
DiskSeen: Exploiting Disk Layout and Access History to Enhance I/O Prefetch

Xiaoning Ding1, Song Jiang2, Feng Chen1, Kei Davis3, and Xiaodong Zhang1

1CSE Department 2 ECE Department 3 CCS-3 Division
Ohio State University Wayne State University Los Alamos National Laboratory

Columbus, OH 43210, USA Detroit, MI 48202, USA Los Alamos, NM 87545, USA
{dingxn,fchen,zhang}@cse.ohio-state.edu sjiang@eng.wayne.edu kei.davis@lanl.gov

Abstract
Current disk prefetch policies in major operating sys-
tems track access patterns at the level of the file abstrac-
tion. While this is useful for exploiting application-level
access patterns, file-level prefetching cannot realize the
full performance improvements achievable by prefetch-
ing. There are two reasons for this. First, certain prefetch
opportunities can only be detected by knowing the data
layout on disk, such as the contiguous layout of file meta-
data or data from multiple files. Second, non-sequential
access of disk data (requiring disk head movement) is
much slower than sequential access, and the penalty for
mis-prefetching a ‘random’ block, relative to that of a se-
quential block, is correspondingly more costly.

To overcome the inherent limitations of prefetching at
the logical file level, we propose to perform prefetch-
ing directly at the level of disk layout, and in a portable
way. Our technique, called DiskSeen, is intended to be
supplementary to, and to work synergistically with, file-
level prefetch policies, if present. DiskSeen tracks the
locations and access times of disk blocks, and based on
analysis of their temporal and spatial relationships, seeks
to improve the sequentiality of disk accesses and overall
prefetching performance.

Our implementation of the DiskSeen scheme in the
Linux 2.6 kernel shows that it can significantly improve
the effectiveness of prefetching, reducing execution times
by 20%-53% for micro-benchmarks and real applications
such as grep, CVS, and TPC-H.

1 Introduction
As the speed differential between processor and disk con-
tinues to widen, the effect of disk performance on the per-
formance of data-intensive applications is increasingly
great. Prefetching—speculative reading from disk based
on some prediction of future requests—is a fundamen-
tal technique for improving effective disk performance.
Prefetch policies attempt to predict, based on analysis of
disk requests, the optimal stream of blocks to prefetch
to minimize disk service time as seen by the applica-
tion workload. Prefetching improves disk performance

by accurately predicting disk requests in advance of the
actual requests and exploiting hardware concurrency to
hide disk access time behind useful computation.

Two factors demand that prefetch policies be con-
cerned with not just accuracy of prediction, but also ac-
tual time cost of individual accesses. First, a hard disk
is a non-uniform-access device for which accessing se-
quential positions without disk head movement is at least
an order of magnitude faster than random access. Sec-
ond, an important observation is that as an application
load becomes increasingly I/O bound, such that disk ac-
cesses can be decreasingly hidden behind computation,
the importance of sequential prefetching increases rela-
tive to the importance of prefetching random (randomly
located) blocks. This is a consequence of the specula-
tive nature of prefetching and the relative penalties for in-
correctly prefetching a sequential block versus a random
block. This may explain why, despite considerable work
on sophisticated prefetch algorithms (Section 5), general-
purpose operating systems still provide only sequential
prefetching or straightforward variants thereof. Another
possible reason is that other proposed schemes have been
deemed either too difficult to implement relative to their
probable benefits, or too likely to hurt performance in
some common scenarios. To be more relevant to current
practice, the following discussion is specific to prefetch
policies used in general-purpose operating systems.

Existing prefetch policies usually detect access pat-
terns and issue prefetch requests at the logical file level.
This fits with the fact that applications make I/O requests
based on logical file structure, so their discernible access
patterns will be directly in terms of logical file structure.
However, because disk data layout information is not ex-
ploited by these policies, they do not have the knowl-
edge of where the next prefetched block would be rela-
tive to the currently fetched block to estimate prefetching
cost. Thus, their measure of prefetching effectiveness,
which is usually used as a feedback to adjust prefetch-
ing behavior, is in terms of the number of mis-prefetched
blocks rather than a more relevant metric, the penalty
of mis-prefetching. Disk layout information is not used
until the requests are processed by the lower-level disk
scheduler where requests are sorted and merged, based
on disk placement, into a dispatching queue using al-

gorithms such as SSTF or C-SCAN to maximize disk
throughput.

We contend that file-level prefetching has both prac-
tical and inherent limitations, and that I/O performance
can be significantly improved by prefetching based on
disk data layout information. This disk-level prefetching
is intended to be supplementary to, and synergistic with,
any file-level prefetching. Following we summarize the
limitations of file-level prefetching.

Sequentiality at the file abstraction may not translate
to sequentiality on disk. While file systems typically seek
to dynamically maintain a correspondence between log-
ical file sequentiality and disk sequentiality, as the file
system ages (e.g. in the case of Microsoft’s NTFS) or
becomes full (e.g. Linux Ext2) this correspondence may
deteriorate. This worsens the penalty for mis-prediction.

The file abstraction is not a convenient level for record-
ing deep access history information. This is exacerbated
by the issue of maintaining history information across
file closing and re-opening and other operations by the
operating system. As a consequence, current prefetch
schemes maintain shallow history information and so
must prefetch conservatively [21].1 A further conse-
quence is that sequential access of a short file will not
trigger the prefetch mechanism.

Inter-file sequentiality is not exploited. In a general-
purpose OS, file-level prefetching usually takes place
within individual files, which precludes detection of se-
quential access across contiguous files.

Finally, blocks containing file system metadata cannot
be prefetched. Metadata blocks, such as inodes, are not
in files, and so cannot be prefetched. Metadata blocks
may need to be visited frequently when a large number
of small files are accessed.

In response, we propose a disk-level prefetching
scheme, DiskSeen, in which current and historical infor-
mation is used to achieve efficient and accurate prefetch-
ing. While caches in hard drives are used for prefetch-
ing blocks directly ahead of the block being requested,
this prefetching is usually carried out on each individual
track and does not take into account the relatively long-
term temporal and spatial locality of blocks across the
entire disk working set. The performance potential of the
disk’s prefetching is further constrained because it can-
not communicate with the operating system to determine
which blocks are already cached there; this is intrinsic
to the disk interface. The performance improvements we
demonstrate are in addition to those provided by existing
file-level and disk-level prefetching.

We first describe an efficient method for tracking
disk block accesses and analyzing associations between
blocks (Section 2). We then show how to efficiently
detect sequences of accesses of disk blocks and to ap-
propriately initiate prefetching at the disk level. Fur-
ther aided by access history information, we show how

to detect complicated pseudo-sequences with high accu-
racy (Section 3). We show that an implementation of
these algorithms—collectively DiskSeen—in the current
Linux kernel can yield significant performance improve-
ments on representative applications (Section 4).

2 Tracking Disk Accesses
There are two questions to answer before describing
DiskSeen. The first is what information about disk lo-
cations and access times should be used by the prefetch
policy. Because the disk-specific information is exposed
using the unit of disk blocks, the second question is how
to efficiently manage the potentially large amount of in-
formation. In this section, we answer these two ques-
tions.

2.1 Exposing Disk Layout Information
Generally, the more specific the information available for
a particular disk, the more accurate an estimate a disk-
aware policy can make about access costs. For example,
knowing that blocks span a track boundary informs that
access would incur the track crossing penalty [24]. As
another example, knowing that a set of non-contiguous
blocks have some spatial locality, the scheduler could in-
fer that access of these blocks would incur the cost of
semi-sequential access, intermediate between sequential
and random access [26]. However, detailed disk perfor-
mance characterization requires knowledge of physical
disk geometry, which is not disclosed by disk manufac-
turers, and its extraction, either interrogative or empiri-
cal, is a challenging task [30, 23]. Different extraction
approaches may have different accuracy and work only
with certain types of disk drives (such as SCSI disks).

