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Key-value caching is crucial to today’s low-latency Internet services. Conventional key-value cache systems,

such as Memcached, heavily rely on expensive DRAM memory. To lower Total Cost of Ownership, the indus-

try recently is moving toward more cost-efficient flash-based solutions, such as Facebook’s McDipper [14]

and Twitter’s Fatcache [56]. These cache systems typically take commercial SSDs and adopt a Memcached-

like scheme to store and manage key-value cache data in flash. Such a practice, though simple, is inefficient

due to the huge semantic gap between the key-value cache manager and the underlying flash devices.

In this article, we advocate to reconsider the cache system design and directly open device-level details

of the underlying flash storage for key-value caching. We propose an enhanced flash-aware key-value cache

manager, which consists of a novel unified address mapping module, an integrated garbage collection policy,

a dynamic over-provisioning space management, and a customized wear-leveling policy, to directly drive

the flash management. A thin intermediate library layer provides a slab-based abstraction of low-level flash

memory space and an API interface for directly and easily operating flash devices. A special flash memory

SSD hardware that exposes flash physical details is adopted to store key-value items. This co-design approach

bridges the semantic gap and well connects the two layers together, which allows us to leverage both the

domain knowledge of key-value caches and the unique device properties. In this way, we can maximize the

efficiency of key-value caching on flash devices while minimizing its weakness. We implemented a prototype,

called DIDACache, based on the Open-Channel SSD platform. Our experiments on real hardware show that

we can significantly increase the throughput by 35.5%, reduce the latency by 23.6%, and remove unnecessary

erase operations by 28%.
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1 INTRODUCTION

High-speed key-value caches, such as Memcached [38] and Redis [45], are the “first line of defense”
in today’s low-latency Internet services. By caching the working set in memory, key-value cache
systems can effectively remove time-consuming queries to the backend data store (e.g., MySQL
or LevelDB). Though effective, the in-memory key-value caches heavily rely on large amounts of
expensive and power-hungry DRAM for high cache hit ratio [21]. As the workload size rapidly
grows, an increasing concern with such memory-based cache systems is their cost and scalabil-
ity [2]. A possible alternative is to directly replace DRAM with byte-addressable non-volatile mem-
ory (NVM), such as PCM [27, 31]; however, these persistent memory devices are not yet available
for large-scale deployment in the commercial environment. Recently, a more cost-efficient alter-
native, flash-based key-value caching, has raised high interest in the industry [14, 56].

NAND flash memory provides a much larger capacity and lower cost than DRAM, which en-
ables a low Total Cost of Ownership (TCO) for a large-scale deployment of key-value caches.
Facebook, for example, deploys a Memcached-compatible key-value cache system based on flash
memory, called McDipper [14]. It is reported that McDipper allows Facebook to reduce the num-
ber of deployed servers by as much as 90% while still delivering more than 90% “get responses”
with sub-millisecond latencies [29]. Twitter also has a similar key-value cache system, called Fat-
cache [56].

Typically, these flash-based key-value cache systems directly use commercial flash SSDs and
adopt a Memcached-like scheme to manage key-value cache data in flash. For example, key-values
are organized into slabs of different size classes, and an in-memory hash table is used to maintain
the key-to-value mapping. Such a design is simple and allows a quick deployment. However, it
disregards an important fact—the key-value cache systems and the underlying flash devices both
have very unique properties. Figure 1 shows a typical flash-based key-value cache architecture. The
key-value cache manager that runs at the application level serves incoming requests and man-
ages the cache space for allocation and replacement. The flash SSD at the device level manages
flash chips and hides the unique characteristics of flash memory from applications. Simply treat-
ing flash SSDs as a faster storage and the key-value cache as a regular application not only fails
to exploit various optimization opportunities but also raises several critical concerns: Redundant

mapping, an application-level key-value-to-cache mapping and a device-level logical-to-physical
flash space mapping; Double garbage collection, an application-level garbage collection process at
the key-value item granularity to reclaim cache space and a device-level garbage collection pro-
cess at the block granularity to reclaim flash space; and Over-overprovisioning, an application-level
cache space reservation policy and a device-level over-provisioning space reservation. All these
issues cause enormous inefficiencies in practice, which have motivated us to reconsider the soft-
ware/hardware structure of the current flash-based key-value cache systems.

In this article, we will discuss the above-mentioned three key issues (Section 3) caused by the
huge semantic gap between the key-value caches and the underlying flash devices, and we will
further present a cohesive cross-layer design to fundamentally address these issues. Through our
studies, we advocate to open the underlying details of flash SSDs for key-value cache systems. Such
a co-design effort not only enables us to remove the unnecessary intermediate layers between
the cache manager and the storage devices but also allows us to leverage the precious domain
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Fig. 1. Architecture of flash-based key-value cache.

knowledge of key-value cache systems, such as the unique access patterns and mapping structures,
to effectively exploit the great potential of flash storage while avoiding its weakness.

By reconsidering the division between software and hardware, a variety of new optimization
opportunities can be explored: (1) A single, unified mapping structure can directly map the “keys”
to physical flash pages storing the “values,” which completely removes the redundant mapping
table and saves a large amount of on-device memory; (2) An integrated Garbage Collection (GC)
procedure, which is directly driven by the cache system, can optimize the decision of when and
how to recycle semantically invalid storage space at a fine granularity, which removes the high
overhead caused by the unnecessary and uncoordinated GCs at both layers; (3) An on-line scheme
can determine an optimal size of Over-Provisioning Space (OPS) and dynamically adapt to the
workload characteristics, which will maximize the usable flash space and greatly increase the cost
efficiency of using expensive flash devices; (4) A wear-leveling policy that cooperates with GC to
evenly wear out underlying flash blocks.

We implement a fully functional prototype, called DIDACache, based on a PCI-E Open-Channel
SSD hardware, and provide an performance analysis for both the conventional key-value cache
system and our proposed DIDACache. A thin intermediate library layer, libssd, is created to
provide a programming interface to facilitate applications to access low-level device information
and directly operate the underlying flash device. Using the library layer, we developed a flash-
aware key-value cache system based on Twitter’s Fatcache [56], and we carried out a series of
experiments to demonstrate the effectiveness of our new design scheme. Our experiments show
that this approach can increase the throughput by 35.5%, reduce the latency by 23.6%, and remove
erase operations by 28%.

The rest of article is organized as follows. Sections 2 and 3 give background and motivation.
Section 4 describes the design and implementation. Experimental results are presented in Section 5.
Section 7 gives the related work. The final section concludes this article.

