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Abstract

In this paper, we study PAC-leaming algorithms for

specialized classes of deterministic finite automata

(DFA). Inpartictdar, we study branchingprogrsms,

and we investigate the intluence of the width of the

branching program on the difficulty of the learning
problem. We first present a distribution-free al-

gorithm for learning width-2 branching programs.

We also give an algorithm for the proper learning

of width-2 branching programs under uniform dis-

tribution on labeled samples. We then show that

the existence of an efficient algorithm for learning

width-3 branching programs would imply the ex-

istence of an efficient algorithm for learning DNF,

which is not known to be the case. Fimlly, we

show that the existence of an algorithm for lear-

ning width-3 branching programs would also yield

an algorithm for learning a very restricted version

of parity with noise.

1 Introduction

The problem of learning deterministic finite state automats

(DFA) has been well studied in recent years. In general, it

is hard to learn the class of DFA in the PAC-leaming model

([14], [13]). However, there are PAC-learning algorithms for

specialized classes of DFA. The techniques used to design

them have been adapted for use in algorithms for several ap-

plications including text correction, DNA sequencing, part-

of-speech tagging, and handwriting recognition [20], [24],

and [21].

In this paper, we focus on learning algorithms for a subclass
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of DFA referred to as bounded-width branching programs.

We use the following definition of bounded-width branching

programs which is similsrto that given in [6], and is a subclass

of the more traditional notion of width-w branching programs

defined in [7].

The class of width-w branching programs (w-BPs) that ac-

cept strings z 1 . . . xl of a fixed length 1 are defined as a

rectangular w by 1 array of nodes, where each node in the

i-th column is assigned two outgoing edges, one to be fol-

lowed if the variable Zi has value 1 and the other if has value

O. The edges must terminate at a node in the next column

to the right of its source.1 The size of the branching pro-

gram is the total number of nodes. Note that as stated, this

model represents only read-once branching programs. How-
ever, since we are interested in distribution-free learning, a
standard prediction-preserving reduction (which repeats the
input several times) can be used to show that learning read-
once branching programs is as hard as the general problem
of learning branching programs. The problems of learning
polynomial size automata and learning polynomial size BPs
are reducible to each other by prediction-preserving reduc-
tions.

The languages accepted by 5-BPs have been shown to con-
tain all of NCl [6]. Thus, by the results of [13], it is NP-hard
to learn the class of 5-BPs. On the other hand, in this pa-
per we give an algorithm to learn the class of 2-BPs in the
Pacesetting. We then prove that learning 3-BPs is as hard
as learning DNF. The complexity of learning the latter is not
known. We then relate the problem of learning 3-BPs to a
class of automata that we refer to as k-mistake parity au-
tomata. This is a restricted class of automata which compute
parity functions, but are incorrect on a large fraction of the
inputs. The inputs on which the automats are incorrect are
determined by parity functions on a prefix of the input.

2 Related Work

The problem of learning finite automats has been studied
extensively. In the case of learning from examples over which
the learner has no control, it has been shown that the problem

*This is more restrictive than the definition in [6], where the i-tb

column depends on an arbitrary Zj and more than one column may
depend on any particuk z,.



of finding the smallest automaton consistent with a given set
of samples, and even approximating the number of states in
the automaton by a polynomial, is NP-hard ([9], [2], [15]).
Even if the condition on the representation of the hypothesis
is relaxed, the problem does not become easier: In [13],
prediction-preserving reductions of [14] are used to show
that (under cryptographic assumptions), predicting the class
by any reasomble representation using random examples is
hard. However, in [8], algorithms are given for efficient
learning of typical DFA (automata for which the underlying
graph is chosen adversarially but the accept/reject labels at
each state are chosen randomly) from random examples, even
when there is no means of resetting the machine. In [23], the
problem of learning automata with a very small number of

states (where the alphabet size is not constant) is investigated.
It is shown tRat learning k-BPs is equivalent to learning k-
state automata (over a polynomial size alphabet)+

In the stronger model of learning finite automata with mem-
bership queries, the task seems to be less difficult. In [4],
an algorithm is given which learns DFA, given access to a
teacher that answers questions. This algorithm assumes that
the automaton is reset between queries. In [17] and [18],
this assumption is discarded and the algorithms presented
learn automata from input/output behavior, in the absence of
a means of resetting the machine to a start state.

