Is Cloud Storage Ready? A Comprehensive Study of IP-based Storage Systems

Zhonghong Ou, Zhen-Huan Hwang
Antti Yla-Jaaski
Aalto University, Finland
Email: firsthame.lastname @aalto.fi

Abstract—Traditionally, network storage systems have
mainly been dominated by two IP-based storage technologies,
i.e., Network Attached Storage (NAS) and Storage Area Net-
work (SAN). In recent years, cloud based storage (e.g., Amazon
S3) has gained growing popularity for its high flexibility and
cross-platform compatibility. Many enterprises are considering
to replace traditional storage systems with cloud-based systems.
Evaluating such a transition demands a systematic study on
understanding the performance behaviours of the emerging
cloud storage. To fill in this gap, in this paper, we conduct a
comprehensive study on the three storage systems with realistic
network conditions. Specifically, we select one representative
from each category for comparison, i.e., Network File System
(NFS) from NAS, Internet Small Computer System Interface
(iSCSI) from SAN, and OpenStack Swift from cloud storage.
We build a testbed and develop a suite of micro-benchmarks
to study the impact of network complexities. Through a set
of experiments and detailed analysis, we make several key
observations: (1) iSCSI excels under good network conditions,
e.g., in local area networks (LANs) where network delay and
packet loss are trivial; (2) NFS and Swift are more suitable
for complex networks such as wireless networks and Internet
environment; (3) Swift is a viable replacement for NFS in
all scenarios we investigate; and (4) system configuration on
the client side impacts storage performance significantly and
deserves adequate attention. We hope our findings can not only
shed light on storage service design and optimizations, but also
encourage more research on emerging storage technologies.

Keywords-Cloud Storage; Swift; iSCSI; NFS; Performance
Evaluation.

I. INTRODUCTION

Enterprise storage systems have traditionally been dom-
inated by two major technologies, i.e., Network Attached
Storage (NAS) and Storage Area Network (SAN). Both
technologies have been widely deployed in enterprise en-
vironment in the past decade [1], and have proved their
performance and reliability over time.

In recent years, cloud computing paradigm has gained
significant popularity, and starts to replace the traditional
computing model. As a critical component, the emerging
cloud storage (e.g., Amazon S3) provides a highly promising
solution to enable a transition from dedicated storage to a
more platform-independent IP-based storage. Many enter-
prise IT departments are considering to replace traditional
network storage services with private or public cloud-based
storage services [2]. Nevertheless, without a thorough un-

Feng Chen
Louisiana State University, USA
Email: fchen@csc.lsu.edu

Ren Wang
Intel Labs, Portland, USA
Email: ren.wang @intel.com

derstanding of such a new storage model comparing with
traditional ones, it is challenging to realize such a transition
efficiently and perform further optimizations.

Firstly, in today’s enterprise environment, end users usu-
ally rely on wireless networks to gain mobility and flex-
ibility. Unfortunately, such a practice makes it particularly
challenging to ensure the quality of storage services. What’s
worse, users on mobile often need to access storage services
through the unpredictable Internet (e.g., work from home
or work on travel). These issues together inevitably intro-
duce significant network complexity, and thus pose strong
interference with the user-perceivable storage performance.
Secondly, although NAS, SAN, and cloud storage are all im-
portant in practical environment, there still lacks a systematic
study on understanding the three drastically different storage
systems in a comparative way. It is important to understand
their performance behaviours and relative strengths and
weaknesses. Such insights will not only assist identifying
the most suitable storage solution for different scenarios,
but also provide useful hints to improve the emerging cloud
storage design further.

To fulfil the purposes mentioned above, we conduct
an experimental study striving to understand the intrinsic
characteristics of NAS, SAN, and cloud storage, and inves-
tigate their implications in different scenarios. As the first
attempt to provide such a study, we primarily focus on the
performance aspect in this paper.

We selectively choose Network File System (NFS) [3],
Internet Small Computer System Interface (iSCSI) [4], and
OpenStack Swift!, as the representative of each technology.
In order to provide a fair comparison, we run the experi-
ments on the same hardware setup, integrate the same Ext4
file system for each system, and access them all through
standard POSIX APIs. To provide a controlled wireless
environment, we use the Wide Area Network emulator
(WANem) to emulate various network scenarios. We also
design a set of experiments to cover different aspects of
performance analysis.

With all the efforts mentioned above, we strive to answer
the following questions:

« Is cloud storage a viable replacement in scenarios that

Uhttps://wiki.openstack.org/wiki/Swift

are traditionally dominated by NAS and SAN?

« Is cloud storage universally better than NAS and SAN?
If not, in what scenarios is cloud storage better?

o How much does network conditions and application
behaviours impact the performance of each technology?

Through systematic analysis, we make several impor-
tant observations: (1) We find that under ideal network
conditions, SAN performs the best, while NAS slightly
outperforms cloud object storage; under network conditions
similar to the Internet, the performance of SAN declines
the most, NAS sits in between, while cloud object storage
remains relatively stable (unaffected). (2) From performance
perspective, we conclude that object-based cloud storage is
a viable replacement for NAS in all network scenarios we
investigate, including both LAN and WAN environments.
(3) We discover that the capability of utilizing multiple
TCP connections affects performance significantly in a pos-
itive way, especially under realistic network conditions that
involve nontrivial network delay and packet loss. (4) We
notice that access behaviours have a remarkable impact on
storage performance. Different access forms (e.g., Direct
vs. Sync I/Os) should be chosen carefully, which is a
tradeoff between performance and consistency.

As the first comparative study of its kind, we hope
this study can shed light on understanding the intrinsic
characteristics and system implications of each solution.
Furthermore, we hope our study can inspire a series of
similar work focusing on other aspects, e.g., consistency
issues, of the systems.

II. BACKGROUND

In this section, we briefly introduce the three technologies
in general, and then select one representative from each
family for detailed description.

A. Network Attached Storage

NAS provides access to file systems deployed on remote
storage server via a file based interface. The server handles
physical organization of data and coordinates concurrent
access. Clients mount a NAS volume and integrate the
shared namespace into the local file system and access data
stored on the remote server in the same way as local files.