2 BACKGROUND

This section briefly introduces three key technologies, flash memory, SSDs, and the current flash-
based key-value cache systems.

• Key-value Cache. Key-value caching is the backbone of many systems in modern web-server
architecture. A cache can be deployed anywhere in the infrastructure where there is congestion
with data delivery. The two main cache models are look-aside cache and inline cache. The main
difference of these two is that for inline cache, applications write new data or update the existing
data in cache, which synchronously (write through) or asynchronously (write behind) write data to
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Fig. 2. A look-aside key-value caching example.

Fig. 3. Illustration of SSD architecture [3].

the backend data store. However, for look-aside cache, applications write new data to the backend
data store, and then update the data in cache, if existing. In practice, key-value cache systems
typically adopt the look-aside cache model, such as Memcached [38] and McDipper [14].

Figure 2 illustrates the basic workflow of a look-aside style key-value cache. In the example, the
browser is the client, it sends requests to the application server, and the application server stores
or accesses data from the key-value cache or the backend database. For writing a new data item,
the application server directly stores the data to the backend database. For retrieving a data item,
the application server first checks the key-value cache, if it is a cache hit, the data is returned from
the cache without requesting the database; otherwise, the application server obtains data from the
backend database and then writes it to the cache for future requests. For update operations, the
application server updates existing data in both the key-value cache and the backend database. In
this model, the data consistency is maintained by the application server.

• Flash Memory. NAND flash memory is a type of EEPROM device. A flash memory chip consists
of two or more dies and each die has multiple planes. Each plane contains thousands of blocks (a.k.a.
erase blocks). A block is further divided into hundreds of pages. Flash memory supports three main
operations, namely read, write, and erase. Reads and writes are normally performed in units of
pages. A read is typically fast (e.g., 50µs), while a write is relatively slow (e.g., 600µs). A constraint
is that pages in a block must be written sequentially, and pages cannot be overwritten in place,
meaning that once a page is programmed (written), it cannot be written again until the entire block
is erased. An erase is typically slow (e.g., 5ms) and must be done in block granularity.

• Flash SSDs. A typical SSD includes four major components (Figure 3): A host interface logic

connects the device to the host via an interface connection (e.g., SATA or PCI-E). An SSD controller

is responsible for managing flash memory space, handling I/O requests, and issuing commands
to flash memory chips via a flash controller. A dedicated buffer holds data or metadata, such
as the mapping table. Most SSDs have multiple channels to connect the controller with flash
memory chips, providing internal parallelism [9]. Multiple chips may share one channel. Actual
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implementations may vary in commercial products. More details about the SSD architecture can
be found in prior work [3, 12]. A Flash Translation Layer (FTL) is implemented in SSD controller
firmware to manage flash memory and hide all the complexities behind a simple Logical Block
Address (LBA) interface, which makes an SSD similar to to a disk drive. An FTL has three major
roles: (1) Logical block mapping. An in-memory mapping table is maintained in the on-device
buffer to map logical block addresses to physical flash pages dynamically. (2) Garbage collection.
Due to the erase-before-write constraint, upon a write, the corresponding logical page is written
to a new location, and the FTL simply marks the old page invalid. A GC procedure recycles
obsolete pages later, which is similar to a Log-Structured File System [46]. (3) Wear Leveling.
Since flash cells could wear out after a certain number of Program/Erase cycles, the FTL shuffles
read-intensive blocks with write-intensive blocks to even out writes over flash memory. A
previous work [15] provides a detailed survey of FTL algorithms.

• Flash-based key-value caches. In-memory key-value cache systems, such as Memcached,
adopt a slab-based allocation scheme. Due to its efficiency, flash-based key-value cache systems,
such as Fatcache, inherit a similar structure. Here we use Fatcache as an example; based on open
documents [14], McDipper has a similar design. In Fatcache, the SSD space is first segmented
into slabs. Each allocated slab is divided into slots (a.k.a. chunks) of equal size. Each slot stores a
“value” item. According to the slot size, the slabs are categorized into different classes, from Class
1 to Class n, where the slot size increases exponentially. A newly incoming item is accepted into
a class whose slot size is the best fit of the item size (i.e., the smallest slot that can accommodate
the item). For quick access, a hash mapping table is maintained in memory to map the keys to
the slabs containing the values. Querying a key-value pair (GET) is accomplished by searching the
in-memory hash table and loading the corresponding slab block from flash into memory. Updating
a key-value pair (SET) is realized by writing the updated value into a new location and updating
the key-to-slab mapping in the hash table. Deleting a key-value pair (DELETE) simply removes the
mapping from the hash table. The deleted or obsolete value items are left for GC to reclaim later.

Despite the structural similarity to Memcached, flash-based key-value cache systems have sev-
eral distinctions from their memory-based counterparts. First, the I/O granularity is much larger.
For example, Memcached can update the value items individually. In contrast, Fatcache has to
maintain an in-memory slab to buffer small items in memory first and then flush to storage in
bulk later, which causes a unique “large-I/O-only” pattern on the underlying flash SSDs. Second,
unlike Memcached, which is byte addressable, flash-based key-value caches cannot update key-
value items in place. In Fatcache, all key-value updates are written to new locations. Thus, a GC
procedure is needed to clean/erase slab blocks. Third, the management granularity in flash-based
key-value caches is much coarser. For example, Memcached maintains an object-level LRU list,
while Fatcache uses a simple slab-level FIFO policy to evict the oldest slab when free space is
needed.

3 MOTIVATION

As shown in Figure 1, in a flash-based key-value cache, the key-value cache manager and the flash

SSD run at the application and device levels, respectively. Both layers have complex internals,
and the interaction between the two raises three critical issues, which have motivated the work
presented in this article.

• Problem 1: Redundant mapping. Modern flash SSDs implement a complex FTL in firmware.
Although a variety of mapping schemes, such as block-level mapping [19] and page-level map-

ping [20], exist, high-end SSDs often still adopt fine-grained page-level mapping for performance
efficiency. As a result, for a 1TB SSD with a 4KB page size, a page-level mapping table could be as
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large as 1GB. Integrating such a large amount of DRAM on device not only raises production cost
but also reliability concerns [20, 65, 66]. In the meantime, at the application level, the key-value
cache system also manages another mapping structure, an in-memory hash table, which trans-
lates the keys to the corresponding slab blocks. The two mapping structures exist at two levels
simultaneously, which unnecessarily doubles the memory consumption.