The exact complexity of learning DNF (without queries) is
not known. However, under uniform distribution on labeled
samples, DNF are efficiently learnable with queries. In [1 1],
it is shown that the class of k-term DNF is not properly
learnable unless NP = RP ([16], [1 l]).

3 Definitions

Let Wk denote the concept class of width-k branching pro-
grams. Let 1denote the length of the branching program. Let
2 = xl, X2, . . . , Zz be the input. Unless and otherwise stated,
all inputs are assumed to be over the binary alphabet {O, 1}.
The suffix z~, z~+l,. . . ,ZZ is denoted ~k.

In any width-2 branching program illustrated, let the top
(resp. bottom) be the accepting (resp. rejecting) track. We
can characterize all transitions of any M G W2. M has

1 stages. Each stage can be identified as being one of the
following types:

●

e

3.1

Stage k is called (k, b)-norz-merging if the transitions
on symbol b for that stage compute a linear function,
i.e., they go to different states. We refer to the Figure
1(a) as a switch transition and the Figure 1(b) as a pass

transition.

Stage k is called (k, b)-merging if the transitions on
symbol b for that stage compute a nontinear function,
i.e., they go to the same state (Figure 1(c), (d)).

Linear Automata

V?e say tit M g W2 is k-linear if for all 1> j > k and

b c {O, 1}, the stages of M are (j, b)-non-merging. An
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Figure 1: Various Transitions in a Width-2 Automaton

interesting special case of width-2 automata is the class of

1-linear automata denoted L. These are automata in which
all transitions are non-merging. We drop the 1- prefix when
it is obvious from the context.

This special class of automata computes a linear function of
its inputs, i.e., functions of the form -f(i) = (~o~z<l @Zi +

c~) mod2 = (c+~o<i<zaizi )mod2wherec,cl,. ~.,cl, al,

... , al c {O, 1}. Here~a, is 1 (resp. O) if the z-th stage is
a switch (resp. pass) transition. The additive constant c~
captures switch transitions on a O. Thus, Ci = 1 when a
transition changes tracks on a O, and Ci = O otherwise (under
our assumption that the top track is the accepting track).

Under this definition, an automaton computing a parity func-

tion is a special case of a 1-linear automaton. This class is
denoted by 7. In this case, Ci = O for 1 < i <1. In other
words, there are no switch transitions on a O.

Figure 2 is an example of a linear automaton computing
zo + 23 + 1 + 35 + (Zfj + 1) mod 2. We use the convention
throughout this paper that untabeled arcs implicitly carry both
O and 1 labels.

Figure 2: An Example of a Linear Automaton

4 Width-2 Automata

In this section, we present algorithms for learning width-2
automata. The first algorithm does not produce a width-2
automaton as output, but is distribution-free. The second
algorithm outputs a width-2 automaton, but is guaranteed to
work onty under uniform distribution on labeled samples.

4.1 The Distribution-Free Algorithm

Using the characterization of automata in Wz given in the
previous section, we present an algorithm to learn Wz. Let
M* denote the target automaton. We use M* (2’) to denote
the function computed by M*, i.e., M* (Z) = 1 if M* accepts
on input 3 and M*(J) = O otherwise.

Linear functions can be learned by solving systems of equa-
tions [1 O]. It is also easy to construct a linear automaton
from a linear function. Let the algorithm for learning linear
automata be linear-explain (i, S), where S is a labeled set
of examples. This algorithm considers the set of examples



S’i = {(Zi, M“(fi))l(?, M*(Z)) E S} and returns a linear
automaton A that is consistent with Si or returns ERROR if
there is no linear automaton consistent with S~.