Network File System (NFS) [3] is a representative NAS
protocol, and has been widely used since 1980s. Built on top
of the host file system, NFS exposes a portion of the server
file system to the clients. The clients access the exported
namespace through Remote Procedure Calls (RPCs) [5]. File
operations from the clients are converted into RPCs to the
server, where the RPCs are further converted into local file
system operations accordingly.

To date, NFS has experienced several generations. We
focus on the latest version, i.e., NFSv4, in this paper.
Compared with previous versions, NFSv4 introduces several
new features. Firstly, NFSv4 is stateful, and the client issues

OPEN and CLOSE operations before and after accessing
a file. Secondly, it introduces the COMPOUND operation,
where several individual operations coalesce to form a
complex request to reduce the number of RPC calls (and
the round trips) required for file system operations. Thirdly,
NFSv4 adopts TCP as the transport protocol, which offers
improved communication reliability. Finally, it introduces
the delegation concept to temporarily transfer certain
responsibilities from the server to the client to allow more
aggressive caching for performance purposes. For its cross-
platform popularity in practice, in this paper, we use NFSv4
as a representative NAS solution.

B. Storage Area Network

SAN exposes physical storage devices to the clients and
provides block level access to them. Unlike NAS, SAN does
not provide file system abstraction, but rather raw storage
devices. Thus, the client itself needs to build a file system
on the exposed SAN device. The client OS manages the
file system directly, like any other direct-attached device.
Data organization on the device and synchronization among
concurrent access are handled on the client side. For this
reason, I/O operations on SAN storage are subject to effects
of generic block I/O mechanisms such as caching, prefetch-
ing, and scheduling schemes that are applicable to any local
file system.

Internet Small Computer System Interface (iISCSI) [4] is a
widely adopted SAN protocol in enterprise environment. Its
client-server architecture consists of two major components:
the client is called the initiator, while the server counterpart
is called the target. With iSCSI, the block-level SCSI com-
mands from the initiator are encapsulated into TCP/IP pack-
ets and transmitted over the Internet to the target. The target
then unpacks the received packets and extracts the SCSI
commands for execution. The iSCSI protocol utilizes the
concept of session to keep track of communication streams
between the initiator and the target. All I/O operations occur
in block level. For its high popularity in reality, we use iSCSI
as a representative SAN protocol in this paper.

C. Object-based Cloud Storage

Cloud storage emerges as a new paradigm to provide
users with storage service of great flexibility. Users access
data in unit of object, which is similar to the file in a
conventional file system. Objects can be logically organized
into containers, which are akin to directories in file systems.
Unlike file systems, object-based cloud storage usually pro-
vides a flat namespace, which means containers cannot be
nested. Besides executing HTTP requests manually, many
cloud storage services also provide tools to integrate a cloud
storage repository into the local file system.

Among the cloud storage solutions that are openly acces-
sible, OpenStack Swift has gained wide adoption because
of its technical maturity. OpenStack Swift is a distributed

object storage system, which aims to emulate the behaviours
of Amazon S3. There are several components involved in the
Swift architecture. Herein we only introduce the components
that are relevant to our experiments. Swift consists of
four server processes, i.e., proxy, account, container, and
object. The proxy server process is responsible for handling
incoming requests, looking up locations of the storage nodes,
routing requests accordingly, and returning responses back
to the clients. The account server process is responsible for
maintaining metadata of individual accounts and the listing
of containers within each account. The container process
is responsible for maintaining container metadata and the
listing of objects within the container. The object server
is responsible for storing, retrieving, and deleting objects.
Objects are stored as binary files in the host file system.

CloudFuse® is a Swift client that provides file system
interface for cloud users. Using a File System in User Space
(FUSE) implementation, CloudFuse bridges the gap between
HTTP based Swift API and the Virtual File System (VES)
of Linux OS. CloudFuse communicates with Linux kernel
through the assistance of a FUSE library, which passes file
system operations and responses as messages via a virtual
device. The FUSE library supports multithreaded FUSE
implementation. By default, CloudFuse enables this feature
and is capable of utilizing multiple TCP connections. After
mounting Swift to the local file system, file operations are
automatically converted to HTTP requests.

Because of the technical maturity, we use OpenStack
Swift as the representative of object-based cloud storage.
Furthermore, to provide a fair comparison with NFS and
iSCSI, we utilize CloudFuse to integrate a file system on
top of Swift to provide the same file operations.

III. ENVIRONMENT AND METHODOLOGY

In this section, we describe the methodology and envi-
ronment setup for our experiments. The experiments are
conducted in a custom testbed illustrated in Figure 1.

A. Experiment Methodology

As stated previously, the three storage systems are drasti-
cally different in nature, we strive to provide a fair compar-
ison with the following efforts: (1) we use the same set of
hardware for the three systems to avoid potential difference
arising from hardware (cf. Figure 1); (2) we deploy the same
file system (Linux Ext4) on the storage systems; (3) we
access the three systems through the same file operations via
the standard POSIX API; for Swift, we integrate CloudFuse
on the client side to enable such operations; (4) we design
the experiments in such a manner that they can largely sep-
arate performance differences arising from protocol design
and implementation details. For that, we develop a series
of custom-made micro-benchmarks, which consist of access

Zhttp://redbo.github.io/cloudfuse/

Client Server
Fedora 17 Fedora 17
HDD #1

NFS server

HDD #2

ala)

Applications
NFS client

Block I/0
access iSCsI

target HDD #3

di

protocol

|

4]

[s]
Applications
iSCS! initiator

Swift server

HDD #4

Appl\cﬁlons
Swift client

©
9
8
2%
[}

Figure 1: Testbed overview.

unit size, single-file operations, batch operations (single-
threaded/multithreaded), and amplification effect.