A fundamental problem is that the page-level mapping is designed for general-purpose file sys-
tems, rather than key-value caching. In a typical key-value cache, the slab block size is rather large
(in Megabytes), which is typically 100–1,000× larger than the flash page size. This means that the
fine-grained page-level mapping scheme is an expensive over-kill. Moreover, a large mapping table
also incurs other overheads, such as the need for a large capacitor or battery, increased design
complexity, reliability risks, and so on. If we could directly map the hashed keys to the physical
flash pages, then we can completely remove this redundant and highly inefficient mapping for
lower cost, simpler design, and improved performance.

• Problem 2: Double garbage collection. GC is the main performance bottleneck of flash
SSDs [3, 8]. In flash memory, the smallest read/write unit is a page (e.g., 4KB). A page cannot be
overwritten in place until the entire erase block (e.g., 256 pages) is erased. Thus, upon a write, the
FTL marks the obsolete page “invalid” and writes the data to another physical location. At a later
time, a GC procedure is scheduled to recycle the invalidated space for maintaining a pool of clean
erase blocks. Since valid pages in the to-be-cleaned erase block must be first copied out, cleaning
an erase block often takes hundreds of milliseconds to complete. A key-value cache system has a
similar GC procedure to recycle the slab space occupied by obsolete key-value pairs.

Running at different levels (application vs. device), these two GC processes not only are re-
dundant but also could interfere with one another. For example, from the FTL’s perspective, it is
unaware of the semantic meaning of page content. Even if no key-value pair is valid (i.e., no key
maps to any value item), the entire page is still considered as “valid” at the device level. During
the FTL-level GC, this page has to be moved unnecessarily. Moreover, since the FTL-level GC has
to assume all valid pages contain useful content, it cannot selectively recycle or even aggressively
invalidate certain pages that contain semantically “unimportant” (e.g., LRU) key-value pairs. For
example, even if a page contains only one valid key-value pair, the entire page still has to be con-
sidered valid and cannot be erased, although it is clearly of relatively low value. Note that TRIM
command [54] cannot address this issue as well. If we merge the two-level GCs and control the GC
process based on semantic knowledge of the key-value caches, then we could completely remove
all the above-mentioned inefficient operations and create new optimization opportunities.

• Problem 3: Over-provisioning. To minimize the performance impact of GC on foreground
I/Os, the FTL typically reserves a portion of flash memory, called Over-Provisioned Space (OPS),
to maintain a pool of clean blocks ready for use. High-end SSDs often reserve 20–30% or even
larger amount of flash space as OPS. From the user’s perspective, the OPS space is nothing but an
expensive unusable space. We should note that the factory setting for OPS is mostly based on a con-
servative estimation for worst-case scenarios, where the SSD needs to handle extremely intensive
write traffic. In key-value cache systems, in contrast, the workloads are often read-intensive [5].
Reserving such a large portion of flash space is a significant waste of expensive resource. In the
meantime, key-value cache systems possess rich knowledge about the I/O patterns and have the
capability of accurately estimating the incoming write intensity. Based on such estimation, a suit-
able amount of OPS could be determined during runtime for maximizing the usable flash space
for effective caching. Considering the importance of cache size for cache hit ratio, 20–30% of extra
space could significantly improve system performance. If we could leverage the domain knowl-
edge of the key-value cache systems to determine the OPS management at the device level, then
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Fig. 4. The architecture overview of DIDACache.

we would be able to maximize the usable flash space for caching and greatly improve the overall
cost efficiency as well as system performance.

In essence, all the above-mentioned issues stem from a fundamental problem in the current I/O
stack design: the key-value cache manager runs at the application level and views the storage
abstraction as a sequence of sectors; the flash memory manager (i.e., the FTL) runs at the device
firmware layer and views incoming requests simply as a sequence of individual I/Os. This abstrac-
tion, unfortunately, creates a huge semantic gap between the key-value cache and the underlying
flash storage. Since the only interface connecting the two layers is a strictly defined block-based
interface, no semantic knowledge about the data could be passed over. This enforces the key-value
cache manager and the flash memory manager to work individually and prevents any collabora-
tive optimizations. This motivates us to study how to bridge this semantic gap and build a highly
optimized flash-based key-value cache system.

4 DESIGN

As an unconventional hardware/software architecture (see Figure 4), our key-value cache system is
highly optimized for flash and eliminates all unnecessary intermediate layers. Its structure includes
three layers.

• An enhanced flash-aware key-value cache manager, which is highly optimized for flash mem-
ory storage, runs at the application level, and directly drives the flash management;

• A thin intermediate library layer, which provides a slab-based abstraction of low-level flash
memory space and an API interface for directly and easily operating flash devices (e.g.,
read, write, erase);

• A specialized flash memory SSD hardware, which exposes the physical details of flash mem-
ory medium and opens low-level direct access to the flash memory medium through the
ioctl interface.

With such a holistic design, we strive to completely bypass multiple intermediate layers in the
conventional structure, such as file system, generic block I/O, scheduler, and the FTL layer in SSD.
Ultimately, we desire to let the application-level key-value cache manager leverage its domain
knowledge and directly drive the underlying flash devices to operate only necessary functions
while leaving out unnecessary ones. In this section, we will discuss each of the three layers.
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Fig. 5. Mapping slabs to flash blocks.

4.1 Application Level: Key-value Cache

Our key-value cache manager has four major components: (1) a slab management module, which
manages memory and flash space in slabs; (2) a unified direct mapping module, which records
the mapping of key-value items to their physical locations; (3) an integrated GC module, which
reclaims flash space occupied by obsolete key-values; and (4) an OPS management module, which
dynamically adjusts the OPS size.

4.1.1 Slab Management. Similar to Memcached, our key-value cache system adopts a slab-
based space management scheme—the flash space is divided into equal-sized slabs; each slab is
divided into an array of slots of equal size; each slot stores a key-value item; slabs are logically
organized into different slab classes according to the slot size.

Despite these similarities to in-memory key-value caches, caching key-value pairs in flash has
to deal with several unique properties of flash memory, such as the “out-of-place update” con-
straint. By directly controlling flash hardware, our slab management can be specifically optimized
to handle these issues as follows.

• Mapping slabs to blocks: Our key-value cache directly maps (logical) slabs to physical flash
blocks. We divide flash space into equal-sized slabs, and each slab is statically mapped to one or
several flash blocks, as shown in Figure 5. There are two possible mapping schemes: (1) Per-channel

mapping, which maps a slab to a sequence of contiguous physical flash blocks in one channel, and
(2) Cross-channel mapping, which maps a slab across multiple channels in a round-robin way.
Both have pros and cons. The former is simple and allows to directly infer the logical-to-physical
mapping, while the latter could yield a better bandwidth through channel-level parallelism.

