of
shuffle subphase. Therefore, if we wait until all the keys are
generated, in other words, start the shuffle subphase after all
the map workers finish, the overall job finishing time will be
doubled. This is unfortunately what the state-of-the-art offline
algorithms do for load balancing. It motivates our design for an
online solution to start the shuffle subphase as soon as possible
while making the maximum load of the reduce workers as low
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Figure 2. We ran WordCount application on Amazon EC2 with 4 instances
and we set 70 map tasks and 7 reduce tasks. This figure describes the timing
flow of each Map task and Reduce task. Region a represents the actual map
function executing time. Region b represents the shuffling time and region
c represents the actual reduce function executing time. The regions between
both b and c represent the sorting time.

as possible.

III. PROBLEM DEFINITION

We consider a general scenario, where, during the Map
phase, the mapper nodes generate many intermediate values
(data) with associated keys. Each of these, which we denote
as (ki, li), forms a (key, location) pair, where location li refers
to where the (key, value) pairs is stored, and the worker nodes
report the pair to the master node 1. For the rest of this paper,
we will only be interested in processing the key attribute of
such a pair, and sometimes, for simplicity, skip the location
attribute altogether. The master node then assigns these pairs
to different machines based on the key values. Each such pair
must be assigned to one machine for processing, with the
additional restriction that the pairs with the same key must be
assigned to the same machine. The number of pairs assigned
to a machine makes up the load of the machine. Here, we
assume each machine will have a finishing time which is
directly proportional to its load, and the finishing time of the
machine with the highest load (called the makespan) will be
the overall finishing time. The objective then is to minimize
the overall finishing time by minimizing the maximum load
of all the machines 2. From the perspective of the master
node, the input is a stream S = (b1, b2, · · · , bN ) of length N ,
where each bi denotes a (key, location) pair. Let N ′ denote the
number of different keys; we denote C = {c1, c2, · · · , cN ′} as
the universal set of the different keys, with bi ∈ C for every
i ∈ N .

1Note that the value is not being reported, and thus, the information received
by the master node for each item will require a small amount of space.

2Here we make an implicit assumption that each pair represents a workload
of unit size, but our algorithm can easily work also for variable integer
workload weights.

We assume that there are m identical machines numbered
1, . . . ,m. We denote the load of machine i by Mi, i.e., the
number of pairs assigned to machine i. Initially, all loads are
0. Our goal is to assign each bi in S to a machine, so as to
obtain

min Max
i∈{1,2,··· ,m}

Mi

such that any two pairs (k1, l1) and (k2, l2) will be assigned
to the same machine if k1 = k2.

We consider two input models, leading to two computational
models. In our first model, we allow arbitrary (possibly adver-
sarial) input, and stipulate that the master node will assign the
pairs in a purely online fashion. In our second model, we
assume that the input comes from a probability distribution,
and, in order to exploit this fact, the master node is allowed to
store and process samples of its input before starting to assign
the samples and the rest of the pairs in an online fashion.

IV. A 2-COMPETITIVE FULLY ONLINE ALGORITHM

In order to minimize the overall finishing time, it makes
sense to start the shuffle subphase as soon as possible, with
as much an overlap with the Map phase as possible. In
this section, we give an online algorithm, List-based Online
Scheduling, for assigning the keys to the machines. Our
algorithm decides, upon receiving a (key, location) pair, to
which machine to assign that item without any knowledge of
what other items may be received in the future. We assume that
the stream of items can be arbitrary, that is, after our algorithm
makes a particular assignment, it can possibly receive the
“worst” stream of items for that assignment. Our algorithm
will be analyzed for the worst case scenario: we will compare
its effectiveness to that of the best offline algorithm, i.e., one
that makes its decisions with the knowledge of the entire input.

For assigning items to machines based on their keys, we
adopt a Greedy-Balance load balancing approach [23] of
assigning unassigned keys to the machine with the smallest
load once they come in.

Algorithm 1 List-based Online Scheduling
Read pair (ki, li) from S
if ki has been assigned to machine j then

Assign the pair to the machine j
else

Assign the pair to the machine with the least load
end if

We now show that this algorithm yields an overall finishing
time which at most twice that of the best offline algorithm.

Theorem 1. List-based Online Scheduling has a competitive
ratio of 2.