Our algorithm Learn.width-2 takes as input a set D of la-
beled examples generated by the target automaton and re-
turns an automaton M that is consistent with D (i.e., all

(2, M*(5)) E D). We refer to this as “M explains 7” for
each (i?, M*(2)) c D. The algorithm is shown in Figure 3.
It consists of two phases - the first phase that builds several

automata pieces I@ each explaining a disjoint (but totally
exhaustive) subset of D and the second phase that combines
the Mjs to obtain M.

F@ure 4(a) shows a width-2 automaton (the target automa-
ton), and FQure 4(b) shows the automaton (with O error)
that is learned by our algorithm with high probability if (a
sufficiently large) D consists of (?, M* (Z) ) pairs such that
3’s are chosen uniformly from the set of strings of length 1.

The suffixes of M~s may not be identical to one another, due
to the possible existence of multiple automata consistent with
the same data set.

1 I I 0

(a)

(b) o

Figure 4: An Example of Learning Width-2 Automata

4.2 Correctness of the Algorithm

The algorithm tries to identify the merge stages in M * using
D. The basic idea of the first phase is: Suppose we isolate
those; that are affected by a single merge stage (i.e., those

07with z~ = b if it is a (k, b)-merging stage). We show that
this isolation can be done for the last merge stage (Claim 1).
Then, we find an automaton M: thatexplains ~k, and drop
them from Dk+l to obtain Dk (pretending that the merge
stage did not exist). If this does not affect the solution for the
yet unexplained samples in Dh, we can proceed by finding

such M$s and getting rid of merge stages until there are none
left, at which stage, Dh (if non-empty) is consistent with a
linear automaton, which can easily be found. The correctness

of this is proved in Claim 2.

We now concentrate on the construction of M~. Observe that
when i with Xk = breaches a (k, b)-merging stage, informa-
tion about the previous stages is “forgotten”. Suppose it is the
last merge stage, then we can use linear-explain to construct

anM~ that explains the inputsin S = {(2, Jkf*(Z))\m~ = b},

such that Ml depends only on the suffix 2~+ I of the inputs.
The following claim states this:

Claim 1 Zffor some k, 1< k $1, (1) stage k is a (k, b)-

merging stage, (2) there are no (y, O) or (j, 1)-merging stages

forj > kandif(3) S = {(Z, M*(Z)) c llk+l]x~ = b}, then

linear-explain (k, S) returns an automaton that is consistent

w’ith ?k+l when (?, M*(Z)) c S.

ProoE All the strings in S start from the same state after
stage k +1. Hence, this state can be treated as a starting state
for a smaller linear automaton (returned by linear-explain)

thatis consistent with ?~+l when (Z, M* (~)) c S. ❑

If k is a (k, b)-linear stage, ideally linear-explain should not
lx able to construct M]s (i.e., returns ERROR). However,
if D ~+ 1 is not “rich” enough, then there might be a linear
automaton that is consistent with S. In this case linear-

explain will misinterpret k to be a (k, b) -merging stage, and
will return an M:. Since this interpretation is still consistent
with the samples, it does not lead to any future inconsistencies
in learning M*.

If k(# 1) is both a (k, O)-merging and (k, 1)-merging stage,
then M!, M: are returned by two calls to linear-explain, and

they are joined together to form M!. In this case, the first
phase terminates as Dk = (?J. On the other hand, if k = 1
there exists a linear automaton that explains D1, in which
case linear-explain can be used to learn it.

Now, we have to worry about gluing the M:’s appropriately
to obtain M, which is done in the second phase of the algo-
rithm. Let 1: denote the number of stages in Mj. The linking

of Mjs is performed in such a manner that stage 12 – k of
M~ becomes part of stage 1- k of M. From our construction
of M in the algorithm, we see that b-transitions of M;, j < k

in stage k – 1 are redirected to to the start state of M~. This
guarantees that M has the following property: if a suffix ~k
of input 2 was explained by M: during the first phase of the

algorithm, and if M is mu on ?, the start state of Ml will be
reached on the first letter of ?~.