B. Network Environment

To provide a controllable network environment, we use
a WAN emulator, i.e., WANem?>, to achieve the desired
wireless conditions. We choose 100 Mbps (12.5 MiB/s)
as the network bandwidth, which is around the peak data
rate from a commercial wireless access point using 8§02.11n
technique. The network parameters we investigate include
network delay, packet loss, and packet jitter. For network
delay, the values we select are based on real measurements
from Amazon EC2 data centers. We choose 50ms for
WAN Internet scenarios, which is the Round Trip Time
(RTT) between our test site and the nearest Amazon EC2
data center. It also represents the RTT between the US
east-coast and west-coast data centers. We choose 0.1%
packet loss rate for the Internet environment. Packet jitter
means latency variation, which is common in the Internet
environment. We choose 10ms as the jitter value when
applicable, which follows normal distribution. In the rest
of the paper, “ideal network” means a near-perfect network
condition (12.5 MiB/s bandwidth, no network delay, packet
loss, or jitter), and “realistic network” refers to a suboptimal
network condition (12.5MiB/s bandwidth, 50 ms latency,
0.1% packet loss, and £10ms jitter).

C. Hardware Configuration

The client machine is an Intel’s Shark Bay development
board (BO step) with a quad core IvyBridge CPU clocked at
2.6 GHz, 4 GiB of memory, on-board Gigabit Ethernet inter-
face, a Samsung MZ-7PD128 SSD as system disk and log
storage. The server machine is a Supermicro server with an
Intel Xeon X5570 quad core processor clocked at 2.93 GHz,
6 GiB of memory, on-board Gigabit Ethernet interface, four
Western Digital WD2502ABYS 250 GB SATA HDDs. One
HDD serves as the system disk, and the rest three each

3http://wanem.sourceforge.net/

backs one storage system. The WANem is deployed on
a Dell laptop with an Intel Core2 Duo P8400 dual core
processor clocked at 2.26 GHz, 4 GiB of memory, and on-
board Gigabit Ethernet interface. The network switch is an
ASUS RT-N66U home router with 250 MiB of memory. All
Ethernet interfaces on the switch and network cables are
capable of achieving 1 Gbps bandwidth despite the 100 Mbps
limit configured in WANem.

D. Software Configuration

Both client and server machines run Fedora Core 17 with
a patched Linux kernel version3.2.1 [6]. The WAN emu-
lator software is WANem 3.0 Beta 2. The network switch
runs Tomato version 1.28*. The TCP congestion avoidance
algorithm is CUBIC. To capture the number of packets
accurately, all TCP offload engines on the client machine
are disabled.

For NFS, we use the Linux kernel implementation and
increase the number of nfsd threads on the server machine
to 32. The NFS mount is a directory in an Ext4 partition and
is exported with sync and no_subtree_check flags set.
For iSCSI, we use the implementation by Intel [6] on both
the client (the initiator) and server (the target) machines. We
use the default block I/O scheduler in Fedora Core 17, i.e.,
Completely Fair Queuing (CFQ), if not stated otherwise. For
Swift, we use the latest version on GitHub with Python2.7.3.
We configure it as in the official Swift All In One (SAIO)
configuration, and use Ext4 as the host file system for
storage. In order to provide the same operations as with
NES and iSCSI, we use CloudFuse on the client machine.

IV. MICROBENCHMARK ANALYSIS

In this section, we analyze the performance of the three
storage systems in fine granularity through a series of well-
designed micro-benchmarks. We first analyze the effect of
access unit size and forms of access on the performance.
Based on the analysis, we choose a subset of access forms
for further investigation. We then study the performance
of single file access, which closely imitates the scenario
where a small number of files are accessed. Thereafter,
we analyze batch operations, which imitate the scenarios
where a large number of files need to be synchronized with
the remote storage. Both single-threaded and multithreaded
batch operations are investigated to reveal performance
variations from different degrees of parallelism. Finally, we
examine the amplification effect on the performance of the
systems. It is also worth noting that our results can be
readily deduced to apply on energy-efficiency analysis of
the the three systems, as the power consumption of wireless
communications demonstrates good linear relationship with
network throughput [7].

“http://www.polarcloud.com/tomato/

A. Forms of Access

When a file is accessed via the open () system call, a
flag indicating the desired form of access can be passed.
The most common flags are O_DIRECT, O_SYNC, and no
flag, which specifies direct, synchronous, and default I/O
operations, respectively.

Direct I/0: The flag O_DIRECT informs the kernel to
minimize cache effects of I/O operations. Such I/O opera-
tions bypass the caching facilities, e.g., page cache, along the
I/O path in the kernel. Bypassing I/O cache entails that data
must be read from or written to remote storage upon request.
Direct I/Os enable a direct control on raw storage devices;
nevertheless, no read-ahead or bundling is possible due to
the absence of page cache. On the other hand, bypassing
I/O cache can effectively decrease time-consuming memory
copy operations and improve data reliability, which are
desirable in certain scenarios, e.g., database operations.

Synchronous I/O: The flag O_SYNC causes write ()
operations to be blocked until dirty data are flushed to
persistent storage. In the context of network storage systems,
the physical storage is the storage service on the server
machine. Whether the data are truly written to the physical
medium on the server is another issue and depends on the
server implementation. In this regard, synchronous I/Os and
direct I/Os are similar for write operations; nonetheless, syn-
chronous reads benefit from read-ahead and cache effects,
which bring performance advantages for read operations.

Default I/0: If no flag is set (Default), storage accesses
are subject to the standard procedures for handling I/Os in
OS kernel. System optimizations, e.g., caching and read-
ahead, are in effect. Dirty data are periodically flushed to
the persistent storage asynchronously, and power outage may
result in data loss, which is a tradeoff for performance. Note
that for Swift/CloudFuse, although Linux FUSE supports
O_DIRECT and O_SYNC flags, CloudFuse does not take
them into account as it operates on the local temporary file.
Our preliminary measurements show that forms of access
do not make any difference for performance. Thus, we only
present results from Default access form for CloudFuse.

B. Access Unit Size

Besides the access forms, when a file (especially a large
file) is accessed, the access unit size also plays an important
role on performance. The smaller the access unit size is,
the more I/O requests are generated, and accordingly, the
more round trips are needed to access the same file. It
is the opposite when bigger access unit sizes are applied.
The experiments are conducted by accessing a relatively
large 16 MiB file in different unit size, varying from 4 KiB
through 16 MiB. We analyze all the three access forms. Note
for CloudFuse, as stated in Section IV-A, the three access
forms do not present performance difference; thus, only
the Default access form is analyzed in this paper. The

network configurations for the experiments are 12.5 MiB/s
speed and 50 ms delay. The results are illustrated in Figure 2.