Proof. Let OPT denote the offline optimum makespan, the
maximum finishing time. Assume machine j is the machine
with the longest finishing time in the optimal offline solution
and T ′ is the number of pairs read just before the last new
key, say cj , is assigned to machine j. Obviously, T ′ must be
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Figure 3. An illustrative example showing benefits of sampling. The setting
is the same as in Figure 1. The “Online” and “Sample-based” rows represent
the respective result load of each machine in the online and sample-based
schedules.

less than N , the total length of the input. Then, at that time cj
is assigned to machine j, j must have had the smallest load,
say Lj . Thus we have:

Lj ≤ T ′

m
<

N

m
≤ OPT

Let |cj | denote the number of pairs with key cj in S. Then,
the finishing time of machine j, denoted by T , which is also
the makespan, is

T = Lj + |cj | ≤ OPT +OPT = 2OPT

Thus, with our List-based Online algorithm, the makespan can
achieve a 2-competitive ratio to the offline optimal makespan.

V. A SAMPLING-BASED SEMI-ONLINE ALGORITHM

Our previous algorithm made no assumptions about our
advance knowledge of the key frequencies. Clearly, if we had
some a priori knowledge about these frequencies, we could
make the key assignments more efficiently.

In this section, we assume that the pairs are such that their
keys are drawn independently from an unknown distribution.
In order to exploit this, we compromise on the online nature
of our algorithm and start by collecting a small number of
input pairs into a sample before making any assignments. We
then use this sample to estimate the frequencies of the K most
frequent keys in this distribution, and use this information later
to process our stream in an online fashion. In order to observe
the advantages of such a scheme, consider another toy example
shown in Figure 3. If we can wait for a short period before
making any assignments, for instance, collect the first 9 keys
in the example and assign the frequent keys to the machine
with the least load in order of frequency, the maximum load
is reduced to 12 from 15.

Our algorithm classifies keys into two distinct groups: the
K most frequent, called heavy keys, and the remaining, less
frequent keys. The intuition is that the heavy keys contribute
much more strongly to the finishing time than the other keys,
and thus, need to be handled more carefully. As a result, our
algorithm performs assignments of the keys to the machines
differently for the two groups.

We first consider how to identify the heavy keys. Clearly,
if one could collect all of the stream S, the problem can be
solved exactly and easily. However, this would use too much
space and delay the assignment process. Instead, we would like

to trade off the size of our samples (and wait before we start
making the assignments) with the accuracy of our estimate of
the key frequencies. We explore the parameters of this trade-
off in the rest of this section .

Our first goal is to show that we can identify the most
frequent (heavy) K keys reliably. We first analyze the sample
size necessary for this task using techniques from probability
and sampling theory. We then move on to an algorithm
for assigning the heavy keys as well as the remaining, less
frequent ones.

A. Sample Size

In this section we analyze what our sample size needs to be
in order to obtain a reliable estimate of the key frequencies.
Estimating probabilities from a given sample is well under-
stood in probability and statistics; our proof below follows
standard lines [24].

Let S′ denote our sample of size n and n′ denote the number
of distinct keys in S′. For simplicity, we will ignore the fact
that S′ consists of (key, location) pairs, instead considering it
as a stream (or set) of keys.

Let pi denote the proportion of key ci in the stream S, and
let Xi denote the number of occurrences of ci in the sample
S′. (It is possible to treat pi as a probability as well without
any changes to our algorithm.) Then Xi can be regarded as
a binomial random variable with E(Xi) = npi and σXi =√

pi(1− pi)n. Provided that n is large (i.e., Xi ≥ 5 and n−
Xi ≥ 5), the Central Limit Theorem (CLT) implies that Xi

has approximately normal distribution regardless of the nature
of the item distribution.

In order to select the heavy keys, we need an estimate of key
probabilities. To this end, we estimate pi as p̂i = Xi/n, which
is the sample fraction of key i in S′. Since p̂i is just Xi multi-
plied by the constant 1/n, p̂i also has approximately a normal
distribution. Thus, E(p̂i) = pi and σp̂i

=
√

pi(1− pi)/n,
and we have the following theorem bounding the size of the
sample that we need in order to have a good estimate of the
key frequencies.

Theorem 2. Given a sample S′ of size of n = (zα/2/ε)
2,

consider any key ci with proportion pi, satisfying Xi ≥ 5
and n − Xi ≥ 5, and let p̂i = Xi/n. Then, |pi − p̂i| ≤
ε
√

(p̂i)(1− p̂i) with probability 1− α.