An interface abstraction that disk devices commonly
provide is logical disk geometry, which is a linearized
data layout and represented by a sequence [0, 1, 2, ..., n]
of logical block numbers (LBNs). Disk manufactur-
ers usually make every effort to ensure that accessing
blocks with consecutive LBNs has performance close
to that of accessing contiguous blocks on disk by care-
fully mapping logical blocks to physical locations with
minimal disk head positioning cost [26]. Though the
LBN does not disclose precise disk-specific information,
we use it to represent disk layout for designing a disk-
level prefetch policy because of its standardized avail-
ability and portability across various computing plat-
forms. In this paper, we will show that exposing2 this
logical disk layout is sufficient to demonstrate that incor-
porating disk-side information with application-side in-
formation into prefetch policies can yield significant per-
formance benefits worthy of implementation.

2.2 The Block Table for Managing LBNs

Currently LBNs are only used to identify locations of
disk blocks for transfer between memory and disk. Here
we track the access times of recently touched disk blocks
via their LBNs and analyze the associations of access
times among adjacent LBNs. The data structure holding
this information must support efficient access of block
entries and their neighboring blocks via LBNs, and effi-
cient addition and removal of block entries.

10
20

 (BTE)
Block Table Entry30

Figure 1: Block table. There are three levels in the example block
table: two directory levels and one leaf level. The table entries at differ-
ing levels are fit into separate memory pages. An entry at the leaf level
is called a block table entry (BTE). If one page can hold 512 entries, the
access time of a block with LBN 2,631,710 (10×5122+20×512+30)
is recorded at the BTE entry labeled 30, which can be efficiently
reached via directory-level entries labeled 10 and 20.

The block table, which has been used in the DULO
scheme for identifying block sequences [12], is inspired
by the multi-level page table used for a process’s mem-
ory address translation, which is used in almost all oper-
ating systems. As shown in Figure 1, an LBN is broken
into multiple segments, each of which is used as an off-
set in the corresponding level of the table. In the DULO
scheme, bank clock time, or block sequencing time, is
recorded at the leaf level (i.e., block table entry (BTE))
to approximate block access time. In DiskSeen, a finer
block access timing mechanism is used. We refer to the
entire sequence of accessed disk blocks as the block ac-
cess stream. The nth block in the stream has access index
n. In DiskSeen, an access counter is incremented with
each block reference; its value is the access index for that
block and is recorded in the corresponding block table
entry to represent the access time.

To facilitate efficient removal of old BTEs, each direc-
tory entry records the largest access index of all of the
blocks under that entry. Purging the table of old blocks
involves removing all blocks with access indices smaller
than some given index. The execution of this operation
entails traversing the table, top level first, identifying ac-
cess indices smaller than the given index, removing the

corresponding subtrees, and reclaiming the memory.

3 The Design of DiskSeen
In essence, DiskSeen is a sequence-based history-aware
prefetch scheme. We leave file-level prefetching enabled;
DiskSeen concurrently performs prefetching at a lower
level to mitigate the inadequacies of file-level prefetch-
ing. DiskSeen seeks to detect sequences of block ac-
cesses based on LBN. At the same time, it maintains
block access history and uses the history information to
further improve the effectiveness of prefetching when
recorded access patterns are observed to be repeated.
There are four objectives in the design of DiskSeen.

1. Efficiency. We ensure that prefetched blocks are in a
localized disk area and are accessed in the ascending
order of their LBNs for optimal disk performance.

2. Eagerness. Prefetching is initiated immediately
when a prefetching opportunity emerges.

3. Accuracy. Only the blocks that are highly likely to
be requested are prefetched.

4. Aggressiveness. Prefetching is made more aggres-
sive if it helps to reduce request service times.

 Area
Prefetching

2

3

4

1 5

1
2
3
4
5

Buffer Cache

 Area

Hard Disk

Caching

Delayed block write−back

Infomation about prefetch candidates

Prefetching of disk blocks
Move blocks that are hit

On−demand read of disk blocks

Figure 2: DiskSeen system diagram. Buffer cache is divided into
two areas, prefetching and caching areas, according to their roles in the
scheme. A block could be prefetched into the prefetching area based on
either current or historical access information—both are recorded in the
disk block table, or as directed by file-level prefetching. The caching
area corresponds to the traditional buffer cache and is managed by the
existing OS kernel policies except that prefetched but not-yet-requested
blocks are no longer stored in the cache. A block is read into the caching
area either from the prefetching area, if it is hit there, or directly from
disk, all in an on-demand fashion.

As shown in Figure 2, the buffer cache managed by
DiskSeen consists of two areas: prefetching and caching
areas. The caching area is managed by the existing OS
kernel policies, to which we make little change for the
sake of generality. We do, however, reduce the size of

the caching area and use that space for the prefetching
area to make the performance comparison fair.

DiskSeen distinguishes on-demand requests from file-
level prefetch requests, basing disk-level prefetch deci-
sions only on on-demand requests, which reflect applica-
tions’ actual access patterns. While DiskSeen generally
respects the decisions made by a file-level prefetcher, it
also attempts to identify and screen out inaccurate pre-
dictions by the prefetcher using its knowledge of deep
access history. To this end, we treat the blocks contained
in file-level prefetch requests as prefetch candidates and
pass them to DiskSeen, rather than passing the requests
directly to disk. DiskSeen forwards on-demand requests
from existing request mechanisms directly to disk. We
refer to disk requests from ‘above’ DiskSeen (e.g., appli-
cation or file-level prefetchers) as high-level requests.

3.1 Recording Access Indices
Block access indices are read from a counter that incre-
ments whenever a block is transferred into the caching
area on demand. When the servicing of a block request
is completed, either via a hit in the prefetching area or
via the completion of a disk access, the current reading
of the counter, an access index, is used as an access time
to be recorded in the corresponding BTE in the block ta-
ble. Each BTE holds the most recent access indices, to a
maximum of four. In our prototype implementation, the
size of a BTE is 128 bits. Each access index takes 31 bits
and the other 4 bits are used to indicate block status in-
formation such as whether a block is resident in memory.
With a block size of 4K Bytes, the 31-bit access index can
distinguish accesses to 8 TBytes of disk data. When the
counter approaches its maximum value, specifically the
range for used access index exceeds 7/8 of the maximum
index range, we remove the indices whose values are in
the first half of the used range in the block table. In prac-
tice this progressive index clearing takes place very in-
frequently and its impact is minimal. In addition, a block
table that consumes 4MB of memory can record history
for about 1GB file access working set.

3.2 Coordinating Disk Accesses
We monitor the effectiveness of high-level prefetchers by
tracking the use of prefetch candidates by applications.
When a prefetch candidate block is read into the prefetch-
ing area, we mark the status of the block as prefetched
in its BTE. This status can only be removed when an
on-demand access of the block occurs. When the high-
level prefetcher requests a prefetch candidate that is not
yet resident in memory and has the prefetched status,
DiskSeen ignores this candidate. This is because a pre-
vious prefetching of the block has not been followed by
any on-demand request for it, which suggests an inac-

curate prediction on the block made by the high-level
prefetcher. This ability to track history prefetching events
allows DiskSeen to identify and correct some of the mis-
prefetchings generated by file-level prefetch policies.

For some access patterns, especially sequential ac-
cesses, the set of blocks prefetched by a disk-level
prefetcher may also be prefetch candidates of file-level
prefetchers or may be on-demand requested by applica-
tions. So we need to handle potentially concurrent re-
quests for the same block. We coordinate these requests
in the following way. Before a request is sent to the disk
scheduler to be serviced by disk, we check the block(s)
contained in the request against corresponding BTEs to
determine whether the blocks are already in the prefetch-
ing area. For this purpose, we designate a resident bit in
each BTE, which is set to 1 when a block enters buffer
cache, and is reset to 0 when it leaves the cache. There is
also a busy bit in each BTE that serves as a lock to coor-
dinate simultaneous requests for a particular block. A set
busy bit indicates that a disk service on the correspond-
ing block is under way, and succeeding requests for the
block must wait on the lock. DiskSeen ignores prefetch
candidates whose resident or busy bits are set.