8l p—sp N Lo
B —

6f | —e— NFS-Direct

4| —»—NFS-sync

> ; H

0

—e— NFS-Direct
—— NFS—Sync
‘| —8— NFS—Default

Throughput(MiB/s)

S =~ N w h Uw o N

—=— NFS—Default

Throughput(MiB/s)

4K 16K 64K 256K 1M 4M 16M
Access unit size

(b) NFS — Read.

4K 16K 64K 256K IM 4M 16M
ccess unit size

(a) NFS — Write.

.—;—-—--.---.——//
—e— iSCSI-Direct
—— iSCSI-Sync

= ® = CloudFuse—Default

o <
=)

w

Throughput(MiB/s)

Throughput(MiB/s)
SR SR -

S =N W s

— H
4K 16K 64K 256K 1M 4M 16M
Access unit size

4K 16K 64K 256K IM 4M 16M
Access unit size

(c) iISCSI + CloudFuse — Write. (d) iSCSI + CloudFuse — Read.

Figure 2: Impact of access unit size and form of access
on throughput. Note that the curve for iSCSI Default
Write operations is missing from subfigure (c), because
it only writes to local cache and the throughput is of several
hundred MiB/s.

From the figure, we can see that for Direct I/O oper-
ations (red curves), the overall trend is that the throughput
increases along with the access unit size. This trend applies
to NFS and iSCSI, including both Write and Read opera-
tions. Furthermore, from Figure 2a and 2c, we can see that
Direct I/O operations perform slightly better than Sync
operations. The trend is more evident in Figure 2c. This is
mostly due to the different cache implications of the three
access forms, as explained in Section IV-A.

For Sync I/O operations (black curves), as shown in
Figure 2a and 2c, the performance of Write operations is
similar to that of Direct I/O operations. While for Read
operations (cf. Figure 2b and 2d), Sync can benefit from
read-ahead effect; thus, the throughput remains unaffected
despite the access unit size. The abnormally low throughput
for iSCSI Read operations with Sync (and Default)
access form is because of the access pattern. The read
request is issued only after the response for the previous
request has been received; thus, network delay dominates
the overall completion time and becomes the bottleneck.

For Default I/O operations (blue and pink curves),
since they are not obliged to bypass caches or to sync
up with remote storage, they can benefit from bundling
(write-back) for Write operations and also read-ahead for
Read operations. The overall trend is that the throughput
is not affected by the access unit size, which is applicable
to both NFS and iSCSI. For iSCSI Write operations, the
I/O returns immediately after the dirty data is written to
the local cache, which is effectively at memory speed and
thus not shown in Figure 2c. For CloudFuse, although the

behaviour is similar to NFS and iSCSI (i.e., also benefit
from write-back and read-ahead), the underlying cause is
different. CloudFuse always retrieves the entire file into a
temporary file in advance, or uploads the entire temporary
file after all local file operations are completed. Thus, it can
achieve the same effect as the other two systems. Note that
commercial cloud storage clients (e.g., DropBox) also adopt
similar policies (retrieve a complete copy of remote objects
and store it locally for accesses) to boost performance.

Table I summarizes the behaviours of the access forms
for the three systems.

Storage system | Form of access | Write | Read

Direct write-through read-through
NFS Sync
Default write-back read-ahead
. Direct write-through read-through
iSCSI Sync ad-ahead
Default buffered read-ahea
Direct
Swift + CloudFuse| Sync write-back read-ahead
Default

Table I: Writing/reading policies of different access forms.

C. Single File Access

In the previous section, we analyzed the impact of access
unit size within large files. Another common practice is to
access files in their entirety, especially for small files that
are dominant in modern file systems. Certain systems also
bear size limits for the files allowed. For example, the object
sizes of Dropbox vary between 4 KiB and 4 MiB; files larger
than 4 MiB are sliced into 4 MiB chunks before uploading to
the cloud [8]. In the following sections, we will investigate
accessing files in their entirety with various sizes, ranging
from 4 KiB to 64 MiB (stepping at powers of 4).

In the face of potential interference from bundling or par-
allelism, in order to gain insights into the intrinsic protocol
design, we design our experiments of single file access to
imitate the scenario where an end user has a small number
of files to access. Thus, potential bias from bundling or
parallelism is effectively isolated. Figure 3 illustrates the
results. Note for NFS and iSCSI, we only present results
from Direct and Sync access forms, which will remain
the same for the remaining figures in this paper, to provide
a clear presentation. This is because when the access unit
size equals the file size, the performance of NFS Default
operations follows closely with that of Sync access form;
while for iSCSI, its performance of Default Read op-
erations follows that of Sync operations, and Default
Write still completes to local buffer (thus of no interest).

From Figure 3, we can see that the common trend for
the three systems is that throughput increases with file sizes.
Performance of small files suffers because their transmission
completes when the TCP connection is still in slow start
phase. Comparing the three systems, it is clear that under
ideal network, for Write operations (cf. Figure 3a), iSCSI

S 5

Throughput(MiB/s)
Throughput(MiB/s)

o N A~ O ®

4K 16K 64K256K IM 4M 16M 64M
File size

4K 16K 64K256K 1M 4M 16M 64M
File size

(a) Write — ideal network. (b) Read — ideal network.

Write

o
©

—e— NFS-—Direct
NFS-Sync

—=— iSCSI-Direct

- - iSCSI-Sync

—»— CloudFuse—Default

S

/‘>

Throughput(MiB/s)
Throughput(MiB/s)

SRS -
o N & O ®

4K 16K 64K256K IM 4M 16M 64M

4K 16K 64K256K 1M 4M 16M 64M
File size i

File size

(c) Write — added 50 ms delay. (d) Read — added 50 ms delay.