Note that zα/2 is a parameter of the normal distribution
whose numeric value depends on α and can be obtained from
the normal distribution table

B. The Heavy Keys

We first state our notion of the more frequent (i.e., heavy)
keys. The following guarantees that we will explore all keys
with length at least OPT/2.

Definition 1. (Heavy key) A key i is said to be heavy if p̂i ≥
1/2m+ ε.

Note then that a key whose length (i.e., the number of times
that it occurs in S) is greater than N/2m is very likely to be
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heavy. Then, it is easy to see that there could be up to 2m
heavy keys.

It is worth noting that one might need to see O(m) samples
to sample a particular heavy key. Thus we will need to increase
our sample size by an O(m logm) factor to make sure that
we sample the heavy keys and estimate the lengths of each
of the heavy keys reliably, resulting in a sample size of n =
O((zα/2/ε)

2m logm).

C. A Sample-based Algorithm

We are now ready to present an algorithm for assigning
the heavy keys, similar to the sorted-balance algorithm [23]
for load balancing. Our sample-based algorithm first collects
samples, then sorts the keys in the sample in non-increasing
order of observed key frequencies, and selects the K most
frequent keys. Then, going through this list, it assigns each
type of key to the machine with the least current load. For
assigning all the other keys, we use Algorithm 1.

Algorithm 2 Sample-based Algorithm
wait until n = O((zα/2/ε)

2m logm) pairs are collected
to form a sample
sort the K most frequent keys in the sample in non-
increasing order, say p̂1 ≥ p̂2 ≥ · · · ≥ p̂K
going over the sorted list, assign each key i to the machine
with the smallest load
while a new pair is received with key i do

if the i was previously assigned to machine j then
assign i to machine j

else
assign i to the machine with the smallest load

end if
end while

The following lemma bounds the size of the last key
assigned to the machine which ends up with the longest
finishing time.

Lemma 3. If the makespan obtained by Sample-based algo-
rithm is larger than OPT + εN , with probability at least
1 − 2α, the last key added to the machine has frequency at
most (OPT/2N + ε).

Proof. Let OPT be the optimal makespan of the given in-
stance. Divide the keys into two groups: CL = {j ∈ C :
p̂jN > OPT/2 + εN} and CS = C − CL, called large
and small keys respectively. With probability 1− α, we have
pjN > p̂jN − εN > OPT/2 for all keys j. Note that there
can be at most m large keys, otherwise one could not obtain a
finishing time of OPT with two such keys scheduled on the
same machine. Since the length of a large key is greater than
OPT/2, this contradicts that OPT is the optimal makespan.
It is also obvious that we cannot have any keys with length
greater than OPT , i.e., no j exists such that pjN > OPT .
Thus, if the makespan obtained by the algorithm is greater
than OPT + εN , with probability 1−α the last new key that
is assigned to the makespan machine must be a small key.

Using the union bound, with probability 1− 2α, the last type
of key assigned to the machine with the longest processing
time must have frequency at most OPT/2N + ε.

Theorem 4. With probability at least 1 − 2α, 0 < α < 1/2,
Sample-based algorithm obtains a overall finishing time which
is at most 3

2OPT +Nε.

Proof. Assume machine j has the longest finishing time when
Sample-based algorithm is used for the key assignments.
Consider the last key k assigned to j. Before this assignment,
the load of j is Lj , and it must be the least load at that point
in time among all the machines. Thus,

Lj ≤ N

m
≤ OPT

Then, after adding the last key k, its finishing time becomes
at most

Lj +Npk ≤ OPT +OPT/2 + εN ≤ 3

2
OPT + εN

Note that Lj ≤ OPT is deterministically true. Therefore, the
probability of the above can be shown to be at least 1−2α, 0 <
α < 1/2. Thus, With at least 1 − 2α, 0 < α < 1/2, our
Sample-based algorithm can achieve the 3

2OPT + εN .

VI. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate our algorithms on both a real data trace and
synthetic data. The real trace is a public data set [25], which
contains the Wikipedia page-to-page link for each terms. This
trace has a data size of 1 Gigabytes. We generate the synthetic
data according to Zipf distribution with varying parameter s,
by which we can control the skew of the data distribution.

In our performance evaluation, we not only simulate the data
assignment process, but also the procedures that the reduce
workers pull data from the specific place.