Recall that an r-linear automaton is one whose stages r... 1
are all non-merging. The following claim justifies our algo-
rithm.

Claim 2 At any stage k in the$rst phase of Learn-width-2
(D), so long as D # 0, there exists a k-linear aatoma-

ton M’ consistent with Dh. M’ is essentially the same as

M*: for each (j, b) -merging stage in M* where j > k, the

corresponding stage in M’ is (j, b) -non-merging, with the

b-transitions arbitrarily chosen to be passes (i.e., they stay

on the same track) or switches (they change tracks), and all
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Learn-width-2(D)
DZ+l = D

for k = 1 downto 1 do

for b= O,ldo
s = {(i, M*(:)) 6 Dk+llq = b}
if linear-explain (k, S) returns an automaton@ then

Dk = &~\S
ifk>land Dk= @then

create I@ as follows:
create stage q~_ 1 with c-transition to M; for c = O,1
add “don’t-care” single-node s~ge$ go, ..., qk _Z,

each going to the next on both O and 1
exit loop

else
Dk = Dk+~

fork= ltoldo
for b= O,ldo

if 3 an automaton ML then
redirect the b-transitions at stage k -1

of all M$, j < k to the starting state of ill~

Figure 3: Algorithm for Learning Width-2 Automata

other transitions are the same as in M“.

Proof: The proof is by reverse induction on k. Fork = 1,

the claim is trivially true with M’ = M“. Assume that the
claim was true at stage k + 1, with (k + 1)-linear automaton
M“. Consider stage kin M*. We have the following three
cases:

k is both a (k, O) and a (k, 1)-non-merging stage: If
Learn-width-2 recognizes that k is a linear stage, then
Db = Dk+l. If Learn.width-2 recognizes stage k as a
merging stage, Dh C Dk+I. So, M’ = M“ will SatiSfy

the induction hypothesis.

k is both a (k, O) and a (k, I)-merging stage: Dh be-

comes 0, and the claim is trivially true.

k is a (k, c)-merging and (k, 1 – c)-non-merging stage
for c G {O, 1}: Without loss of generality, let c = O.
Then by Claim 1, linear-explain will build an M: to
explain all inputs (?, M’(?)) G D~+l with Z~ = O,

and it will delete those inputs horn Dk+ 1 to obtain Dk.
Construct a k-linear M’ from M“ as follows: redirect
one of the two merging O-transitions at stage k of Ml! to
the other track in stage k + 1 so that the tsvo O-transitions
now go to different states. This clearly turns stage k into

a linear stage, hence making M’ k-linear. Note that the
only difference between the behaviors of M“ and M’ is
on those inputs 3 with Xh = O. However, all such inputs
have been deleted from Dk+ 1. Therefore M’ explains
Dk, making the claim true for stage k.

We have thus shown that the Mjs we constructed explain
the whole of D and that our way of connecting them to get
M preserves this property. M has width <21. From these
claims we have:

Lemma 3 Algorithm Learn-width-2 produces a hypothesis

in W2t, t ~ 1 that is consistent with D.

Theorem 4 Algorithm Learn.width-2 learns width-2 au-

tomata on any distribution.

Proofi Let 6, e be the usual error parameters. Using the above
Lemma and Occam’s razor, since IWzz I = 0(28~), after find-,, .,

ingan h E W2f,t s 1 consistent with O (y + q’)
/

samples, we have a learning algorithm fo~ W2. ❑

4.3 Larger Alphabet Size

LetW~ denote the concept class of width-k automata over
anm-symbol alphabet. We can easily extend our algorithm to
learn Wr. Let the alphabet symbols be {O,... , m – 1}. At
stage k of the extended algotithm, we will obtain m automata

pieces M;,.. . , M~-l. After gluing these pieces together to
obtain M, we see that M E W2~m _ 1)1. However, IW~ I =

O(kkmz) and by using Theorem 4 our learning algorithm can
be seen to be polynomial in 1 and m.