Figure 3: Single file access in different network conditions.

outperforms NFS and CloudFuse slightly; while for Read
operations (cf. Figure 3b), NFS performs the best, and iSCSI
is comparable with CloudFuse in throughput. When 50 ms
delay is introduced, the overall trend is that the throughput
of iSCSI deteriorates faster than the other two systems. In
consequence, the head start of iSCSI Write operations
disappears (cf. Fig. 3c); for Read operations iSCSI lags
behind the other two systems with a greater gap (cf. Fig. 3d).

Furthermore, in Figure 3d, we observe the same behaviour
for iSCSI Sync Read operations as shown in Section IV-B
(cf. Figure 2d). For files larger than 1MiB, they require
multiple SCSI command cycles to complete. Thus, their
performance is significantly impacted by network delay as
the requests are issued in a sequential manner.

Summary: for single file access that imitates the scenario
where there are a small number of files to access, the
performance variation of the three systems is not significant;
under ideal network, NFS and iSCSI lead the Read and
Write performance respectively; when network delay is
introduced, iSCSI deteriorates faster than the other two
systems, especially for Read operations.

D. Batch Operation — Single-threaded

In this section we analyze batch operations, where a set of
files of the same size is accessed in series, and the throughput
is calculated from the steady state. Batch operations imitate
the scenario where a large number of files need to be
accessed, e.g., in backup services. Figure 4 illustrates the
performance of single-threaded operations under different
network conditions.

From Figure 4a and 4b, we see that iSCSI excels under
ideal network and NFS performs slightly better than Cloud-
Fuse. Comparing Figure 4a with 3a, and Figure 4b with 3b,
we can clearly see the benefits of block-level access protocol
over the file-level and object-level protocols. iSCSI benefits
from its internal bundling mechanisms, which improve the
throughput by several orders of magnitude for small files.

N
9

S
S

®

T =
S/

./ /{
,
;

Throughput(MiB/s)
ey
Throughput(MiB/s)

7

4K 16K 64K 256K 1M 4M 16M 64M 4K 16K 64K 256K IM 4M 16M 64M
File size File size

(a) Write — ideal network. (b) Read — ideal network.

12 T T 12
i
- - iSCSI-Syne

10
.
—— CloudFuse-Defaul] !

6
4 iy 4 __/, _____ s
Py / . .

i H H 0 H H
4K 16K 64K 256K 1M 4M 16M 64M 4K 16K 64K 256K IM 4M 16M 64M
ile size ile size

-

SRR -

p

Wi

Throughput(MiB/s)
N
Throughput(MiB/s)

(c) Write — added 50 ms delay.

25 T

(d) Read — added 50 ms delay.

4 .

—
ot

~
w

n

Throughput(MiB/s)

54
7

Throughput(MiB/s)
o

rt H H H H 0 ' H
4K 16K 64K 256K 1M 4M 16M 64M 4K 16K 64K 256K IM 4M 16M 64M
File size File size

(e) Write — realistic network. (f) Read — realistic network.

Figure 4: Performance of single-threaded batch operations.
Note the different scales for (e) and (f).

When network delay is introduced (cf. Figure 4c and 4d),
we can see that iISCSI is impacted severely; while CloudFuse
is impacted the least. Thanks to the bundling effect, iSCSI
Write operations (cf. Figure 4c) still outperform the other
two systems in the face of performance deterioration; while
for Read operations, CloudFuse starts to lead the three sys-
tems (from the worst in Figure 4b to the best in Figure 4d).

When packet loss and network jitter are introduced be-
yond the 50 ms delay, as shown in Figure 4e and 4f, the
overall trend is that the three systems are all impacted
significantly. This is because packet loss degrades TCP
throughput remarkably when network delay exists. From our
experiments, packet loss is the primary culprit for through-
put degradation, while network jitter incurs performance
variation instead. Comparing the three systems, we can see
that except for small files Write operations where iSCSI
continues to keep ahead, CloudFuse performs the best for
the other cases, including Write operations for large files
and Read operations for all files.

The peculiar leveling of iSCSI Sync Read performance
in Figure 4d and 4f (when file sizes are larger than 256 KiB)
is due to the way file requests are issued, as discussed in
Section IV-B. One interesting observation from Figure 4a,
4c, and 4e is that iSCSI Direct Write operations greatly
outperform Sync Write operations. This is primarily
from the amplification effect, which will be analyzed in
Section IV-F. Another cause is that Direct I/O operations
bypass cache facilities; thus, it avoids the costly memory

copy operations and improves performance accordingly.
Summary: for single-threaded batch operations, iSCSI
delivers the best performance for small file access under
all network conditions; throughput of iSCSI and NFS is
impacted by network delay and packet loss significantly,
while CloudFuse is impacted the least; in realistic network,
CloudFuse outperforms the other two systems for most
scenarios except small file Write operations.
E. Batch Operation — Multithreaded

In this section, we investigate batch operations with mul-
tiple threads. File sets are accessed sequentially by multiple
threads concurrently. This is to imitate applications that
employ multiple threads (or processes) to service queued
I/O requests. The number of threads ranges from 1 to 64,
increasing by a power of 2. Note that after introducing the
number of threads as the new dimension, we only select
two representative file sizes for focus study, i.e., 4KiB,
and 16 MiB. 4KiB represents small files, while 16 MiB
represents large files.

Throughput(MiB/s)
Throughput(MiB/s)

2 4 8 16 3
Number of threads Number of threads

(a) Write — ideal network.

—=— iSCSI-Direct

- - iSCSI-Sync
—— CloudFuse-Default

—o— NFS-Direct
NES-Sync L5 / S

Throughput(MiB/s)
°©
by -

— :.4»/'

32 64 2 32 64

4 8 16
Number of threads

(d) Read — added 50 ms delay.

2 2
/"\»
R

-

32 64

Throughput(MiB/s)
- &

o
@

0.5) /_,_—

— 3 M

_—

4 16
Number of threads

32 64

4 16
Number of threads

(e) Write — realistic network. (f) Read — realistic network.

Figure 5: Performance of multithreaded batch access of
4 KiB files. Note the different scales for (a) and (b).