3.3 Sequence-based Prefetching
The access of each block from a high-level request is
recorded in the block table. Unlike maintaining ac-
cess state per file, per process, in file-level prefetching,
DiskSeen treats the disk as a one-dimensional block array
that is represented by leaf-level entries in the block table.
Its method of sequence detection and access prediction is
similar in principle to that used for the file-level prefetch-
ers in some popular operating systems such as Linux and
FreeBSD [2, 20].

3.3.1 Sequence Detection

Prefetching is activated when accesses of K contigu-
ous blocks are detected, where K is chosen to be 8 to
heighten confidence of sequentiality. Detection is car-
ried out in the block table. For a block in a high-level
request we examine the most recent access indices of
blocks physically preceding the block to see whether it
is the Kth block in a sequence. This back-tracking op-
eration on the block table is an efficient operation com-
pared to disk service time. Because access of a sequence
can be interleaved with accesses in other disk regions,
the most recent access indices of the blocks in the se-
quence are not necessarily consecutive. We only require
that access indices of the blocks be monotonically de-
creasing. However, too large a gap between the access
indices of two contiguous blocks indicates that one of the
two blocks might not be accessed before being evicted
from the prefetching area (i.e., from memory) if they

were prefetched together as a sequence. Thus these two
blocks should not be included in the same sequence. We
set an access index gap threshold, T , as 1/64 of the size
of the total system memory, measured in blocks.

3.3.2 Sequence-based Prefetching

When a sequence is detected we create two 8-block win-
dows, called the current window and the readahead win-
dow. We prefetch 8 blocks immediately ahead of the
sequence into the current window, and the following 8
blocks into the readahead window. We then monitor the
number f of blocks that are hit in the current window by
high-level requests. When the blocks in the readahead
window start to be requested, we create a new reada-
head window whose size is 2f , and the existing reada-
head window becomes the new current window, up to
a maximum window size. Specifically, we set minimal
and maximum window sizes, min and max, respectively.
If 2f < min, the prefetching is canceled. This is be-
cause requesting a small number of blocks cannot amor-
tize a disk head repositioning cost and so is inefficient.
If 2f > max, the prefetching size is max. This is be-
cause prefetching too aggressively imposes a high risk of
mis-prefetching and increases pressure on the prefetch-
ing area. In our prototype, min is 8 blocks and max is
32 blocks (with block size of 4KB). We note that the ac-
tual number of blocks that are read into memory can be
less than the prefetch size just specified because resident
blocks in the prefetch scope are excluded from prefetch-
ing. That is, the window size becomes smaller when
more blocks in the prefetch scope are resident. Accord-
ingly, prefetching is slowed down, or even stopped, when
many blocks to be prefetched are already in memory.

3.3.3 Data Structure for Managing Prefetched
Blocks

In the DiskSeen scheme, each on-going prefetch is rep-
resented using a data structure called the prefetch stream.
The prefetch stream is a pseudo-FIFO queue where
prefetched blocks in the two windows are placed in the
order of their LBNs. A block in the stream that is hit
moves immediately to the caching area. For one or mul-
tiple running programs concurrently accessing different
disk regions, there would exist multiple streams. To facil-
itate the replacement of blocks in the prefetching area, we
have a global FIFO queue called the reclamation queue.
All prefetched blocks are placed at the queue tail in the
order of their arrival. Thus, blocks in the prefetch win-
dows appear in both prefetch streams and the reclama-
tion queue.3 A block leaves the queue either because it
is hit by a high-level request or it reaches the head of the
queue. In the former case the block enters the caching
area, in the latter case it is evicted from memory.

3.4 History-aware Prefetching
In the sequence-based prefetching, we only use the block
accesses of current requests, or recently detected access
sequences, to initiate sequential prefetching. Much richer
history access information is available in the block table,
which can be used to further improve prefetching.

3.4.1 Access Trails

To describe access history, we introduce the term
trail to describe a sequence of blocks that have
been accessed with a small time gap between
each pair of adjacent blocks in the sequence and
are located in a pre-determined region. Sup-
pose blocks (B1, B2, ..., Bn) are a trail, where
0 < access index(Bi) − access index(Bi−1) < T ,
and |LBN (Bi) − LBN (B1)| < S, (i = 2, 3, ..., n),
where T is the same access index gap threshold as the
one used in the sequence detection for the sequence-
based prefetching. A block can have up to four access
indices, any one of which can be used to satisfy the
given condition. If B1 is the start block of the trail,
all of the following blocks must be on either side of
B1 within distance S. We refer to the window of 2S
blocks, centered at the start block, as the trail extent.
The sequence detected in sequence-based prefetching
is a special trail in which all blocks are on the same
side of start block and have contiguous LBNs. By
using a window of limited size (in our implementation
S is 128), we allow a trail to capture only localized
accesses so that prefetching such a trail is efficient
and the penalty for a mis-prefetching is small. For an
access pattern with accesses over a large area, multiple
trails would be formed to track each set of proximate
accesses rather than forming an extended trail that could
lead to expensive disk head movements. Trail detection
is of low cost because, when the access index of one
block in a trail is specified, at most one access index
of its following block is likely to be within T . This is
because the gap between two consecutive access indices
of a block is usually very large (because they represent
access, eviction, and re-access). Figure 3 illustrates.

3.4.2 Matching Trails

While the sequence-based prefetching only relies on the
current on-going trail to detect a pure sequence for acti-
vating prefetching, we now can take advantage of history
information, if available, to carry out prefetching even if
a pure sequence cannot be detected, or to prefetch more
accurately and at the right time. The general idea is
to use the current trail to match history trails and then
use matched history trails to identify prefetchable blocks.
Note that history trails are detected in real-time and that
there is no need to explicitly record them.

Trail 1 (of current accesses)
Trail 2

Trail 3
Trail 4 (in reverse direction)

85000
N/A

52002 52001
63110
52000
43500

74000
63111
48550
34950

85001
63200
43501
35000

85010
63290
43510
37000

43515
22000
N/A

N/A
N/A

N/A
N/A
N/A

B B BBB B1 2 3 4 52B3’ ’

85011

Figure 3: Access trails. Access index threshold T is assumed to be
256. There are four trails starting from block B1 in a segment of the
block table: one current trail and three history trails. Trail 1 (B1, B3,
B4, B5) corresponds to the on-going continuous block accesses. This
trail cannot lead to a sequence-based prefetch because B2 is missing.
It is echoed by two history trails: Trails 2 and 3, though Trail 1 only
overlaps with part of Trail 2. A trail may run in the reverse direction,
such as Trail 4.

When there is an on-demand access of a disk block
that is not in any current trail’s extent, we start tracking
a new trail from that block. Meanwhile, we identify his-
tory trails consisting of blocks visited by the current trail
in the same order. Referring to Figure 3, when the current
trail extends from B1(85000) to B3(85001), two history
trails are identified: Trail 2 (B1(63110), B3(63200)) and
Trail 3 (B1(43500), B3(43501)). When the current trail
advances to block B4, both Trail 2 and Trail 3 success-
fully extend to it. However, only Trail 3 can match the
current trail to B5 while Trail 2 is broken at the block.