We choose the simpler per-channel mapping for two reasons. First, key-value cache systems
typically have sufficient slab-level parallelism. Second, per-channel allows us to directly translate
“slabs” into “blocks” at the library layer with minimal calculation. For cross-channel mapping, a
big slab whose size is of several flash blocks may lead to flash space waste and make the slab to
block mapping more complicated. A small slab in cross-channel mapping may pollute several flash
blocks upon operations of invalidating slabs, which contributes to device-level GC overhead. In
fact, in our prototype, we directly map a flash slab to a physical flash block, since the block size
(8MB) is appropriate as one slab. For flash devices with a smaller block size, we can group multiple
contiguous blocks in one channel into one slab.

• Slab buffer: Unlike DRAM memory, flash does not support random in-place overwrite. As so, a
key-value item cannot be directly updated in its original place in flash. For a SET operation, the key-
value item has to be stored in a new location in flash (appended like a log), and the obsolete item
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Fig. 6. The unified direct mapping structure.

will be recycled later. To enhance performance, we maintain some in-memory slabs as buffer for
flash slabs. Upon receiving a SET operation, the key-value pair is first stored in the corresponding
in-memory slab and completion is immediately returned. When the in-memory slab is full, it is
flushed into an in-flash slab for persistent storage. (the “Flush” process shown in Figure 5).

The slab buffer brings two benefits. First, the in-memory slab works as a write-back buffer. It not
only speeds up accesses but also makes incoming requests asynchronous, which greatly improves
the throughput. Second, and more importantly, the in-memory slab merges small key-value slot
writes into large slab writes (in units of flash blocks), which completely removes the unwanted
small flash writes. Thus, from the device’s perspective, all I/Os seen at the device level are in
large-size slabs, which renders the unnecessariness of the generic GC at the FTL level. For this
reason, flash writes in our system are all large writes, in units of flash blocks. Our experiments
show that a small slab buffer is sufficient for performance.

• Channel selection and slab allocation: For load balance considerations, when an in-memory
slab is full, we first select the channel with the lowest load. The load of each channel is estimated
by counting three key flash operations (read, write, and erase). Once a channel is selected, a free
slab is allocated. For each channel, we maintain a Free Slab Queue and a Full Slab Queue to manage
clean slabs and used slabs separately. The slabs in a free slab queue are sorted in the order of their
erase counts, and we always select the slab with the lowest erase count first for wear-leveling
purposes. The slabs in a full slab queue are sorted in the Least Recently Used (LRU) order. When
running out of free slabs, the GC procedure is triggered to produce clean slabs, which we will
discuss in more details later.

With the above optimizations, a fundamental effect is, all I/Os seen at the device level are shaped
into large-size slab writes, which completely removes small page writes as well as the need for
generic GC at the FTL level.

4.1.2 Unified Direct Mapping. To address the double mapping problem, a key change is to re-
move all the intermediate mappings, and directly map the SHA-1 hash of the key to the corre-
sponding physical location (i.e., the slab ID and the offset) in the in-memory hash table.

Figure 6 shows the structure of the in-memory hash table. Each hash table entry includes three
fields: <md, sid, offset>. For a given key, md is the SHA-1 digest, sid is the ID of the slab that
stores the key-value item, and offset is the slot number of the key-value item within the slab.
Upon a request, we first calculate the hash value of the “key” to locate the bucket in the hash table,
and then use the SHA-1 digest (md) to retrieve the hash table entry, in which we can find the slab
(sid) containing the key-value pair and the corresponding slot (offset). The found slab could be
in memory (i.e., in the slab buffer) or in flash. In the former case, the value is returned in a memory
access; in the latter case, the item is read from the corresponding flash page(s).

Algorithm 4.1 shows the SET operation procedure in DIDACache with this unified mapping
structure. When a SET request of one key-value item comes, DIDACache first checks wether it
is an update operation or not. If it is an update operation, then DIDACache removes the mapping
record and updates the information associated with the operation of invalidating an obsolete
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ALGORITHM 4.1: The Key-value SET Procedure

Input: key: Key for this key-value item
1: value :Value for this key-value item
2: CHnum : Channel number in SSD
3: function bool Set(key,value)
4: if hash(key) exists then //for update operation
5: remove(hash(key));
6: Update the invalid information;
7: end if

8: Select one memory slab whose slot size best fits the KV size;
9: Insert the KV item to the slot, establish an index for hash(key);

10: if number of free memory slab < f reethr eshold then

11: slab_drain_thread(); //trigger the background slab drain process
12: end if

13: return true;
14: end function

15:

16: function void slab_drain_thread()
17: while full_memory_slab > f ullthr eshold do

18: if channel (CHnum ) does not have free disk slab then

19: CHnum ← CHnum + 1;
20: end if

21: Drain one memory slab to disk slab;
22: if number of free disk slab <Whiдh then

23: Integrated_GC_thread();
24: end if

25: end while

26: end function

key-value item (e.g., valid data ratio of its slab). Then, DIDACache allocates one slab whose slot
size best fits this key-value pair, stores this key-value item in one slot, and updates the mapping
with the slab and slot address. When there is not enough free memory slabs, the background
“drain” process will be triggered to flush memory slabs to disk slabs. Similarly, an asynchronous
integrated application-driven GC process will be called once there is not enough flash disk slabs
inside SSD. Algorithm 4.2 presents the GET operations procedure, which is much simpler. When a
GET request with one key comes, DIDACache searches the hash table, if the mapping record does
not exist, an non-exist value is returned. Otherwise, DIDACache gets the ID of the slab (“sid”)
that stores the key-value item with the mapping structure. If the slab is in memory, then the value
is returned with one memory load operation. If the slab is in disk, then DIDACache needs to read
the flash page, which contains the key-value item, and return the value.

The unified direct mapping brings two benefits. First, it removes the redundant lookup in the
intermediate mapping structures, which speeds up the query processing. Second, and more im-
portantly, it dramatically reduces the demand for a large and expensive on-device DRAM buffer.
Since the mapping tables at different levels are collapsed into one single must-have in-memory
hash table, the FTL-level mapping table becomes unnecessary and can be completely removed
from the device. This saves hundreds of Megabytes to even Gigabytes of on-device DRAM space.
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ALGORITHM 4.2: The Key-value GET Procedure

Input: key: Key for this key-value item
1: function value Get(key)
2: if hash(key) does not exist then

3: return -1; //key does not exist
4: end if

5: sid = hash(key)
6: if sid is in memory then

7: return value; //return value with one memory load
8: else

9: f lash_read (dev, sid ); //read the data from flash
10: return value;
11: end if

12: end function

We could either reduce production cost or make a better use of on-device DRAM, such as on-device
caching/buffering.