Thus, our resutts can be restated as follows: 2-state automata

are efficiently learnable, learning 3-state automata is as hard
as learning DNF (which we will show Section 5), and learn-
ing 5-state automata is NF’-hard.

4.4 Proper Learning Under Uniform Distribution

In the previous section, the automaton output was M @ W2.

In this section, we show that proper learning of Wz is possible
i.e., we will be able to obtain a width-2 automaton. However,
we need to assume uniform distribution of labeled samples.
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4.4.1 The Proper Learning Algorithm

We first run Learn_width-2 on the labeled samples D. Let

M E W2,, t <1 be the automatonproducedby Learn.width=
2(D). Wecanwrite the labeled samples D = {(Z, M*(Z))}

as [SL] where S is the list of example strings and L is the
vector of labels. We can identify pairs of acceptingh-ejecting
tracks as track-pairs. Thus, M has t(~ 1) track-pairs. By
our algorithm, if M has a branch on an alphabet character
(into another track-pair labeled k) at stage k, then stage k of
M* is (k, O)-merging or (k, 1)-merging. For the rest of this
section, we get rid of our earlier assumption that the top track
is an accepting track.

For simplicity, we require a normal form representation for
2-track automata.

Claim 5 Every M 6 W2 can be expressed in a normalform

where all the (k, b)-merging stages are of the form (1 – b)-

pass.

Proofi If a (k, b)-merging stage has a (1 – b)-switch, we can
just flip the tracks following stage k to make it (1 – b)-pass.
❑

As we saw before, we can represent linear stages as a sum
of parity stages and a constant. For a (k, b)-non-merging
stage (for b = O and b = 1) let ak denote the linear function
computed at this stage. Under normal form assumptions,
we have ak = O for a (k, b)-merging stage (by Claim 5).
We can partition D into disjoint subsets corresponding to
(suffixes of) those inputs that reach the k-th track-pair. Let
Dk = {(?k, M*(@) : (;, M“(z)) 6 D and? reaches k-
th track in M} = [Sk L~]. Since M is known, these sets
can easily be computed from D. Note thateach Dk defines
a system of equations that determine the a~, s for the non-
merging stages (in M), for k’ > k. The motivation behind

considering these sets is that if these sets are ensured to be
big enough, then the non-merging stages of M are uniquely
determined and isomorphic to those stages in M*. We can
then hope to collapse the t track-pairs of M into one, with
the branches in M appropriately translated to merge stages in
M’. Therefore, we look for conditions that would guarantee
a unique solution to the system of equations defined by the
Dk ‘s. The exact condhions are presented in the next section.

Ideally, we would like to get an M’ E Wz that agrees with
the entire sample set D. However, we relax this requirement
slightly and obtain an M’ E Wz that agrees with M (and
hence with D) on most of the input strings (i.e., some S’ C

S). In particular, S’ will contain (with high probability)
those strings that reach the track-pairs in M that are reached
by “lot” of other stings. A proper choice of parameters will
ensure that the Occam sense of learning is still preserved.
The number of samples S required to satisfy this is discussed
in the next section.

Let c, 6 be the usual learning parameters. The algorithm is

described below (Figure 5).

If the sk’s are sufficiently large, we will show that linear-

explain will return a unique solution. In Other words, ak, . . . ,
akl are uniquely determined with high probability at each step

Proper_Learn-width-2(M, S)
use Mtoobtainsk, l<k<l
k=i, k’=1

while k z 1 do

if lSkl > ~ then
le~ ak+l,... , akl, ck u$ing

kYZFeX@Zi~(k + 1, Sk)

12k=o

label arcs in linear stages k + 1,..., k’
of M’ using ak+l, ..., ak,

label arcs in merge stage k

of M! using M and ck
1$’=k-l

else
k=k–1

Figure 5: Proper Learning Algorithm for Width-2 Automata

of the algorithm. Now, we have to argue that the ~k, ..., akl
are ‘consistent’ with all other Sj, ~ < k. If this is so, then
after determining the appropriate arc labels (using Ck) in the
merge stage ak, we can proceed to work with the next sk.