3.4.3 History-aware Prefetching

Because of the strict matching requirement, we initiate
history-aware prefetching right after we find a history
trail that matches the current trail for a small number of
blocks (4 blocks in the prototype). To use the matched
history trails to find prefetchable blocks, we set up a trail
extent centered at the last matched block, say block B.
Then we run the history trails from B in the extent to
obtain a set of blocks that the matched history trails will
probably visit. Suppose ts is an access index of block
B that is used in forming a matched history trail, and T
is access index gap threshold. We then search the ex-
tent for the blocks that contain an access index between
ts and ts + T . We obtain the extension of the history
trail in the extent by sorting the blocks in the ascend-
ing order of their corresponding access indices. We then
prefetch the non-resident ones in the order of their LBNs
and place them in the current window, similarly to the
sequence-based two-window prefetching. Starting from
the last prefetched block, we similarly prefetch blocks
into a readahead window. The initial window sizes, or
the number of blocks to be prefetched, of these two win-
dows are 8. When the window size is less than min(=8),
prefetching aborts. When the window size is larger than
max(=64), only the first max blocks are prefetched. If

there are multiple matched history trails, we prefetch the
intersection of these trails. The two history-aware win-
dows are shifted forward much in the same way as in
the sequence-based prefetching. To keep history-aware
prefetching enabled, there must be at least one matched
history trail. If the history-aware prefetching aborts,
sequence-based prefetching is attempted.

3.5 Balancing Memory Allocation between
the Prefetching and Caching Areas

In DiskSeen, memory is adaptively allocated between
the prefetching area and caching area to maximize sys-
tem performance, as follows. We extend the reclamation
queue with a segment of 2048 blocks which receive the
metadata of blocks evicted from the queue. We also set
up a FIFO queue, of the same size as the segment for
the prefetching area, that receives the metadata of blocks
evicted from the caching area. We divide the runtime
into epochs, whose size is the period when Np−area disk
blocks are requested, where Np−area is a sample of cur-
rent sizes of the prefetching area in blocks. In each epoch
we monitor the numbers of hits to these two segments
(actually they are misses in the memory), Hprefetch and
Hcache , respectively. If |(Hprefetch −Hcache)|/Np−area

is larger than 10%, we move 128 blocks of memory from
the area with fewer hits to the other area to balance the
misses between the two.

4 Experimental Evaluation
To evaluate the performance of the DiskSeen scheme in
a mainstream operating system, we implemented a pro-
totype in the Linux 2.6.11 kernel. In the following sec-
tions we first describe some implementation-related is-
sues, then the experimental results of micro-benchmarks
and real-life applications.

4.1 Implementation Issues
Unlike the existing prefetch policies that rely on high-
level abstractions (i.e., file ID and offset) that map to
disk blocks, the prefetch policy of DiskSeen directly ac-
cesses blocks via their disk IDs (i.e., LBNs) without the
knowledge of higher-level abstractions. By doing so,
in addition to being able to extract disk-specific perfor-
mance when accessing file contents, the policy can also
prefetch metadata, such as inode and directory blocks,
that cannot be seen via high-level abstractions, in LBN-
ascending order to save disk rotation time. To make the
LBN-based prefetched blocks usable by high-level I/O
routines, it would be cumbersome to proactively back-
translate LBNs to file/offset representations. Instead, we
treat a disk partition as a raw device file to read blocks

in a prefetch operation and place them in the prefetching
area. When a high-level I/O request is issued, we check
the LBNs of requested blocks against those of prefetched
blocks. A match causes a prefetched block to move into
the caching area to satisfy the I/O request.

To implement the prototype, we added to the stock
Linux kernel about 1100 lines of code in 15 existing files
concerned with memory management and the file system,
and another about 3700 lines in new files to implement
the main algorithms of DiskSeen.

4.2 Experimental Setup
The experiments were conducted on a machine with
a 3.0GHz Intel Pentium 4 processor, 512MB memory,
Western Digital WD1600JB 160GB 7200rpm hard drive.
The hard drive has an 8MB cache. The OS is Redhat
Linux WS4 with the Linux 2.6.11 kernel using the Ext3
file system. Regarding the parameters for DiskSeen, T,
the access index gap threshold, is set as 2048, and S,
which is used to determine the trail extent, is set as 128.

4.3 Performance of One-run Benchmarks
We selected six benchmarks to measure their individ-
ual run times in varying scenarios. These benchmarks
represent various common disk access patterns of inter-
est. Among the six benchmarks, which are briefly de-
scribed following, strided and reversed are synthetic and
the other four are real-life applications.

1. strided is a program that reads a 1GB file in a strided
fashion—it reads every other 4KB of data from the
beginning to the end of the file. There is a small
amount of compute time after each read.

2. reversed is a program that sequentially reads one
1GB file from its end to its beginning.

3. CVS is a version control utility commonly used in
software development environment. We ran cvs -q
diff, which compares a user’s working directory to a
central repository, over two identical data sets stored
with 50GB space between them.

4. diff is a tool that compares two files for character-by-
character differences. This was run on two data sets.
Its general access pattern is similar to that of CVS.
We use their subtle differences to illustrate perfor-
mance differences DiskSeen can make.

5. grep is a tool to search a collection of files for lines
containing a match to a given regular expression. It
was run to search for a keyword in a large data set.

6. TPC-H is a decision support benchmark that pro-
cesses business-oriented queries against a database

system. In our experiment we use PostgreSQL
7.3.18 as the database server. We choose the scale
factor 1 to generate the database and run a query
against it. We use queries 4 and 17 in the experi-
ment.

Linux 2.6.11
First Run w/ DiskSeen
Second Run w/ DiskSeen

 0

 20

 40

 60

 80

 100

 120

 140

Q17Q4grepdiffCVSreversedstrided

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Figure 4: Execution times of the six benchmarks, including two TPC-
H queries, Q4 and Q17.

To facilitate the analysis of experiment results across
different benchmarks, we use the source code tree of
Linux kernel 2.6.11 as the data set, whose size is about
236MB, in benchmarks CVS, diff, and grep. Figure 4
shows the execution times of the benchmarks on the stock
Linux kernel, and the times for their first and second runs
on the kernel with the DiskSeen enhancement. Between
any two consecutive runs, the buffer cache is emptied
to ensure all blocks are accessed from disk in the sec-
ond run. For most of the benchmarks, the first runs with
DiskSeen achieve substantial performance improvements
due to DiskSeen’s sequence-based prefetching, while the
second runs enjoy further improvement because of the
history information from the first runs. The improved
performance for the second runs is meaningful in practice
because users often run a program multiple times with
only part of the input changed, leaving the on-disk data
set accessed as well as access patterns over them largely
unchanged across runs. For example, a user may run grep
many times to search different patterns over the same set
of files, or CVS or diff again with some minor changes
to several files. Following we analyze the performance
results in detail for each benchmark.

Strided, reversed. With its strided access patterns no
sequential access patterns can be detected for stride ei-
ther at the file level or at disk level. The first run with
DiskSeen does not reduce its execution time. Neither
does it increase its execution time, which shows that the
overhead of DiskSeen is minimal. We have a similar ob-
servation with reversed. With the history information,
the second runs of the two benchmarks with DiskSeen
show significant execution reductions: 27% for stride
and 51% for reversed, because history trails lead us to
find the prefetchable blocks. It is not surprising to see
a big improvement with reversed. Without prefetching,
reversed accesses can cause a full disk rotation time to

service each request. DiskSeen prefetches blocks in large
aggregates and requests them in ascending order of their
LBNs, and all these blocks can be prefetched in one disk
rotation. Note that the disk scheduler has little chance
to reverse the continuously arriving requests and service
them without waiting for a disk rotation, because it usu-
ally works in a work-conserving fashion and requests
are always dispatched to disk at the earliest possible
time. This is true at least for synchronous requests from
the same process. Recognizing that reverse sequential
and forward/backward strided accesses are common and
performance-critical access patterns in high-performance
computing, the GPFS file system from IBM [25] and the
MPI-IO standard [19] provide special treatment for iden-
tifying and prefetching these blocks. If history access in-
formation is available, DiskSeen can handle these access
patterns as well as more complicated patterns without
making file systems themselves increasingly complex.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

11600115001140011300112001110011000

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Access Number

Figure 5: A sample of CVS execution without DiskSeen.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 11000 11100 11200 11300 11400 11500 11600

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Access Number

on-demand blocks
blocks to stream 1
blocks to stream 2
blocks to stream 3

Figure 6: A sample of CVS execution with DiskSeen.