4.1.3 Garbage Collection. Garbage collection is a must-have in key-value cache systems, since
operations (e.g., SET and DELETE) can create obsolete value items in slabs, which need to be recycled
at a later time. When the system runs out of free flash slabs, we need to reclaim their space in flash.

With the semantic knowledge about the slabs, we can perform a fine-grained GC in one single
procedure, running at the application level only. There are two possible strategies for identifying
a victim slab: (1) Space-based eviction, which selects the slab containing the largest number of
obsolete values, and (2) Locality-based eviction, which selects the coldest slab for cleaning based
on the LRU order. Both policies are used depending on the runtime system condition.

• Space-based eviction: As a greedy approach, this scheme aims to maximize the freed flash
space for each eviction. To this end, we first select a channel with the lowest load to limit the
search scope, and then we search its Full Slab Queue to identify the slab that contains the least
amount of valid data. As the slot sizes of different slab classes are different, we use the number of
valid key-value items times their size to calculate the valid data ratio for a given flash slab. Once
the slab is identified, we scan the slots of the slab, copy all valid slots into the current in-memory
slab, update the hash table mapping accordingly, then erase the slab and place the cleaned slab
back in the Free Slab Queue of the channel.

• Locality-based eviction: This policy adopts an aggressive measure to achieve fast reclamation
of free slabs. Similar to space-based eviction, we first select the channel with the lowest load. We
then select the LRU slab as the victim slab to minimize the impact to hit ratio. This can be done
efficiently as the full flash slabs are maintained in their LRU order for each channel. A scheme,
called quick clean, is then applied by simply dropping the entire victim slab, including all valid
slots. It is safe to remove valid slots, since our application is a key-value cache (rather than a key-
value store)—all clients are already required to write key-values to the backend data store first, so
it is safe to aggressively drop any key-value pairs in the cache without any data loss.

Comparing these two approaches, space-based eviction needs to copy still-valid items in the
victim slab, so it takes more time to recycle a slab but retains the hit ratio. In contrast, locality-

based eviction allows to quickly clean a slab without moving data, but it aggressively erases valid
key-value items, which may reduce the cache hit ratio. To reach a balance between the hit ratio
and GC overhead, we apply these two policies dynamically during runtime—when the system is
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ALGORITHM 4.3: The Integrated Application Driven Garbage Collection Procedure

Input: Fdslab : The number of free disk slab
1: Wlow : Low watermark
2: Whiдh : High watermark
3: CHnum : Channel number in SSD

Output: Reclaim disk slabs.
4: if Timer then

5: Space-based eviction:
6: if Fdslab is less thanWhiдh and larger thanWlow ; then

7: Choose a slab with maximum invalid data from the full slab queue of channelCHnum ;
8: Scan the slab and do valid key-value pair copy;
9: Erase the slab and insert it into the free slab queue CHnum ;

10: CHnum ← CHnum + 1;
11: if CHnum equals to Total_CH ; then

12: CHnum ← 0;
13: end if

14: end if

15: if idle and Fdslab is less thanWhiдh ; then

16: goto Space-based eviction
17: end if

18: Locality-based eviction:
19: while Fdslab is less thanWlow ; do

20: Choose a victim disk slab that is recently least accessed from the
21: LRU full disk slab queue CHnum ;
22: Erase the slab and insert it into the free slab queue CHnum ;
23: CHnum ← CHnum + 1;
24: if CHnum equals to Total_CH ; then

25: CHnum ← 0;
26: end if

27: end while

28: end if

under high pressure (e.g., about to run out of free slabs), we use the fast but imprecise locality-

based eviction to quickly release free slabs for fast response; when the system pressure is low, we
use space-based eviction and try to retain all valid key-values in the cache for hit ratio.

To realize the above-mentioned dynamic selection policies, we set two watermarks, low (Wlow )
and high (Whiдh ). We will discuss how to determine the two watermarks in the next section. As
shown in Algorithm 4.3, the GC procedure checks the number of free flash slabs, Sf r ee , in the
current system periodically. If Sf r ee is between the high watermark,Whiдh , and the low watermark,
Wlow , then it means that the pool of free slabs is running low but under moderate pressure. So we
activate the less aggressive space-based eviction policy to clean slabs. This process repeats until
the number of free slabs, Sf r ee , reaches the high watermark. If Sf r ee is below the low watermark,
which means that the system is under high pressure, then the aggressive space-based eviction policy
kicks in and uses quick clean to erase the entire LRU slab and discard all items immediately. This
fast-response process repeats until the number of free slabs in the system, Sf r ee , is brought back
to Wlow . If the system is idle, then the GC procedure switches to the space-based eviction policy
and continues to clean slabs until reaching the high watermark. Figure 7 illustrates this process.
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Fig. 7. Low and high watermarks.

4.1.4 Over-Provisioning Space Management. In conventional SSDs, a large portion of flash space
is reserved as OPS, which is invisible and unusable by applications. In our architecture, applications
can access all the physical flash blocks. We aim to leverage the application’s domain knowledge
to dynamically adjust the reserved space and maximize the usable flash space for caching. In the
following, we refer to this dynamically changeable reserved space as OPS and build a model to
adjust its size during the run time.

In our system, the two watermarks, Wlow and Whiдh , drive the GC procedure. The two water-
marks effectively determine the available OPS size—Wlow is the dynamically adjusted OPS size,
and Whiдh can be viewed as the upper bound of allowable OPS. We set the difference between
the two watermarks,Whiдh andWlow , as a constant (15% of the flash space in our prototype). Ide-
ally, we desire to have the number of free slabs, Sf r ee , fluctuating in the window between the two
watermarks.

Our goal is to keep just enough flash space for over-provisioning. However, it is challenging to
appropriately position the two watermarks and make them adaptive to the workload. It is desirable
to have an automatic, self-tuning scheme to dynamically determine the two watermarks based on
runtime situation. In our prototype, we have designed two schemes, a feedback-based heuristic

model and a queuing theory based model.
Our heuristic scheme is simple and works as follows: when the low watermark is hit, which

means that the current system is under high pressure, we lift the low watermark by doublingWlow

to quickly respond to increasing writes, and the high watermark is correspondingly updated. As
a result, the system will activate the aggressive quick clean to produce more free slabs quickly.
This also effectively reserves a large OPS space for use. When the number of free slabs reaches
the high watermark, which means the current system is under light pressure, we linearly drop the
watermarks. This effectively returns free slabs back to the usable cache space (i.e., reduced OPS
size). In this way, the OPS space automatically adapts to the incoming traffic.