1) Small Files — 4 KiB: Performance of the three systems
accessing 4 KiB files is illustrated in Figure 5. Note that
the close to zero results for NFS and CloudFuse in certain
subfigures are dwarfed by the relatively high readings from
iSCSIL. A general trend is that the throughput increases along
with the number of threads, which is especially true for
iSCSI and CloudFuse. iSCSI performance increases because
access requests from different threads are merged to form
larger SCSI accesses. CloudFuse performance grows up
to 32 threads and decreases slightly at 64 threads. We

conjecture the slight decrease is because of the overhead
from coordinating multi-tasking and maintenance of multiple
TCP connections. For NFS, we find that its throughput
increases till 2 or 4 threads; after that, it remains at a stable
value, which is clearly shown in Figure 5b.> This is likely
from limitations of the NFS client, because the number of
nfsd threads on the server is set to 32 in our setup.

Comparing the three systems, a similar trend to that
in Figure 4 (for small files) is observed. For Write op-
erations, iSCSI demonstrates dominating advantage over
NFS and CloudFuse, because of its intrinsic block-level
access schemes. The advantage is especially dominant for
the Direct access form (cf. Figure 5a). Despite the large
performance degradation from network delay and loss, its
head start advantage makes it lead the three systems in
realistic network still (cf. Figure 5e).

For Read operations, under ideal network condition,
iSCSI still dominates, while NFS is twice as fast as Cloud-
Fuse (cf. Figure 5b). We find that the weak performance of
CloudFuse under ideal network is because of the internal
cooperation among the Swift servers. In Swift, multiple
server processes are involved for each incoming request.
The cooperation among the server components is around
30ms for each request, which is not trivial under ideal
network conditions. When 50ms delay is introduced, the
network becomes the dominating factor and CloudFuse starts
to outperform NFS and iSCSI, as shown in Figure 5d. The
outperformance of CloudFuse is even clearer in realistic
network, as shown in Figure 5f. By monitoring the network
traffic and examining the implementations, we find that
both NFS and iSCSI multiplex the same TCP connection
for multiple threads, while CloudFuse uses multiple TCP
connections instead. Figure 5d and 5f clearly demonstrate
the strengths of multiple against single TCP connection
in adverse network, which will be revealed more in the
subsequent section.

2) Large Files — 16 MiB: Figure 6 shows the performance
of the three systems accessing files of size 16 MiB. In
theory, similar trends from small files are expected for
big files, because the protocols remain the same regardless
of file sizes. From Figure 6, however, slightly different
trends are observed compared with Figure 5. Under ideal
network condition (cf. Figure 6a and 6b), we can see that
the performance of the three systems is comparable, which
is significantly apart from that in Figure 5a and 5b. This
is because when the file size is large, i.e., 16 MiB in our
experiment, network bandwidth becomes the bottleneck and
constrains the capability of good-performing systems, such
as iSCSI. Consequently, the three systems are on par with
each other under ideal network.

When network delay is introduced, compared with small

SThis holds true for all the subfigures in Figure 5, although because of
the presentation, it is not clearly visible in the other subfigures.

files, its impact is much smaller for large files. This can be
explained by the fact that large files can still roughly saturate
the link given the network delay (i.e., 50 ms). When packet
loss is further added, we can see that the throughput of NFS
and iSCSI is significantly degraded (cf. Figure 6e and 6f).
On the contrary, CloudFuse still saturates the link capacity
when more than 8 threads are used. Thus, its throughput
dwarfs NFS and iSCSI clearly. As stated before, CloudFuse
starts a new TCP connection for each thread. If one of the
TCP connections is backed off due to packet loss, the other
TCP connections can compensate for this. As a whole, the
multiple TCP connections can make full use of the link
capacity with great efficiency.

An interesting phenomenon from Figure 6d is the through-
put of iSCSI Sync Read operations levels despite the
number of threads. This peculiarity is due to block I/O
schedulers, which is out of scope of this paper.

S

—— NFS-Direct
NFS-Sync

—=— iSCSI-Direct

- == iSCSI-Sync

—— CloudFuse—Default

7‘

Throughput(MiB/s)
Throughput(MiB/s)

N » ©

-

32 64

1 2 4 8 16
Number of threads 1 2

4 8 16 32 64
Number of threads

(a) Write — ideal network. b) Read — ideal network.

2//”_—’_'

o

|

1

> z1
»"sz = 2
=

2

Throughput(MiB/s)

o N & o

2 32 64 1 2 32 64

4 8 16 4 8 16
Number of threads Number of threads

o
g

) Write — added 50 ms delay.
/b\.,/-b

4 8 16
Number of threads

(d) Read — added 50 ms delay.

S5

Throughput(MiB/s)
-
Throughput(MiB/s)

=
=)

2 32 64 1 2

4 8 16
Number of threads

(e) Write — realistic network. (f) Read — realistic network.

Figure 6: Performance of multithreaded access — 16 MiB.

3) Summary: From the analysis of small and large files
with multithreaded operations, we make the following obser-
vations: (1) the performance of iSCSI for small files demon-
strates the great benefit of the intrinsic block-level access
approach, which also shows the improvement headroom for
NFS and CloudFuse by leveraging bundling schemes for
small files; (2) the performance of CloudFuse for large files
under realistic network illustrates the advantage of multiple
TCP connections against single TCP connection design,
which also indicates the optimization potential for NFS and
iSCSI under adverse network conditions by using multiple
TCP connections.

E. Amplification Effect

From previous sections, we see that for iSCSI Write op-
erations, there exists a throughput gap between the Direct
and Sync access forms. In addition, we also notice an
interesting phenomenon during our experiments, which is
the high volume of transmission incurred by iSCSI Sync
Write operations when the file is small. In certain cases,
it saturates the 12.5MiB/s link while delivering very low
throughput (around 1 MiB/s). This is due to the amplification
effect caused by ext4 metadata and journaling. In this
section, we analyze this amplification effect. To make a fair
comparison among the three storage systems, we introduce a
new metric, i.e., amplification ratio, to describe the effect.
For single file access, the amplification ratio is calculated by
dividing the total transmission volume (in both directions)
by the file size; while for batch operations, it is computed by
dividing the sum of transmission rates (in both directions)
by the achieved throughput. Thus, the amplification ratio
has an inverse correlation with storage efficiency. The
amplification ratios for the three systems in ideal network
are illustrated in Figure 7.