To establish the consistency of the computed linear stages
with the input, we can view an automaton as a function of
the remainder of the inputs. Define ~~(?k) (resp. f~ (~k)) to
be the function computed at stage kin M“ when starting on
the top (resp. bottom) track. Call that function the solution
to a set of ~k ‘s. It is easy to see that if M is k’-linear, then,
for all k > k’, f~(?k) = f~(~k) + 1.

Claim 6 Either f~+l or f~+l is a solution to all Sj, j z k.

Proofi All examples in Sj, j z k either go to the top track

or the bottom track at stage k + 1. Also, by definition, these
do not pass through any merge stages after stage k + 1. So,
one and only one off ~+ ~ and f ~+1 agrees with all Sj ‘s. ❑

By Claim 5, M* is in normal form and hence the (k, b)-

merging stage was a (k, 1 – b)-pass and so we set ak to O
and go to sk _ 1. Thus, ak is a merge stage in M’ and the arc
labels are set appropriately depending on the ck obtained and
the corresponding branch at stage k in M.

4.4.2 Required Sample Size

In this section, we derive the required sample size IS1. We
have to address two issues here: S should be big enough so
that linear-explain will return a unique solution (with high
probability), and S should also be big enough so that the
number of samples dropped (i.e., IS – S’1) is rendered in-
significant. The following claim states that a uniformly cho-
sen random collection of O-1 vectors is highly likely to have
full rank.

Claim 7 If vectors are chosen unijiormly at random from

{O, 1}1 until they (viewed as a matrix) have full rank, then

the expected number of vectors to be chosen is 1 + 2.
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ProoE Given that the set of vectors already picked has 5 Width-3 Automata
rank z – 1, define a random variable Xi to be the expected
number of additional vectors to be picked such that the total In this section, we show that learning width-3 automata is as
set of vectors picked has rank i. Then, the expected number hard as learning DNF. We also relate the learnability of width-
of vectors to be picked so that we get a set of vectors with 3 automata to a special class of width-4 automata constructed
rank/ isjust EIXl+... +Xz] = EIX1]+. ” “+E[X~], using out of parity functions.
the linearity of expectation. After picking a non-zero xl

unconditionally (thus, Xl = ~), the expected number of 5.1 Relation to DNF

trials to pick the second linearly independent vector i$ & =

X2. In a similar manner, the expected number of trials to pick In this section, we exhibit a reduction which shows that learn-

the i-th independent vector (given a set of vectors of rank ing width-3 automata is at least as hard as learning DNF. Our
reduction is similar to the reduction in [14]. Our original

i – 1) is ~I_2&i. Thus, EIX1 +. -- + X~] = ~~~~ & = reduction showed that learning 1% is hard as learning deci-

l+z:=l*– <1+2. ❑ sion trees. Rob Schapire ([22]) has pointed out that a similar
reduction can be used to relate W3 and DNF. We present the

Claim 8 Given 6>0, if Ii$k I > V, then the probability latter result which is stronger since learning decision trees is

that for all k, the system of equations defined by sh~h = Lk known to be as hard as learning DNF. The exact complexity

does not have a unique solution, is S 6. of learning DNF is not known.

Proof Using Markov’s inequality and Claim 7, the proba-
bility that for a given k the matrix !$k does not have full rank
< ~ All these bad probabilities sum to <6. ❑– 1“

From S, the algofithm picked those Sk’s such that /Sk\ >

~ Let S’ be the set of samples thus chosen. Now our

ta~k is to prove that Occam learning is still valid even if
some small fraction of labeled samples are not learnt. First,
we make sure that we don’t discard too many samples.

C1aim9 Given ~, iflSl z w then IS’I z (1 - $)ISI.

Proofi We dropped those Sk’s with \S~ I < ~. The total

number of samples thus dropped ~ ~ which we require

toh< ~pl. ❑

Claim10 Given e >0,26>0, VISI > $( Zln16 – lnd)
and if M’ disagrees with IS I on ~ ~ of S, then the probability

that it is an ~-bad hypothesis with respect to M* is S 6.