We evaluate both of our two algorithms: the List-based
online scheduling algorithm (Online) and the Sample-based
algorithm (Sample-based). Recall that the former is faster and
the latter has better accuracy. We compare our algorithms with
the current MapReduce algorithm with the default hash func-
tion (Default). To set a benchmark for our Online algorithm,
we also compare it with the offline version (Offline), which
sorts the keys by their frequencies and then assigns them to
the machine with the least load so far. The primary evaluation
criteria for these algorithms are the maximum load and the
shuffle finishing time.

The default values in our evaluation are zα
2

= 1.96, ε =
0.005, the number of records is 1,000,000 and the number of
identical machine is 20. The parameter s is set to 1 by default
and we also vary it to examine its impact. Note that we scale
the y axis to make the figure visually clean.
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Figure 4. Maximum Load on Synthetic Data.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 106

0

5000

10000

15000

Data Records

Sh
uf

fle
 F

in
is

hi
ng

 T
im

e(
m

s) Online
Sample−based
Offline
Default

(a) Shuffle finishing time as a function of data
record number

10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Reducer Number

Sh
uf

fle
 F

in
is

hi
ng

 T
im

e 
(m

s)

Online
Sample−based
Offline
Default

(b) Shuffle finishing time as a function of reducer
number

0.5 1 1.5
0

2000

4000

6000

8000

10000

12000

Data Skew

Sh
uf

fle
 F

in
is

hi
ng

 T
im

e(
m

s)

Online
Sample−based
Offline
Default

(c) Shuffle finishing time as a function of data skew

Figure 5. Shuffle Finishing Time on Synthetic Data.

B. Results on Synthetic Data

Figure 4(a) shows the maximum load as a function of the
number of data records on the synthetic data. Our data record
is the key as mentioned earlier. We increase the number of
data records from 0.5 × 106 to 2.3 × 106. We compare all
the four algorithms. We can see that the Default algorithm
performs much worse than all other three. When the number
of data records is 2.1 × 106, the maximum load of the
Default algorithm is 3.78 × 105 and our Online algorithm
has a maximum load of only 2.3 × 105, an improvement of
39.15%. In addition, we also can see when the number of data
records increases, the maximum loads of all the algorithms
increase. This is not surprising as we need to process more
data. However, the loads in our algorithms increase in a much
slower pace as compared to the Default algorithm. Further, we
can see that the performance of our Online algorithm is almost
identical to the Offline algorithm. This indicates our algorithm
not only bounds the worse case scenario theoretically, but also
in practice performs much better than the theoretical bound.

Figure 4(b) shows the maximum load as a function of
reducer number on the synthetic data of all the four algorithms.
We increase the reducer number from 10 to 100. We can see
the Default algorithm performs much worse than all other
three. In particular, when the reducer number is 20, the
maximum load of the Default algorithm is 2.2× 105 and the

maximum load of our Online algorithm is only 1.3 × 105,
a reduction of 40.90%. It is natural that the maximum load
decreases as the reducer number increases as the Default
algorithm shows. However, it is interesting that the other
three algorithms do not change much as the reducer number
increases. We have checked the data distribution and found that
there is one key that is extremely frequent. Our algorithms
indeed have identified this key so that the performance of
our Online algorithm is almost identical to that of the Offline
algorithm.

Figure 4(c) compares the maximum load of all the four
algorithms as a function of the skew on the synthetic data.
We set the skew by adjusting parameter s from 0.5 to 1.5
in the Zipf distribution function. The larger s is, the more
skew the data has. We could see that when the data are even,
the parameter s is from 0.5 to 0.7, the maximum loads of
all the four algorithms are almost the same. When the data
distribution becomes more and more skewed, it is easy to
recognize that the Default algorithm behaves much worse than
all the other three. Not surprisingly, when the data are highly
skewed, the balancing strategies are always better than the
Default algorithm. This is because the maximum load is the
frequency of the most frequent key. For the Online algorithm
and the Sample-based algorithm, it is easy to identify the most
frequent key while it is not necessary to see all the keys.
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Figure 5(a) shows the shuffle finishing time as a function of
the number of data records on the synthetic data of all the four
algorithms. We still vary the number of the records from 0.5×
106 to 2.3×106. We can see that the Offline algorithm behaves
much worse than all the other three algorithms. Especially,
when the number of data records is 2.1 × 106, the shuffle
finishing time of the Offline algorithm is 14000 ms and our
Online algorithm has a shuffle finishing time of 1000 ms, an
improvement of 14 times, while the shuffle finishing time of
Sample-based algorithm is 5000 ms, improving almost 3 times.
It is not surprising to see that as the number of data records
grows, the shuffle finishing time increases. However, the loads
in our algorithms increase in a much slower pace as compared
to the Offline algorithm. Moreover, it shows that the shuffle
finishing time of our Online algorithm is almost identical to
the Default algorithm, which takes the least time to finish the
shuffle subphase.