100 B 40

60 —o— NFS-Direct \
40 NES-Sync
20 —s— iSCSI-Direct

Amplification ratio

4 \
N A \L\ i N :
4K 16K 64K 256K IM 4M 16M 64M 4K 16K 64K 256K IM 4M 16M 64M

File size File size

(a) Single file access — Write. (b) Single file access — Read.

10— 1.7

8 8 i &
2 6 . .
g y 215
4 -
X £
D S 13b o\

! 4K 16K 64K 256K IM 4M 16M 64M
File size

Amplificati
N

4K 16K 64K 256K 1M 4M 16M 64M
File size

(c) Single-threaded — Write. (d) Single-threaded — Read.

1 1.8
> \

S —
1.6’

S

Amplification ratio

[S1 ,

————

1 2 32 64 1 2 32 64

4 8 16 4 8 16
Number of threads Number of threads

(e) Multithreaded access for (f) Multithreaded access for
4 KiB files — Write. 4 KiB files — Read.

Figure 7: Amplification effect of file access under ideal
network. The two curves from iSCSI overlap in almost all
Read plots. Note the different scales in the figure.

From the figure, we can see that the general trend for
NFS is that the amplification ratio slightly decreases from
single file (cf. Figure 7a and 7b) to single thread access (cf.
Figure 7c and 7d), while it remains stable when moving
from single-threaded to multithreaded access (cf. Figure 7e
and 7f). For CloudFuse, we do not find any perceivable

difference for the three cases (single file — single-threaded
— multithreaded access). This is because of the intrinsic
behaviour of the protocols. As stated in Section II, NFS
uses RPC while CloudFuse utilizes HTTP protocol for
communications. Despite their different implementation, in
essence, they share much similarity with each other — for
each operation, at least one request/response pair is needed,
and no bundling is used for either of them. Thus, the storage
efficiency does not improve with the number of files trans-
mitted concurrently (i.e., multithreaded), but the transmis-
sion throughput does increase (cf. Figure 5). Through packet
capturing analysis, we find that NFS overhead consists of
RPC protocol messages and is approximately several KiBs
in size, while CloudFuse requires only a few HTTP requests
and thus incurs the lowest overhead.

Interestingly, iISCSI demonstrates completely different be-
haviours, because of its fundamentally different structure. Its
amplification ratio decreases significantly from single file
(cf. Figure 7a and 7b) to single-threaded batch access (cf.
Figure 7c and 7d), which applies to both Write and Read
operations. Recall from Figure 3 and 4 that the throughput of
iSCSI also increases remarkably when moving from single
file to single-threaded operations. These two phenomena
together clearly illustrate the great intrinsic benefits from the
block-level access scheme, as both throughput and storage
efficiency (the opposite of amplification ratio) increase side
by side. When moving from single-threaded to multithreaded
access, on the other hand, only the amplification ratio for
Sync Write operations decreases (cf. the pink dashed line
in Figure 7e), while the other operations remain relatively
constant. Recall from Figure 5a that the throughput of Sync
Write operations increases quickly along with the number
of threads. We conjecture the constant amplification ratio
for Direct Write, Direct Read, and Sync Read
multithreaded operations is because one thread is sufficient
to stuff one SCSI command with file operations. While for
Sync Write operation, besides the file itself, it also needs
to transmit the required metadata and journal at the same
time. Thus, one thread is not enough to stuff the SCSI
command; adding more threads in turn increases both the
throughput and storage efficiency.

The following are quantitative results for iSCSI that we
observe through packet capturing analysis. For single file
access, we find that for iSCSI Read operations, in addition
to the file itself, there are always additional 40+ 92 KiBs
data read from the iSCSI target. After the file is read, another
8-+4+4 =16 KiBs data are written back. These are the Ext4
metadata. For iSCSI Write operations, besides the file, we
find that there are 4 %37 = 148 KiBs data read from the
target and 28 4+ 7 x4 = 56 KiBs written back. These are the
associated metadata and journal entries for the files written
to the target. We have the following equations for iSCSI
amplification ratio:

148+ 204+

N

A’ (s) and A"(s) (1
for read and write, respectively, where s is the size of the
file in KiBs. Note that these empirical values are a result
of various factors. It is anticipated that different system
configurations, and file system, may affect the values.

For batch file access (including single-threaded and multi-
threaded), we observe that the significant decrease of ampli-
fication ratio is due to the sharing of metadata (e.g., inode
blocks, and dentry) of files. For iSCSI Direct Write
operations, the extreme low overhead is because its metadata
and journal are written in large batches, which is around
2MiB per 10,000files. On the contrary, for iSCSI Sync
Write operations, each I/O data block incurs updates from
the corresponding journal (usually with fixed size, e.g.,
32KiB) and metadata (e.g., 4 KiB). Thus, we can use the
following equation to estimate the amplification ratio for
single-threaded Sync Write operations:

X journal + metadata + s
AY(s) = : @

where s is the file size in KiBs. For example, if the file size is
4 KiB, then the amplification ratio is (32+4+4)/4 =10 (cf.
Figure 7c). For multithreaded access, we find the following
equation provides a close estimation:

w journal + metadata+n- s
An(s) =1 ()

n-s

where n is the number of threads, and s is the file size
in KiBs. Note that the equations demonstrated above only
account for the overhead contained in SCSI Command
Descriptor Blocks (CDBs). When overhead from network
protocols (e.g., TCP) are taken into account, the numbers
are slightly larger, as shown in Figure 7.

Summary: The write-back and caching effect with iSCSI
makes it excel in storage efficiency for most batch opera-
tions, which is comparable to that of CloudFuse, while NFS
is slightly worse than them. For Sync Write operations,
iSCSI suffers from its high amplification effect especially
for small files; on the other hand, Sync Write operations
can guarantee their high consistency despite adverse network
conditions. Thus, the tradeoff between storage efficiency and
consistency needs to be considered carefully.