Proofi We use similar ideas from [5], [191. Let M“ E W2

with l-stages be an E-bad hypothesis with respect to M*.

Then, given a random set of samples S, the expected number
of samples on which M“ disagrees with M* is z cISI. Using
Chemoff bounds, the probability that M“ disagrees with M*

on no more than ~ ISI of the samples is < e–2t~j21sl. Easily

I{M E W2 : M has 1 stages )1 s 24Z. Hence, the probability
that we find such an M“ thatdisagrees with M* on no more

than; of the samples iss 24Ze- j “lsl which we want to be

<6. From this, we get ISI > $(iln16– lnb). ❑

Finally, the following theorem follows from Claims 9 and 10
and gives the size of labeled samples required for the given
parameters.

212(1+2)Theorem 11 Given e > 0,6 > 0, V ISI = ~x(~,

$(1 in 16 – in 6) ), then the probability that we get an ~-bad

hypothesis with respect to M* is ~ 6.

Let T denote the concept class of DNF. Recall that a DNF
consists of a disjunction of k clauses, each of which is a
conjunction of literals. We can construct a width-3 automa-
ton MF corresponding to a k-term DNF F as follows: Let
MF have a devoted track called A (signifying acceptance).
Intuitively, A is “joined” whenever a clause is satisfied.

We build a width-2 automaton M. for each clause c. Mc

accepts if the current input satisfies c in F. Then, by taking
the “or” of the k clauses, we can construct an automaton that
checks if any of the k clauses is satisfied. More formally,
let the input be ;. For each clause c = m, A . . . A G,
in F, we can construct a width-2 automaton M, such that
(x,, A... A xi, ) = 1 # M=(i) accepts. M. consists of
1 sections, one for each input variable in i. If the variable
G appears (resp. complemented) in c, then if we are on the
upper track we stay on the upper track (resp. make a transition
to the lower track) on 1 (resp. O) and go to the lower track
(resp. stay on the upper track) on O (resp. 1). If we are on
the lower track, we stay on the lower track on both O and 1.
If the variable w does not appear at all in c, we remain on
the track that we are currently following. For instance, for
tieclauw c=z. Azb Azcwitil Sa <b<c Sl, the
corresponding Mc is shown in Figure 6.

Figure 6: Converting a Clause to a Width-2 Automaton

For any two clauses c1, C2, the comesponding automata Mc,,

M., can be juxtaposed by “joining” the accept (resp. reject)
track of M., to A (resp. MC,). Finally, M~ is constructed
by juxtaposing the Me’s for each clause c in F. Clearly, M~

is a width-3 automaton corresponding to F. If Z is an input
k tunes

to F, then the corresponding input to MF is 21 = Z.. . 5.

In our construction, note that the only place where we re- The above construction shows that for every F c F there
quired uniform distribution of input samples was in Claim 8. exists MF E Ws such that 5 E F + 5’ E MF. The instance
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transformation Z ~ Z is clearly polynomial (squares the
input length) and the size of the image concept in W3 is

linear in the size of the concept in F. Hence, our reduction
is compliant with the notion of reduction as defined in [14].

5.2 An Application

Consider the class of probabilistic finite automats (PFA),
which are automata in which each edge is labeled with a
probability and an alphabet character. A walk on the automa-
ton follows edges leaving the current state, chosen according
to the probability labels, and outputs the alphabet character
lalxling that edge.

The problem of learning PFA is hard ([1 ], [12]). In fact, even
learning width-2 PFA is known to be hard ([12]), based on the
hardness of parity with noise which is the following problem
Let j be the parity function computed by a panty automaton,
define a parameter O < q < 1/2 called the noise rate. The
oracle, when asked for a labeled example, randomly picks
an input x according to its distribution, flips a coin whose
probability of heads is 1– q and whose probability of tails is q,
if the outcome is heads returns (z, ~(z)), and if the outcome
is tails returns the incorrectly labeled example (z, 1 – f(x)).