Figure 5(b) shows the shuffle finishing time as a function
of reducer number on the synthetic data with all the four
algorithms. The result is similar to Figure 5(a). We have
tested the performance by increasing the reducer number from
10 to 100. We have found that the shuffle finishing time of
the Online algorithm is good as expected since the decision
to assign a newly incoming key to a specific machine is
made earlier in the Online algorithm than in the Sample-based
algorithm, which is earlier than in the Offline algorithm. We
should notice that as the reducer number increases, the shuffle
finishing time also increases for all the algorithms expect
for the Default algorithm. This is because we need to check
whether the reducer machine contains the incoming keys or
get the least load machine in these algorithms.

Figure 5(c) shows the shuffle finishing time of all the four
algorithms as a function of data skew on synthetic data. We
still set the skew parameter from 0.5 to 1.5. Note that the
data sets are generated independently for the different skew
parameters, which leads the trend of the shuffle finishing time
in each algorithm not to be as monotonic as expected. This
result is similar to Figure 5(b).

C. Results on Real Data

Figure 6(a) shows the maximum load as a function of the
number of data records in the real trace dataset. We tested
the performance by setting the number of data records from
0.5 × 106 to 2.0 × 106. The similar result could be found in
Figure 4(a) on the synthetic data.

Figure 6(b) shows the maximum load as a function of
reducer number of all the four algorithms in the real trace
dataset. We evaluated the performances by increasing the
reducer number from 10 to 100. We can see the Default
algorithm performs much worse than all other three. It is
natural that the maximum loads of all the algorithms decrease
when the reducer number increases. Further, we can see that
the performance of our Sample-based algorithm is almost
identical to that of the Offline algorithm.

Figure 6(c) compares the shuffle finishing time of all the
four algorithms as a function of the number of data records in
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the real trace dataset, which is similar to the result as shown in
Figure 5(b). Our Online algorithm, Sample-based algorithm,
and the Default algorithm achieve better results than that of
the Offline algorithm. In addition, we found that when the
number of data records increases, the maximum loads of all the
algorithms increase. This is because more data processed needs
more time. However, the loads in our algorithms increase in a
much slower pace as compared to that of the Offline algorithm.
This is because when the data records become larger, they will
lead to a longer processing time of the map phase, making the
Offline algorithm wait much longer.

Figure 6(d) shows the shuffle finishing time as a function of
reducer number of all the four algorithms. We have also found
that the shuffle finishing time grows as the number of reduce
workers increases. This is illustrative since it will cost much
more time to check whether the incoming key is assigned or
not and find the least load machine. Interestingly, the shuffle
finishing time of the Offline algorithm increases much faster
than the other three. This gap appears probably because the
overall waiting time and the increased cost brought by the
increasing number of reducers is very large.

In summary, our Online and Sample-based algorithm per-
form close to the Offline algorithm in finishing time. The two
algorithms consistently perform better than the MapReduce
Default algorithm from a maximum load point of view. Our
algorithms also show comparable shuffle finishing time to
that of the Default algorithm, and are better than the Offline
algorithm in that regard.

VII. FURTHER DISCUSSION

Note that the original sorted-balance algorithm can achieve
4
3OPT [23] in the maximum finishing time. Our semi-online
algorithm achieves 3

2OPT plus some additive error for the K
most frequent keys. The gap could be shrunk through advanced
algorithm design, or the error could be reduced. The keys
can also be finely classified into different groups according
to certain weights, so as to refine the results. In addition, if
the data distribution follows a known distribution, e.g., Zipf
distribution, the parameters can be better estimated, making
the identification of the K initial keys much easier and more
accurate. The additive error can expectedly be made smaller
as well.