CVS, diff. As shown in Figure 4, DiskSeen signifi-
cantly improves the performance of both CVS and diff on
the first run and further on the second run. This is because
the Linux source code tree mostly consists of small files,
and at the file level, sequences across these files cannot
be detected, so prefetching is only occasionally activated
in the stock Linux kernel. However, many sequences can
be detected at the disk level even without history infor-
mation. Figure 5 shows a segment of CVS execution with
the stock kernel. The X axis shows the sequence of ac-
cesses to disk blocks, and the Y axis shows the LBNs of
these blocks. Lines connect points representing consec-

utive accesses to indicate disk head movements. In com-
parison, Figure 6 shows the same segment of the second
run of CVS with DiskSeen. Most of disk head move-
ments between the working directory and the CVS repos-
itory are eliminated by the disk-level prefetching. The
figure also marks accesses of blocks that are on-demand
fetched or prefetched into different prefetch streams. It
can be seen that there are multiple concurrent prefetch
streams, and most accesses are prefetches.

Certainly the radial distance between the directories
also plays a role in the CVS executions because the disk
head must travel for a longer time to read data in the other
directory as the distance increases. Figure 7 shows how
the execution times of CVS with the stock kernel and its
runs with DiskSeen would change with the increase in
distance. We use disk capacity between the two direc-
tories to represent their distance. Although all execution
times increase with the increase of the distance, the time
for the stock kernel is affected more severely because
of the number of head movements involved. For exam-
ple, when the distance increases from 10GB to 90GB,
the time for the original kernel increases by 70%, while
the times for first run and second run with DiskSeen in-
creases by only 51% and 36%, respectively.

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
d)

Distance(GB)

Linux 2.6.11
First Run w/ DiskSeen

Second Run w/ DiskSeen

Figure 7: CVS execution times with different directory distances.

While the first runs of CVS and diff with DiskSeen
reduce execution times by 16% and 18%, respectively,
the second of them can further reduce the times by an-
other 16% and 36%. For CVS, each directory in a CVS-
managed source tree (i.e., working directory) contains a
directory, named as CVS, to store versioning informa-
tion. When CVS processes each directory, it first checks
the CVS subdirectory, then comes back to examine other
files/directories in their order in the directory. This visit
to the CVS subdirectory disrupts the sequential accesses
of regular files in the source code tree, and causes a dis-
ruption in the sequence-based prefetching. In the sec-
ond run, new prefetch sequences including the out-of-
order blocks (that might not be purely sequential) can be
formed by observing history trails. Thus the performance
gets further improvement. There are also many non-
sequentialities in the execution of diff that prevents its
first run from exploiting the full performance potential.

When we extract a kernel tar ball, the files/directories in
a parent directory are not necessarily laid out in the al-
phabetical order of their names. However, diff accesses
these files/directories in strict alphabetical order. So even
though these files/directories have been well placed se-
quentially on disk, these mismatched orders would break
many disk sequences, even making accesses in some di-
rectories close to random. This is why diff has worse per-
formance than CVS. Again during the second run, history
trails help to find the blocks that are proximate and have
been accessed within a relatively short period of time.
DiskSeen then sends prefetch requests for these blocks
in the ascending order of their LBNs. In this way, the
mismatch can be largely corrected and the performance
is significantly improved.

Grep: While it is easy to understand the significant
performance improvements of CVS and diff due to their
alternate accesses of two remote disk regions, we must
examine why grep, which only searches a local directory,
also has good performance improvement, a 20% reduc-
tion in its execution time.

6.24e+06

6.26e+06

6.28e+06

6.30e+06

6.32e+06

6.34e+06

6.36e+06

6.38e+06

 28000 30000 32000 34000 36000

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Access Number

Figure 8: A sample of grep execution without DiskSeen.

6.24e+06

6.26e+06

6.28e+06

6.30e+06

6.32e+06

6.34e+06

6.36e+06

6.38e+06

 28000 30000 32000 34000 36000

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Access Number

on-demand blocks
blocks to stream 1
blocks to stream 2
blocks to stream 3
blocks to stream 4

Figure 9: A sample of grep execution with DiskSeen.

Figure 8 shows a segment of execution of grep in the
stock Linux kernel. This collection of stair-like accesses
corresponds to two cylinder groups. In each cylinder
group, inode blocks are located in the beginning, fol-
lowed by file data blocks. Before a file is accessed, its
inode must be inspected, so we see many lines dropping
down from file data blocks to inode blocks in a cylinder
group. Figure 9 shows the corresponding segment of exe-
cution of first run of grep with DiskSeen. By prefetching

inode blocks in DiskSeen, most of the disk head move-
ments disappear. The figure also shows that accesses
to inode blocks and data blocks from different prefetch
streams. This is a consequence of the decision to only
attempt to prefetch in each localized area.

TPC-H: In this experiment, Query 4 performs a
merge-join against table orders and table lineitem. It se-
quentially searches table orders for records representing
orders placed in a specific time frame, and for each such
record the query searches for the matched records in ta-
ble lineitem by referring to an index file. Because table
lineitem was created by adding records generally accord-
ing to the order time, DiskSeen can identify sequences in
each small disk area for prefetching. In addition, history-
aware prefetching can exploit history trails for further
prefetching opportunities (e.g., reading the index file),
and achieve a 26% reduction of execution time compared
to the time for the stock kernel.

However, the second run of Q17 with DiskSeen shows
performance degradation (a 10% execution increase over
the time for the run on the stock kernel). We care-
fully examined its access pattern in the query and found
that table lineitem was read in a close-to-random fashion
with insignificant spatial locality in many small disk ar-
eas. While we used a relatively large access index gap
(T = 2048) in the experiment, this locality would make
history-aware DiskSeen form many prefetch streams,
each for a disk area, and prefetch a large number of
blocks that will not be used soon. This causes thrashing
that even the extended metadata segment of the reclama-
tion queue cannot detect it due to its relative small size.
To confirm this observation, we reduced T to 256 and
re-ran the query with DiskSeen to which history access
information is available. With the reduced T, the execu-
tion time is increased by only 2.6%.

Linux 2.6.11
First Run w/ DiskSeen
Second Run w/ DiskSeen

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Q17Q4grepdiffCVSreversedstrided

Re
qu

es
t S

iz
e

(p
ag

es
)

Figure 10: The sizes of requests serviced by disk.

Disk request sizes: Disk performance is directly af-
fected by the sizes of requests a disk receives. To ob-
tain the sizes, we instrument the Linux kernel to monitor
READ/WRITE commands issued to the IDE disk con-
troller and record the sizes of corresponding requests. We
report the average size of all the requests during the exe-
cutions of the benchmarks in Figure 10. From the figure
we can see that in most cases DiskSeen significantly in-

creases the average request sizes, which corresponds to
their respective execution reductions shown in Figure 4.
These increases are not proportional to their respective
reductions in execution time because of factors such as
the proportion of I/O time in the total execution time and
differences in the seek times incurred.

4.4 Performance of Continuously Running
Application

For applications that are continuously running against
the same set of disk data, previous disk accesses could
serve as the history access information to improve the
I/O performance of current disk accesses. To test this
we installed a Web server running the general hyper-
text cross-referencing tool Linux Cross-Reference (LXR)
[15]. This tool is widely used by Linux developers for
searching Linux source code.