The second scheme is based on the well-known queuing theory, which builds slab allocation and
reclaim processes as a M/M/1 queue. As Figure 8 shows, in this system, we maintain queues for
free flash slabs and full flash slabs for each channel, separately. The slab drain process consumes
free slabs, and the GC process produces free slabs. Therefore we can view the drain process as
the consumer process, the GC process as the producer process, and the free slabs as resources.
The drain process consumes flash slabs at a rate λ, and the GC process generates free flash slabs
at a rate μ. A prior study [5] shows that in real applications, the incoming of key-value pairs can
be seen as a Markov process, so the drain process is also a Markov process. For the GC process,
when Sf r ee is less thanWlow , the locality-based eviction policy is adopted. The time consumed for
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Fig. 8. Throughput for key-value items of size 256 bytes with different SET/Get ratios.

reclaiming one slab is equal to the flash erase time plus the schedule time. The flash block erase
time is a constant, and the schedule time can be viewed as a random number. Thus the locality-
based GC process is also a Markov process with a service rate μ. Based on the analysis, the process
can be modeled as a M/M/1 queue with arrival rate λ, service rate μ, and one server.

According to Little’s law, the expected number of slabs waiting for service is λ/(μ − λ). If we
reserve at least this number of free slabs before the locality-based GC process is activated, then
we can always eliminate the synchronous waiting time. So, for the system performance benefit,
we set

Wlow = λ/(μ − λ). (1)

In the above equation, λ is the slab consumption rate of the drain process, and μ is the slab reclaim
rate of GC, which equals 1/(tevict + tother ), where tevict is the block erase time, and tother is other
system time needed for GC.

In Equation (2), the arrival rate is decided by the incoming rate of key-value pairs and their av-
erage size, which are both measurable. Assuming the arrival rate of key-values is λKV , the average
size is SKV , and the slab size is Sslab , λ can be calculated as follows:

λ =
λKV × SKV

Sslab
. (2)

So, we have

Wlow =
λKV × SKV × (tevict + tother )

Sslab − λKV × SKV × (tevict + tother )
. (3)

By using the above-mentioned equations, we can periodically update the settings of the low and
high watermarks. In this way, we can adaptively tune the OPS size based on real-time workload
demands.

4.1.5 Wear-leveling. Flash memory wears out after a certain number of Program/Erase (P/E) cy-
cles. In our prototype, key-value update operations are performed in an out-of-place way, meaning
that the updated key-value items are stored within the newly allocated slabs, and the stale key-
value items need to be reclaimed through the GC process. For wear leveling, when allocating slabs
in the drain process and reclaiming slabs in the GC process, we take the erase count of each slab
into consideration and always use the block with the smallest erase count. Our locality-based GC
that selects the least recently used blocks also helps evict those cold key-value items from their
occupied flash blocks. Furthermore, as our channel-slab selection and slab-allocation scheme can
evenly distribute the workloads across all channels, wears can be approximately distributed across
channels as well.
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Despite these optimization policies, uneven aging still exists. For example, flash blocks that are
filled with read-intensive key-value items may be rarely erased. To further ensure uniform aging
of all flash blocks, we adopt a simple yet effective approach by periodically invoking the wear-
leveling procedure. Nonetheless, instead of swapping flash blocks that have higher wear number
with those lower ones, we propose to incorporate this periodical wear-leveling procedure within
the GC process.

In DIDACache, we maintain the total erase count and erase number of each flash slab. The wear-
leveling process is periodically triggered when the total erase count exceeds m times of the total
flash block number in the system. For example, we set m = 2 in our prototype. Suppose there are
1,000 flash blocks in the system, then the wear-leveling process will be triggered when the total
erase count equals to 2,000. Once the wear-leveling process is triggered, we calculate the average
wear number of flash blocks, and identify those flash blocks whose erase counts are far lower than
the average number. These cold slabs are either seldom accessed or read-intensive. If a victim slab
is seldom accessed, then we can directly evict it out (just as quick-clean). If a victim slab is read-
intensive, then instead of simply swapping key-value items stored in the cold flash slab with a hot
slab, DIDACache marks the cold block as victim block, and puts them into the GC queue. The GC
process will reclaim these cold flash blocks and put them into the free slab queue to serve new
incoming requests.

Traditional wear-leveling requires to shuffle frequently erased flash blocks with the less fre-
quently erased ones, which involves a large amount of data copy, consuming I/O bandwidth and
also increasing P/E cycles. In DIDACache, we are able to directly integrate wear-leveling within
the GC procedure. This optimization policy reduces the amount of unnecessary data copy without
defeating the purpose of GC and wear-leveling. In particular, since DIDACache does not support in-
place update, if a slab has write-intensive key-value items, they must have already been copied out
to other blocks, leaving obsolete slots ready for recycling. Thus, unlike traditional wear-leveling,
we are able to skip copying these data. If a key-value items in the slab are not frequently read, as
described in Section 4.1.3, then DIDACache will devote the slab as “inactive” by checking its access
count and use quick clean to directly erase this entire slab without moving data. Only if the key-
value items are read-intensive, the GC process will find the slab active, and these hot items will
be copied before erasing the slab. Thus, compared to traditional wear-leveling, this approach only
needs to copy read-intensive data, achieving both effective wear-leveling and minimized data copy.

4.1.6 Crash Recovery. Crash recovery is also a challenge. As a typical key-value cache, all the
key-value items have their persistent copy in the back database store. Thus, when system crash
happens, we may simply drop the entire cache upon crashes. However, due to the excessively long
warm-up time, it is preferred to retain the cached data through crashes [64]. In our system, all key-
value items are stored in persistent flash but the hash table is maintained in volatile memory. There
are two potential solutions to recover the hash table. One simple method is to scan all the valid key-
value items in flash and rebuild the hash table, which is a time-consuming process. This approach
demands more time for reconstructing the hash table. A more efficient solution is to periodically
checkpoint the in-memory hash table into (a designated area of) the flash. Upon recovery, we
only need to reload the latest hash table checkpoint into memory and then apply changes by
scanning the slabs written after the checkpoint. Crash recovery is currently not implemented in
our prototype. Applications use a persistent cache to improve repeated accesses. However, it is
possible that the data in the backend data store are updated during the period of cache server
downtime. Handling this situation is out of the scope of a look-aside cache, and applications or
systems should implement certain methods to ensure that the data in the cache are still up-to-
date after recovery. For example, when updating data, if the application finds the cache server
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is offline, it should not only update the data in the backend data store but also log the update
operations locally or in another server, and when the cache server is recovered, the cache can be
brought back to a consistent state by examining the log and replaying the update operations.