We do not know if there exists a class of deterministic au-
tomata that is hard to learn on the uniform distribution. How-
ever, in our search for a class of DFA that is hard to learn on
the uniform distribution, we study classes of automata that
attempt to deterministically simulate the parity with noise
function. One class of deterministic automata that is related
to the parity with noise problem is the following class W;
of width-4 automata, which can be viewed as a width-2 au-
tomata with a “fork” in the middle. Intuitively, this fork
models a “mistake”.

Consider the case of an automaton M with 1 stages, such
that initially it is a width-2 automaton and then a fork at
stage k splits the automaton into two separate width-2 au-
tomata (Figure 7(a)). f, g, h are functions computed by
various width-2 pieces of M, such that one off or g is a par-
ity function. Let the concept class Wj consist of functions

{(.f,9, h)lj, g,h G Wz, f G PVg G P}. Weshow thatwe
can use an algorithm that learns W3 to learn W;.

Whhout loss of generality, g c P. M’ is shown in Figure
7(b). Unlabeled dashed arcs can carry a label of O, 1, 0/1, or
none (in which case they do not exist) depending on the first
(or last) stage of g and h. If (2, b) is a labeled example for

W;, then (2’ = il?i~i~, b) is a labeled example for Ws.

The crux of the idea is: since g c ‘P, g(~~) o g(ii?~) = O. If
an input 2 leads to computing f o g in M (by choosing the
upper branch), ii? leads to computing f o g h M’ as well.
If Z leads to computing f o h in M (by choosing the lower

branch), ~ leads to computing ~ o h o g o g = f o h in M’.

Therefore, M’ accepts ~ & M accepts ii. The instance
transformation is linear (doubles the original input) and the
size of the image concept in W3 is linear in the size of the
concept in Wj. Note that even if k is not known, we can try
toleamfor eachk=l,. ..,l.

As a consequence of mangling of inputs, the input distribution

is not preserved in this reduction. Our construction is “tight”
in the sense that the parity restraint cannot be relaxed further.
Informally, if g were not a parity function (i.e., it were to have
a merging state), then there exist inputs OZ~+ I and 1~k+l such
that we would end up in (say) the accepting track. We cannot
proceed as in our construction since the track in which we

would end up after h is “forgotten” by g for any input with
this particular adversarial suftix.

5.3 k-Mistake Parity

Consider the subclass Wj’ of Wj (defined in the previous
section), where f e P. Then W# captures a parity error
model, where the inputs on which the panty is computed
erroneously are determined by parity functions on a prefix of
the input, as described below. Let M be a parity automaton.
Consider the situation where at stage z on input O (or 1) M

errs by computing a different function h from that stage on.
Clearly the subclass W{ models this class. We have thus
shown a reduction from this restricted error model to W3.

Our reduction can be a applied to a generalization of the
above class, where M can err up to k times. We will call
this class the k-rnistakepari~ class. In this case, assume that
M errsat stagessl, s2,,. . . sk by branching off to k functions
1$1,...,hk.

Consider the automaton shown in Figure 8 (dotted lines in-
dicate repetition of stages). Here, fi, g~ E P, a < k. Whhout
loss of generality, arcs leaving gi, hi can be assumed to be
identically labeled (if not, the edges in the last stage of h; can
always be flipped). If S1,. . . , Sk are known, then by applying
our reduction in the previous section to each of the stages,
we can see that learning the k-mistake parity class reduces to
learning W3. Otherwise, if S1,... , sk are unknown, and k is
a cons~nt, then the learning algorithm can Wess sl, ..., sk,
and apply the learning algorithm for each guess.

5.4 Open Questions

We note some of the interesting issues that are not yet re-
solved. The issue of the complexity of learning width-3
automata remains open. Is it provably harder than learning
DNF? Furthermore, what is the complexity of learning width-
4 automata? Can width-2 autonmta be properly learned under
arbhrary distributions?
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