We use the LXR 0.3 search engine on the Apache
2.0.50 HTTP Server, and use Glimpse 4.17.3 as the free-
text search engine. The file set searched is three ver-
sions of the Linux kernel source code: 2.4.20, 2.6.11,
and 2.6.15. Glimpse divides the files in each kernel into
256 partitions, indexes the file set based on partitions, and
generates an index file showing the keyword locations in
terms of partitions. The total size of the three kernels
and the index files is 896MB. To service a search query,
glimpse searches the index file first, then accesses the
files included in the partitions matched in the index files.
On the client side, we used WebStone 2.5 [29] to gen-
erate 25 clients concurrently submitting freetext search
queries. Each client randomly picks a keyword from a
pool of 50 keywords and sends it to the server. It sends
its next query request once it receives the results of its
previous query. We randomly select 25 Linux symbols
from file /boot/System.map and another 25 popular OS
terms such as “lru”, “scheduling”, “page” as the pool
of candidate query keywords. Each keyword is searched
in all three kernels. The metric we use is throughput of
the query system represented by MBit/sec, which means
the number of Mega bits of query results returned by the
server per second. This metric is also used for reporting
WebStone benchmark results.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10 15 20 25

Th
ro

ug
hp

ut
 (M

b/
se

co
nd

)

Time (minute)

DiskSeen
Linux 2.6.11

Figure 11: LXR throughputs with and without DiskSeen.

Figure 11 shows the LXR throughputs on the ker-
nels with and without DiskSeen at different times dur-
ing its execution. We have two observations. First,
DiskSeen improves LXR’s throughput. This is achieved
by prefetching contiguous small files at disk level. Sec-
ond, from the tenth minute to twentieth minute of the ex-
ecution, the throughput of LXR with DiskSeen keeps in-
creasing, while the throughput of LXR without DiskSeen
does not improve. This demonstrates that DiskSeen can
help the application self-improve its performance by us-
ing its own accumulated history access information.

 0

 500

 1000

 1500

 2000

 2500

302520151050
 0

 20

 40

 60

 80

 100

Pr
ef

et
ch

in
g

Ar
ea

 S
ize

 (p
ag

es
)

Pe
rc

en
ta

ge
 o

f b
lo

ck
s

fe
tc

he
d

by
 s

eq
ue

nc
e-

ba
se

d
pr

ef
et

ch
in

g
(%

)

Time (minute)

prefetching area size
percentage

Figure 12: Prefetching area allocation and percentage of blocks
fetched by sequence-based prefetching

Figure 12 shows that the size of the prefetching area
changes dynamically during execution, and the percent-
ages of blocks that are prefetched through sequence-
based prefetching, including the prefetch candidates that
are loaded, over all prefetched blocks. We can see
that smaller percentages of blocks are loaded through
sequence-based prefetching as the application proceeds,
i.e., a larger percentage of blocks are loaded through
history-aware prefetching, because of the availability of
history information. This trend corresponds to the reduc-
tion of the prefetching area size. History-aware prefetch-
ing has higher accuracy than sequence-based prefetch-
ing (the miss ratios of history-aware prefetching and
sequence-based prefetching are 5.2% and 11%, respec-
tively), and most blocks fetched by history prefetching
are hits and are moved to the caching area shortly after
they enter the prefetching area. Thus, there are fewer hits
to the metadata segment extended from the reclamation
queue in the prefetching area. Accordingly, DiskSeen
adaptively re-allocates some buffer space used by the
prefetching area to the caching area.

4.5 Interference of Noisy History
While well matched history access information left by
prior run of applications is expected to provide accurate
hints and improve performance, a reasonable speculation
is that a misleading history could confuse DiskSeen and
even direct DiskSeen to prefetch wrong blocks so as to

cause DiskSeen to actually degrade application perfor-
mance. To investigate the interference effect caused by
noisy history on DiskSeen’s performance, we designed
experiments in which two applications access the same
set of data with different access patterns. We use grep
and diff as test applications. Grep searches a keyword
in a Linux source code tree, which is also used by diff
to compare against another Linux source code tree. We
know that grep scans files basically in the order of their
disk layout, but diff visits files in the alphabetic order of
directory/file names.

In the first two experiments, we run the applications al-
ternatively, specifically in sequence (diff, grep, diff, grep)
in experiment I and sequence (grep, diff, grep, diff) in
experiment II. Between any two consecutive runs, the
buffer cache is emptied to ensure the second run does
not benefit from cached data while history access infor-
mation in the block table is passed across a sequence of
runs in an experiment. The execution times compared to
the stock kernel are shown in Table 1.

Experiment Execution times (seconds)
Linux diff 98.4 grep 17.2

I diff grep diff grep
81.1 16.3 46.4 14.0

II grep diff grep diff
14.0 67.7 13.9 46.1

Linux grep/diff 20.9/55.8

III grep/diff

15.2/44.9
17.0/34.6
17.9/34.8
18.2/34.5
18.3/35.1

Table 1: Execution times for diff and grep when they are alternately
executed in different orders or concurrently, with DiskSeen, compared
to the times for the stock kernel. The times reported are wall clock
times.

If we use the execution times without any history
as reference points (the first runs in experiments I and
II), where only sequence-based prefetching occurs, noisy
history causes the degradation of performance in the first
run of grep by 16% (14.0s vs. 16.3s) in experiment I,
while it accidentally helps improve the performance in
the first run of diff by 17% (81.1s vs. 67.7s) in ex-
periment II. The degradation in experiment I is due to
the history access information left by diff that misleads
DiskSeen, which is running grep, to infer that a matched
history trail has been found and initiate a history-based
prefetching. However, the matched history trail is broken
when diff takes a different order to visit files. This causes
DiskSeen to fall back to its sequence-based prefetching,
which takes some time to be activated (accesses of 8

contiguous blocks). Thus, history-aware prefetching at-
tempts triggered by noisy history keep sequence-based
prefetching from achieving its performance potential. It
is interesting to see that a trail left by grep improves the
performance of diff, which has a different access pat-
tern, in Experiment II. This is because the trails left by
grep are also sequences on disk. Using these trails for
history-aware prefetching essentially does not change the
behavior of sequence-based prefetching, except that the
prefetching becomes more aggressive, which helps re-
duce diff’s execution time. For the second runs of grep
or diff in either experiment, the execution times are very
close to those of the second runs shown in Figure 4. This
demonstrates that noisy history only very slightly inter-
feres with history-aware prefetching if there also exists a
well-matched history in the block table (e.g., the ones left
by the first runs of grep or diff, respectively).

In the third experiment, we concurrently ran these two
applications five times, with the times of each run re-
ported in Table 1, along with their counterparts for the
stock kernel. The data shared by diff and grep are fetched
from disk by whichever application first issues requests
for them, and requests for the same blocks from the other
application are satisfied in memory. The history of the ac-
cesses of the shared blocks is the result of mixed requests
from both applications. Because of the uncertainty in
process scheduling, access sequences cannot be exactly
repeated between different runs. Each run of the two
applications leaves different access trails on the shared
blocks, which are noisy history that interferes with the
current DiskSeen prefetching. The more runs there have
been, the more history is recorded, the easier it is to trig-
ger an incorrect history-aware prefetching. This is why
the execution time of grep keeps increasing until the fifth
run (we keep at most four access indices for each block).
Unlike grep, the execution time of diff in the second run
is decreased by 23% (34.6s over 44.9s). This is because
history-aware prefetching of the other source code tree,
which is not touched by grep, is not affected by the inter-
ference.