4.2 Library Level: libssd

As an intermediate layer, the library, libssd, connects the application and device layers. Unlike
Liblightnvm [17], libssd is highly integrated with the key-value cache system. It has three main
functions: (1) Slab-to-block mapping, which statically maps a slab to one (or multiple contiguous)
flash memory block(s) in a channel. In our prototype, it is a range of blocks in a flash LUN (logic
unit number). Such a mapping can be calculated through a mathematical conversion and does not
require another mapping table. (2) Operation transformation, which converts key slab operations,
namely read, write, and erase, to flash memory operations. This allows the key-value cache
system to operate in units of slabs, rather than flash pages/blocks. (3) Bad block management,
which maintains a list of flash blocks that are detected as “bad” and ineligible for allocation and
hides them from the key-value cache.

4.3 Hardware Level: Open-Channel SSD

Recently, there is a new trend of SSD design, called Open-Channel SSD, which directly exposes the
internal channels and its low-level flash details to the host. With Open-Channel SSD, the respon-
sibility of flash management is shared between the host software and hardware device. Compared
with conventional SSD design, Open-Channel SSD has three unique features: (1) SSD internal par-
allelism is exposed to user applications. Open-Channel SSD exposes its internal geometry details
(e.g., the layout of channels, LUNs, and flash blocks) to software applications. Applications have
the flexibility of scheduling I/O tasks among different channels to fully utilize the raw flash per-
formance. (2) Block erase command is available to applications. Open-Channel SSD exposes its
low-level details to applications, thus, the applications are capable of controlling the flash GC pro-
cess. (3) Open-Channel SSD enjoys a simplified I/O stack. Applications can directly operate the
device hardware through the ioctl interface, which allows them to bypass many intermediate OS
components, such as file system and the block I/O layer.

We use an Open-Channel SSD manufactured by Memblaze [37]. This hardware is similar to
that used in SDF [42]. This PCIe based SSD contains 12 channels, each of which connects to two
Toshiba 19nm MLC flash chips. Each chip contains two planes and has a capacity of 66GB. Unlike
SDF [42], our SSD exposes several key device-level properties: first, the SSD exposes the entire
flash memory space to the upper level. The SSD hardware abstracts the flash memory space in 192
LUNs, and an LUN is the smallest parallelizable unit. The LUNs are mapped to the 12 channels in a
sequential manner, i.e., channel #0 contains LUNs 0–15, channel #1 contains LUNs 16–31, and so on.
Therefore, we know the physical mapping of slabs on flash memory and channels. Second, unlike
SDF, which presents the flash space as 44 block devices, our SSD provides direct access to raw flash
memory through the ioctl interface. It allows us to directly operate the target flash memory pages
and blocks by specifying the LUN ID and page number to compose commands added to the device
command queue. Third, all FTL-level functions, such as address mapping, wear-leveling, bad block
management, are bypassed. This allows us to remove the device-level redundant operations and
make them completely driven by the user-level applications.

5 EVALUATION

In this section, we present evaluation results that demonstrate the benefits of the design choices of
DIDACache. Specially, we seek to answer the following fundamental performance questions about
DIDACache:
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Fig. 9. Hardware platform.

• Does this co-design approach result in higher SSD utilization, and how does it impact per-
formance (throughput, latency), and device endurance?

• How does DIDACache perform with real workloads, compared to its peers?
• What is the effect of memory slab buffer on DIDACache’s performance?
• What is DIDACache’s garbage collection overhead with different policies?
• How does the dynamic over-provisioning space schemes perform?
• What is the CPU and memory overhead of DIDACache?

5.1 Prototype System

We have prototyped the proposed key-value cache on the Open-Channel SSD hardware platform
manufactured by Memblaze [37]. Our implementation of the key-value cache manager is based on
Twitter’s Fatcache [56]. It includes 1,640 lines of code in the stock Fatcache and 620 lines of code
in the library.

In Fatcache, when a SET request arrives, if running out of in-memory slabs, it selects and flushes
a memory slab to flash. If there is no free flash slab, then a victim flash slab is chosen to reclaim
space. During this process, incoming requests have to wait synchronously. To fairly compare with
a cache system with non-blocking flush and eviction, we have enhanced the stock Fatcache by
adding a drain thread and a slab eviction thread. The other part remains unchanged. We have open-
sourced our asynchronous version of Fatcache for public downloading [1]. In our experiments, we
denote the stock Fatcache working in the synchronous mode as “Fatcache-Sync,” and the enhanced
one working in the asynchronous mode as “Fatcache-Async.” For each platform, we configure the
slab size to 8MB, the flash block size. The memory slab buffer is set to 128MB.

For performance comparison, we also run Fatcache-Sync and Fatcache-Async on a commercial
PCI-E SSD manufactured by Memblaze. The SSD is built on the exact same hardware as our Open-
Channel SSD but adopts a typical, conventional SSD architecture design. This SSD employs a page-
level mapping and the page size is 16KB. Unlike the Open-Channel SSD, the commercial SSD has
2GB of DRAM on the device, which serves as a buffer for the mapping table and a write-back cache.
The other typical FTL functions (e.g., wear-leveling, GC, etc.) are active on the device.

5.2 Experimental Setup

Our experiments are conducted on a workstation, which features an Intel i7-5820K 3.3GHZ proces-
sor and 16GB memory. An Open-Channel SSD introduced in Section 4.3 is used as DIDACache’s
underlying cache storage (Figure 9). Since the SSD capacity is quite large (1.5TB), it would take
excessively long time to fill up the entire SSD. To complete our tests in a reasonable time frame,
we only use part of the flash space, and we ensure the used space is evenly spread across all the
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channels and flash LUNs. Note that for the commercial SSD, since we cannot control its OPS space,
Fatcache running on the commercial SSD is able to use more OPS space than it should, which fa-
vors the stock Fatcache configuration as a comparison to our DIDACache. For the software, we use
Ubuntu 14.04 with Linux kernel 3.17.8. Our backend database server is MySQL 5.5 with InnoDB
storage engine running on a separate workstation, which features an Intel Core 2 Duo processor
(3.13GHZ), 8GB memory and a 500GB hard drive. The database server and the cache server are con-
nected in a 1Gbps local Ethernet network. Note that in our experimental environment, network is
not the bottleneck. Fatcache-Sync and Fatcache-Async use the same system configurations, except
that they run on the commercial SSD rather than the Open-Channel SSD.