We are highly interested in implementing the online algo-
rithms in real world MapReduce packages, e.g, the Hadoop
system. We have currently set up a server cluster for this pur-
pose, which is a fully controlled and configurable environment
with homogeneous machines. In the long run, we expect to
move the implementation to the public cloud environment. The
real world network overhead and I/O cost [26] will have to be
accommodated, together with the heterogeneous and instable
machine resources. These new constraints would all affect the
overall job finishing time, since intermediate pairs need to be
passed from the map workers to the reducer workers. The
load balancing problem and evaluation criteria will have to be
refined to reflect these changes.

Finally, it is worth noting that we focus on the skewed
distribution of the input data in our work. Another kind of
skew is caused by certain portions of the input data inherently
taking longer time to process than others. If the reduce
function is non-linear, load balance cannot be ensured only
by scheduling the same number of pairs into each reducer.
Earlier studies have shown that, in a case that the number
of the records in the fastest reduce task is two times that of
the slowest, there is a factor of six difference between their
running times [15]. In this case, it is necessary to know the
runtime of the user-defined reduce function in advance and
incorporate it into algorithm design, which, however, remains
quite difficult in practice.

VIII. RELATED WORK

Recently the amount of data of many new generation
applications has increased beyond the processing capability
of single machines. To cope with such data, scale out par-
allel processing is widely accepted. MapReduce [2], the de
facto standard framework in parallel processing for big data
applications, has become widely adopted. Nevertheless, the
MapReduce framework is also criticized for its inefficiency in
performance and as “a major step backward” [27]. This is par-
tially because performance-wise, the MapReduce framework
has not been well studied and fine-tuned as compared to the
conventional tools. As a consequence, there are many recent
studies in improving MapReduce performance.

The MapReduce framework can be considered as a par-
allel structure. Though there have been decades of studies
in parallel processing scheduling [28], [29], whether these
works can be directly applied to the MapReduce framework,
which has a special map task - reduce task structure, is not
clear; especially, their theoretical bounds are unlikely to be
directly transferrable. As such, besides the system research
in MapReduce [6], [7], there is also a flourish of works on
understanding the theoretical performance and limitations of
MapReduce systems. As an example, improved bounds are
achieved in [13], [12].

There are recent studies on the shuffle subphase that may
introduce skewed loads towards the reduce tasks. The straggler
problem is first described and studied in [2]. It is shown
that the straggler problem in MapReduce is caused by the
Zipf distribution of the input or intermediate data [17]. In
[15], the authors present five types of skews that can arise
in MapReduce applications, and propose five best practices
to mitigate skew are proposed. There are others working on
reducer’s slow-start-synchronization barriers [20], fast map
execution [30], Topcluster to monitor data skew [31], and
Skewtune [16]. In this paper, we present a study from online
balancing of the shuffle output point of view, and achieve a
2-competitive ratio.

From a theoretical point of view, our work is related to the
online minimum makespan problem. In a classical minimum
online makespan scheduling problem, jobs will come one by
one with individual processing times and they need to be
assigned to m identical parallel machines. Each job will be
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assigned irrevocably to a machine before the next job can be
revealed. No preemption is allowed and the goal is to minimize
the maximum finishing time. For this classical online problem,
the well-known Greedy-Balance load balancing approach [23]
has a (2− 1/m)-competitive ratio. However, our work differs
from online minimum makespan problem in that identical keys
should go to the same machine in the MapReduce context.
The offline minimum makespan problem is also NP-Complete.
The best result for the offline version is a (4/3 − 1/(3m))
approximation [32]. Other results on various versions can be
found in [33], [34], [22].

IX. CONCLUSION

In this paper, we first investigated the data skew in MapRe-
duce application using real world data, which has motivated
us to balance the load of all the reduce workers. Then, by
conducting a detailed timing flow through the Map phase and
Reduce phase, including shuffle, sort, reduce subphases, we
found it is necessary to consider online operations of load
balancing in MapReduce context.

Motivated by these reasons, we proposed an online model
which assigns a key once it comes in, and provided a List-
based Online algorithm with provable a 2-competitive ratio.
We further suggested a sample-based model, which has an
initial offline phase, where the keys are collected to form
a sample, and then the sample, as well as the remaining
keys, are assigned as they come in based on estimates of key
frequencies obtained from the initial sample. We developed a
Sample-based algorithm that can achieve a finishing time of
3
2OPT + εN , with probability at least 1− 2α, 0 < α < 1/2.
Both algorithms work well in our performance evaluation.
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