4.6 DiskSeen with a Contrived Adverse
Workload

To demonstrate the extent to which DiskSeen could be ill-
behaved, we designed an arguably worst-case scenario in
which all predictions made by history-aware prefetching
are wrong. In the experiment, a 4GB file was divided into
chunks of 20 4KB blocks. Initially we sequentially read
the file from its beginning to create a corresponding se-
quential trail. After removing buffered blocks of the file
from memory, we read four blocks at the beginning of
each chunk, chunk by chunk from the beginning to the
end of the file. The access of four blocks in a chunk trig-
gers a history-aware prefetching, which prefetches two

windows, each of 8 blocks, in the same chunk. These 16
blocks in each chunk are all mis-predicted. The experi-
mental result shows that for the second file read DiskSeen
increased the execution time by 3.4% (from 68.0 seconds
in the stock kernel to 70.3 seconds with DiskSeen). The
small increase is due to the sequential access of chunks,
in which the disk head will move over the prefetched
blocks whether or not prefetch requests are issued. To
eliminate this favorable scenario, we randomly accessed
the chunks in the second read, still with only four blocks
requested from each chunk. This time DiskSeen in-
creased the execution time by 19% (from 317 seconds
in the stock kernel to 378 seconds with DiskSeen), which
represents a substantial performance loss. However, this
scenario of a slowdown of more than fourfold (for either
scheme) could often be avoided at the application level
by optimizing large-scope random accesses into sequen-
tial accesses or small-region random accesses.

4.7 Discussion and Future Work
From the benchmarking we have conducted, DiskSeen is
most effective in transforming random or semi-random
accesses that take place on one or more limited disk areas
into (semi-)sequential accesses in each disk locality. It is
also effective in discovery and exploitation of sequential
on-disk access that is difficult to detect at the file level.

We have not implemented a prefetch throttling mech-
anism in DiskSeen. This makes our system incapable of
responding to overly-aggressive prefetching that leads to
thrashing (e.g., in the case of Q17 of TPC-H) and miss-
prefetching (e.g., in the case described in Section 4.6).
An apparent fix to the issue would be a policy that adap-
tively adjusts the access index gap (T) based on the ef-
fectiveness of recent prefetchings (i.e., the percentage
of blocks prefetched by the history-aware approach that
were subsequently used). However, in a system where
applications of various access patterns run concurrently,
the adjustment may have to be made differently for dif-
ferent applications, or different access index gaps need to
be used. While our experiments suggest that a fixed T
works well for most access patterns and its negative im-
pact is limited, we leave a comprehensive investigation
of the issue as our future work.

There are several limitations in our work to be ad-
dressed in the future. First, our implementation and per-
formance evaluations are currently based on one disk
drive. Most enterprise-level storage systems are com-
posed of RAIDs and their associated controllers. While
we expect that DiskSeen can retain most of its per-
formance merits because the mappings between logical
blocks and the physical blocks on multiple disks still
maintain high performance for contiguous LBN accesses,
some new issues have to be addressed, such as the condi-
tions on which prefetching should cross the disk bound-

ary and the relationship between prefetching aggressive-
ness and parallelism of RAID. Second, we have evalu-
ated the prototype only in a controlled experimental set-
ting. It would be worthwhile to evaluate the system in
a real-world environment with mixed workloads running
for extended periods, such as using it on a file server that
supports programming projects of a class of students or
an E-business service. Third, the block table could be-
come excessively large. For example, streaming of data
from an entire 500GB disk drive can cause the table grow
to 2GB. In this case, we need to page out the table to the
disk. Other solutions would be compression of the table
or avoidance of recording streaming access in the table.

5 Related Work
There are several areas of effort related to this work,
spanning applications, operating systems, and file sys-
tems.

Intelligent prefetching algorithms: Prefetching is
an actively research area for improving I/O perfor-
mance. Operating systems usually employ sophisticated
heuristics to detect sequential block accesses to acti-
vate prefetching, as well as adaptively adjust the num-
ber of blocks to be prefetched within the scope of a sin-
gle file [20, 22]. By working at the file abstraction and
lacking mechanism for recording historically detected
sequential access patterns, the prefetch policies usually
make conservative predictions, and so may miss many
prefetching opportunities [21]. Moreover, their predic-
tions cannot span files.

There do exist approaches that allow prefetching
across files. In these approaches, system-wide file ac-
cess history has been used in probability-based prediction
algorithms, which track sequences of file access events
and evaluate the probability of file occurrences in the se-
quences [9, 13]. These approaches may achieve a high
prediction accuracy via their use of historical informa-
tion. However, the prediction and prefetching are built
on the unit of files rather than file blocks, which makes
the approaches more suitable to web proxy/server file
prefetching than to the prefetching in general-purpose
operating systems [6]. The complexity and space costs
have also thus far prevented them from being deployed in
general-purpose operating systems. Moreover, these ap-
proaches are not applicable to prefetching for disk paging
in virtual memory and file metadata.

Hints from applications: Prefetching can be made
more effective with hints given by applications. In
the TIP project, applications disclose their knowledge
of future I/O accesses to enable informed caching and
prefetching [18, 27]. The requirements on hints are usu-
ally high—they are expected to be detailed and to be
given early enough to be useful. There are some other

buffer cache management schemes using hints from ap-
plications [3, 5].

Compared with the method used in DiskSeen,
application-hinted prefetching has limitations: (1) The
requirements for generating detailed hints may put too
much burden on application programmers, and could be
infeasible. As an example, a file system usage study for
Windows NT shows that only 5% of file-opens with se-
quential reads actually take advantage of the option for
indicating their sequential access pattern to improve I/O
performance [28]. Another study conducted at Microsoft
Research shows a consistent result [7]. It would be a
big challenge to require programmers to provide detailed
hints sometimes by even restructuring the programs, as
described in the papers on TIP [18, 27]. The DiskSeen
scheme, in contrast, is transparent to applications. (2)
The sequentiality across files and the sequentiality of data
disk locations still cannot be disclosed by applications,
which are important for prefetching of small files. In
our work this sequentiality can be easily detected and ex-
ploited.

Prefetching hints can also be automatically abstracted
by compilers [16] or generated by OS-supported spec-
ulative executions [4, 8]. Another interesting work is a
tool called C-Miner [14], which uses a data mining tech-
nique to infer block correlations by monitoring disk block
access sequences. The discovered correlations can be
used to determine prefetchable blocks. Though the per-
formance benefits of these approaches can be significant,
they do not cover the benefits gained from simultaneously
exploiting temporal and spatial correlations among on-
disk blocks. In a sense, our work is complementary.

Improving data placement: Exposing information
from the lower layers up for better utilization of hard
disk is an active research topic. Most of the work fo-
cuses on using disk-specific knowledge for improving
data placements on disk that facilitate the efficient ser-
vicing of future requests. For example, Fast File Sys-
tem (FFS) and its variants allocate related data and meta-
data into the same cylinder group to minimize seeks
[17, 10]. Traxtent-aware file system excludes track
boundary block from being allocated for better disk se-
quential access performance [24]. However, these op-
timized block placements cannot be seen at the file ab-
straction. Because most files are of small sizes (e.g., a
study on Windows NT file system usage shows that 40%
of operations are to files shorter than 2KB [28]), prefetch-
ing based on individual file abstractions cannot take full
advantages of these efforts. In contrast, DiskSeen can
directly benefit from these techniques by being able to
more easily find sequences that can be efficiently ac-
cessed based on optimized disk layout.

Recently, the FS2 file system was proposed to dynam-
ically create block replicas in free spaces on disk ac-
cording to the observed disk access patterns [11]. These

replicas can be used to provide faster accesses of disk
data. FS2 dynamically adjusts disk data layout to make
it friendly to the changing data request pattern, while
DiskSeen leverages buffer cache management to create
disk data request patterns that exploit current disk layout
for high bandwidth. These two approaches are comple-
mentary. Compared with looking for free disk space to
make replicas consistent to the access patterns in FS2,
DiskSeen can be more flexible and responsive to the
changing access pattern.