V. RELATED WORK

IP-based storage systems have been introduced for a long
time. Nevertheless, most of the existing studies have focused
on analysing a single family of storage system, rather than
comparing multiple ones. Aiken et al. [9] analysed the per-
formance of iSCSI protocol under different configurations.
Similarly, Xinidis et al. [10] evaluated the performance of
commodity iSCSI storage systems in comparison to direct-
attached storage. Zhang et al. [11] analysed the performance
of an open-source iSCSI solution over high-latency network
and proposed schemes to improve it.

On the other hand, as cloud storage systems start to
gain popularity, several studies has been conducted. Drago
et al. [8] presented a characterisation study of Dropbox
by utilising data collected from four vantage points in
Europe. Following the same line of study, they extended
their methodology to cover another four cloud storage
systems [12]. In contrast, Naldi et al. [13] compared the
pricing plans of the major cloud providers. Zhang et al. [14]
proposed integrating local file system with cloud storage to
improve resilience from data corruption and inconsistency.
Carpen-Amarie et al. [15] evaluated the feasibility of cloud
storage on high performance computing workloads.

While the aforementioned studies presented good insights
into understanding different aspects of storage systems, they
are orthogonal to our study to a great extent. The most
relevant work is from [1], where Radkov et al. provided
a comparative study on NFS and iSCSI. Nevertheless, there
exist two key differences that clearly differentiate our work
from [1]: (1) Radkov et al. compared NFS and iSCSI,
whereas our work provides a systematic study on NFS,
iSCSI, and the emerging cloud storage; (2) Radkov et al.
mainly focused on metadata, and provided only simple
analysis on single-threaded file operations; while our work
provides comprehensive analysis covering various aspects of
the three storage systems, ranging from single file, single-
threaded, and multi-threaded access; furthermore, different
access forms, and varied file sizes are also compared.

VI. CONCLUSIONS AND FUTURE WORK

The emerging cloud storage gains significant popularity in
recent years. Certain enterprises have considered replacing
conventional network storage systems with cloud storage
solutions. Nevertheless, the lack of a thorough study among
these systems makes it difficult to make an all-around deci-
sion. In this paper, we presented a systematic study on the
three drastically different storage systems. Through a com-
prehensive set of experiments, we made several interesting
observations: (1) iSCSI excels in typical LAN environment,
whereas NFS and Swift are more suitable for complex
networks such as wireless networks and WAN; furthermore,
we find out that Swift is a viable replacement for NFS in
all network scenarios. (2) Under realistic network condition,
performance of iSCSI declines considerably, whereas Swift
demonstrates high resilience. The key behind this is the
capability to utilize multiple TCP connections.

In the future, we will evaluate the storage systems in
Gigabit networks. Other metrics, such as performance per
dollar, reliability, and elasticity, will be used to evaluate the
viability of replacing NAS or SAN with cloud storage.

ACKNOWLEDGMENT

This work was supported by the Academy of Finland,
with grant number 278207; and was supported in part by

Louisiana Board of Regents under grants LEQSF(2014-17)-
RD-A-01 and LEQSF-EPS(2015)-PFUND-391, U.S. Na-
tional Science Foundation (NSF) under grant CCF-1453705,
and generous support from Intel Corporation.

REFERENCES

[1] P. Radkov, L. Yin, P. Goyal, P. Sarkar, and P. Shenoy, “A
performance comparison of NFS and iSCSI for IP-networked
storage.” in USENIX FAST ’04, pp. 101-114.

[2] A. Systems, “Avere public FlashCloud storage
challenges traditional NAS,” http://www.digitalmedia-
world.com/Storage/avere-flashcloud-public-cloud-storage-
challenges-traditional-nas.html/, 2014.

[3] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck, “Network file system
(NFS) version 4 protocol,” in IETF RFC 3530, 2003.

[4] M. Chadalapaka, J. Satran, K. Meth, and D. L. Black,
“Internet small computer systems interface (iISCSI),” in IETF
RFC 3720, 2004.

[5] R. Thurlow, “RPC: Remote procedure call protocol specifi-
cation version 2,” in IETF RFC 5531, 2009.

[6] M. Mesnier, F. Chen, T. Luo, and J. B. Akers, “Differentiated
storage services,” in ACM SOSP 11, pp. 57-70.

[7] Z. Ou, J. Dong, S. Dong, J. Wu, A. Yli-Jadski, H. Pan,
R. Wang, and A. W. Min, “Utilize signal traces from others?
A crowdsourcing perspective of energy saving in cellular data
communication,” [EEE Transactions on Mobile Computing,
vol. 14, no. 1, pp. 194 — 207, 2015.

[8] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre,
and A. Pras, “Inside Dropbox: Understanding personal cloud
storage services,” in ACM IMC 12, pp. 481-494.

[9] S. Aiken, D. Grunwald, A. R. Pleszkun, and J. Willeke, “A
performance analysis of the iSCSI protocol,” in IEEE/NASA
MSST °03), pp. 123-134.

[10] D. Xinidis, A. Bilas, and M. D. Flouris, “Performance
evaluation of commodity iSCSI-based storage systems.” in
IEEE/NASA MSST °05, pp. 261-269.

[11] Y. Zhang and M. H. MacGregor, “Tuning Open-iSCSI for
operation over WAN links,” in The Ninth Annual Communi-
cation Networks and Services Research Conference (CNSR
’11), pp. 85-92.

[12] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras,
“Benchmarking personal cloud storage,” in ACM IMC 13,
pp. 205-212.

[13] M. Naldi and L. Mastroeni, “Cloud storage pricing: A com-
parison of current practices,” in HotTopiCS 13, pp. 27-34.

[14] Y. Zhang, C. Dragga, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “ViewBox: Integrating local file systems
with cloud storage services,” in FAST ’14, pp. 119-132.

[15] A. Carpen-Amarie, K. Keahey, J. Bresnahan, and G. Antoniu,
“Evaluating cloud storage services for tightly-coupled appli-
cations,” in Euro-Par ’12 Workshops, pp. 36—46.