6 Conclusions
DiskSeen addresses a pressing issue in prefetch
techniques—how to exploit disk-specific information so
that effective disk performance is improved. By effi-
ciently tracking disk accesses both in the live request
stream and recorded prior requests, DiskSeen performs
more accurate block prefetching and achieves more con-
tinuous streaming of data from disk by following the
block number layout on the disk. DiskSeen overcomes
barriers imposed by file-level prefetching such as the
difficulties in relating accesses across file boundaries or
across lifetimes of open files. At the same time, DiskSeen
complements rather than supplants high-level prefetching
schemes. Our implementation of the DiskSeen scheme
in the Linux 2.6 kernel shows that it can significantly im-
prove the effectiveness of prefetching, reducing execu-
tion times by 20%-53% for micro-benchmarks and real
applications such as grep, CVS, TPC-H, and LXR.

7 Acknowledgements
We are grateful to Dr. Fay Chang for her detailed com-
ments and suggestions on the final version of the paper.
We thank the anonymous reviewers for their construc-
tive comments. This research was supported in part by
National Science Foundation grants CNS-0405909 and
CCF-0602152.

References
[1] Journaling-Filesystem Fragmentation Project, URL:

http://www.informatik.uni-frankfurt.de/ loizides/reiserfs/
agesystem.html

[2] A. R. Butt, C. Gniady, and Y. C. Hu, “The Performance
Impact of Kernel Prefetching on Buffer Cache Replace-
ment Algorithms”, in Proceedings of the ACM Inter-
national Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’05), June 2005.

[3] P. Cao, E. W. Felten, A. Karlin and K. Li, “Imple-
mentation and Performance of Integrated Application-
Controlled Caching, Prefetching and Disk Scheduling”,

ACM Transaction on Computer Systems, November
1996.

[4] F.W. Chang and G.A. Gibson, “Automatic I/O Hint Gen-
eration through Speculative Execution”, Proceedings of
the 3rd Symposium on Operating Systems Design and Im-
plementation (OSDI’99), February 1999.

[5] P. Cao, E. W. Felten and K. Li, “Application-Controlled
File Caching Policies”, Proceedings of the USENIX Sum-
mer 1994 Technical Conference, 1994.

[6] X. Chen and X. Zhang, “A popularity-based prediction
model for Web prefetching”, IEEE Computer, Vol. 36,
No. 3, March 2003.

[7] J. R. Douceur and W. J. Bolosky, “A Large-Scale Study
of File-System Contents”, Proceedings of the 1999 ACM
SIGMETRICS conference, May 1999.

[8] K. Fraser and F. Chang, “Operating system I/O Specula-
tion: How two invocations are faster than one”, Proceed-
ings of the USENIX Annual Technical Conference June
2003.

[9] J. Griffioen and R. Appleton, “Reducing file system la-
tency using a predictive approach”, Proceedings of the
Usenix Summer Conference, June 1994, pp. 197-208.

[10] G. Ganger and F. Kaashoek, “Embedded Inodes and
Explicit Groups: Exploiting Disk Bandwidth for Small
Files”, Proceedings of the 1997 USENIX Annual Techni-
cal Conference, January 1997.

[11] H. Huang, W. Hung, and K. G. Shin, “FS2: Dynamic
Data Replication in Free Disk Space for Improving Disk
Performance and Energy Consumption”, Proceedings of
20th ACM Symposium on Operating Systems Principles,
October 2005.

[12] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang,
“DULO: an Effective Buffer Cache Management Scheme
to Exploit both Temporal and Spatial Locality”, Proceed-
ings of the 4th USENIX Conference on File and Storage
Technology (FAST’05), December 2005.

[13] T. M. Kroeger and D.D.E. Long, “Design and implemen-
tation of a predictive file prefetching algorithm”, Pro-
ceedings of the 2001 USENIX Annual Technical Confer-
ence, January 2001.

[14] Z. Li, Z. Chen, S. Srinivasan and Y. Zhou, ”C-Miner:
Mining Block Correlations in Storage Systems”, Pro-
ceedings of 3rd USENIX Conference on File and Storage
Technologies (FAST04), March 2004.

[15] Linux Cross-Reference, URL : http://lxr.linux.no/.
[16] T. C. Mowry, A. K. Demke and O. Krieger. “Automatic

Compiler-Inserted I/O Prefetching for Out-of-Core Ap-
plications”, Proceedings of the Second Symposium on
Operating Systems Design and Implementation (OSDI
’96),, October 1996.

[17] M. K. Mckusick, W. N. Joy, S. J. Leffler, and R. S. Fabry,
“A Fast File System for UNIX”, Transactions on Com-
puter Systems, 2(3), 1984.

[18] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodol-
sky and J. Zelenka, “Informed Prefetching and Caching”,
Proceedings of the 15th Symposium on Operating System
Principles, 1995, pp. 1-16.

[19] MPI-2: Extensions to the Message-Passing Inter-
face, URL : http://www.mpi-forum.org/docs/mpi-20-
html/mpi2-report.html

[20] R. Pai, B. Pulavarty, and M. Cao, “Linux 2.6 Perfor-
mance Improvement through Readahead Optimization”,
Proceedings of the Linux Symposium, July 2004.

[21] A. E. Papathanasiou and M. L. Scott, “Aggressive
Prefetching: An Idea Whose Time Has Come”, Proceed-
ings of the Tenth Workshop on Hot Topics in Operating
Systems, June 2005.

[22] A. J. Smith, “Sequentiality and Prefetching in Database
Systems”, ACM Trans. on Database Systems, Vol. 3, No.
3, 1978, pp. 223-247.

[23] J. Schindler and G. R. Ganger, “Automated Disk Drive
Characterization”, Proceeding of 2000 ACM SIGMET-
RICS Conference, June 2000.

[24] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger,
“Track-Aligned Extents: Matching Access Patterns to
Disk Drive Characteristics”, USENIX Conference on File
and Storage Technologies (FAST), January 2002.

[25] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File
System for Large Computing Clusters”, USENIX Confer-
ence on File and Storage Technologies (FAST), January
2002.

[26] S. W. Schlosser, J. Schindler, S. Papadomanolakis, M.
Shao, A. Ailamaki, C. Faloutsos, and G. R. Ganger, “On
Multidimensional Data and Modern Disks”, Proceedings
of the 4th USENIX Conference on File and Storage Tech-
nology (FAST’05), December 2005.

[27] A. Tomkins, R. H. Patterson and G. Gibson, “Informed
Multi-Process Prefetching and Caching”, Proceedings of
the 1997 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, June 1997.

[28] W. Vogels, “File system usage in Windows NT 4.0”, Pro-
ceedings of the 17th ACM Symposium on Operating Sys-
tems Principles, December 1999.

[29] WebStone — The Benchmark for Web Servers, URL :
http://www.mindcraft.com/benchmarks/webstone/

[30] B. L. Worthington, G. R. Ganger, Y. N. Patt, and J.
Wilkes, “On-line extraction of SCSI disk drive parame-
ters” In Proceeding of 1995 ACM SIGMETRICS Confer-
ence, May 1995.

Notes
1 We make this statement for generic OS kernels. Some operat-

ing systems adopt aggressive prefetch policies which rely on high-level
knowledge about user/application behaviors. An example is the Super-
Fetch technique in Windows Vista, which performs prefetching accord-
ing to particular applications, users, usage times of day or even usage
days of week.

2Specifically we do not expose information about logical disk lay-
out, which actually has been available for prefetch operations in oper-
ating systems. We use ‘expose’ to indicate a general approach utilizing
low-level disk-specific knowledge, which could include hidden disk ge-
ometry information below the LBN abstraction in future work.

3In the implementation the prefetch streams are only a conceptual
data structure—they are embedded in the reclamation queue and blocks
appear only once.