5.3 Overall Performance

Our first set of experiments simulate a production data-center environment to show the overall
performance. In this experiment, we have a complete system setup with a workload generator
(client simulator), a key-value cache server, and a MySQL database server in the backend.

To generate key-value requests to the cache server, we adopt a workload model presented in
prior work [7]. This model is built based on real Facebook workloads [5], and we use it to generate a
key-value object data set and request sequences to exercise the cache server. The size distribution of
key-value objects in the database follows a truncated Generalized Pareto distribution with location
θ = 0, scale ψ = 214.4766, and shape k = 0.348238. The object popularity, which determines the
request sequence, follows a Normal distribution with mean μt and standard deviationσ , where μt is
a function of time. We first generate 800 million key-value pairs (about 250GB data) to populate our
database, and then use the object popularity model to generate 200 million requests. We have run
experiments with various numbers of servers and clients with the above-mentioned workstation,
but due to the space constraint, we only present the representative experimental results with 32
clients and 8 key-value cache servers.

We test the system performance by varying the cache size (in percentage of the data set size).
Figure 10 shows the throughput, i.e., the number of operations per second (ops/s). We can see
that as the cache size increases from 5% to 12%, the throughput of all the three schemes improves
significantly, due to the improved cache hit ratio. Comparing the three schemes, DIDACache out-
performs Fatcache-Sync and Fatcache-Async substantially. With a cache size of 10% of the data
set (about 25GB), DIDACache outperforms Fatcache-Sync and Fatcache-Async by 9.7% and 9.2%,
respectively. The main reason is that the dynamic OPS management in DIDACache adaptively ad-
justs the reserved OPS size according to the request arrival rate. In contrast, Fatcache-Sync and
Fatcache-Async statically reserve 25% flash space as OPS, which affects the cache hit ratio (see
Figure 11). Another reason is the reduced overhead due to the application-driven GC. The effect
of GC policies will be examined in Section 5.4.2.

We also note that Fatcache-Async only outperforms Fatcache-Sync marginally in this workload.
It is because for this workload, both Fatcache-Sync and Fatcache-Async use the commercial SSD
as the underlying storage and use the static OPS policy; thus, they have the same cache hit ratio.
Though Fatcache-Async adopts an asynchronous drain process and GC process, they only bene-
fit the “set” operations, and its “get” performance is identical to Fatcache-Sync. When the cache
size varies from 5% to 12% of the workload size, the cache hit ratio can range from 71% to 87%,
which is already high; thus, we cannot see much further improvement between Fatcache-Async
and Fatcache-Sync. Besides, when a cache miss happens, a slow database query is needed, so the
relative benefit from asynchronization is further diminished.

Figure 11 shows the hit ratios of these three cache systems. We can see that, as the cache size
increases, DIDACache’s hit ratio ranges from 76.5% to 94.8%, which is much higher than that of
Fatcache-Sync, ranging from 71.1% to 87.3%.
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Fig. 10. Throughput vs. cache size. Fig. 11. Hit ratio vs. cache size.

Fig. 12. SET throughput vs. KV size. Fig. 13. SET latency vs. KV size.

5.4 Cache Server Performance

In this section, we focus on studying the performance details of the cache servers. In this ex-
periment, we directly generate SET/GET operations to the cache server. We create objects with
sizes ranging from 64 bytes to 4KB and first populate the cache server up to 25GB in total. Then,
we generate SET and GET requests of various key-value sizes to measure the average latency and
throughput. All experiments use 8 key-value cache servers and 32 clients.

5.4.1 Random SET/GET Performance. Figure 12 shows the throughput of SET operations. Among
the three schemes, our DIDACache achieves the highest throughput and Fatcache-Sync performs
the worst. With the object size of 64 bytes, the throughput of DIDACache is 2.48 × 105 ops/s,
which is 1.3 times higher than that of Fatcache-Sync and 35.5% higher than that of Fatcache-Async.
The throughput gain is mainly due to our unified slab management policy and the integrated
application-driven GC policy. DIDACache also selects the least loaded channel when flushing slabs
to flash. Thus, the SSD’s internal parallelism can be fully utilized, and with software and hardware
knowledge, the GC overhead is significantly reduced. Compared with Fatcache-Async, the relative
performance gain of DIDACache is smaller and decreases as the key-value object size increases. As
the object size increases, the relative GC efficiency improves and the valid data copy overhead is
decreased. It is worth noting that the practical systems are typically dominated by small key-value
objects, on which DIDACache performs particularly well.

Figure 13 gives the average latency for SET operations with different key-value object sizes.
Similarly, it can be observed that Fatcache-Sync performs the worst, and DIDACache outperforms
the other two significantly. For example, for 64-byte objects, compared with Fatcache-Sync and
Fatcache-Async, DIDACache reduces the average latency by 54.5% and 23.6%, respectively.
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Fig. 14. Throughput vs. SET/GET ratio. Fig. 15. Latency vs. SET/GET ratio.

Fig. 16. Latency (256-byte KV items) with different SET/GET ratios.

Figures 14 and 15 show the throughput and latency for workloads with mixed SET/GET oper-
ations. We can observe that DIDACache outperforms Fatcache-Sync and Fatcache-Async across
the board, but as the portion of GET operations increases, the related performance gain reduces.
Although we also optimize the path of processing GET, such as removing intermediate mapping,
the main performance bottleneck is the raw flash read. Thus, with the workload of 100% GET, the
latency and throughput of the three schemes are nearly the same, which also indicates that the
performance overhead (e.g., maintaining queues) introduced by our scheme is minimal. Figure 16
shows the latency distributions for key-value items of 256 bytes with different SET/GET ratios.

5.4.2 Memory Slab Buffer. Memory slab buffer enables the asynchronous operations of the
drain and GC processes. To show the effect of slab buffer size, we vary the slab buffer size from
128MB to 1GB and test the average latency and throughput with the workloads generated with the
truncated Generalized Pareto distribution. As shown in Figures 17 and 18, for both SET and GET
operations, the average latency and throughput are insensitive to the slab buffer size, indicating
that a small in-memory slab buffer size (128M) is sufficient.

5.4.3 Garbage Collection. Our cross-layer solution also effectively reduces the GC overhead,
such as erase and valid page copy operations. In our cache-driven system, we can easily count
erase and page copy operations in the library code. However, we cannot directly obtain these
values on the commercial SSD as they are hidden at the device level. For effective comparison, we
use the SSD simulator (extension to DiskSim [24]) from Microsoft Research and configure it with
the same parameters of the commercial SSD. We first run the stock Fatcache on the commercial
SSD and collect traces by using blktrace in Linux, and then replay the traces on the simulator.
We compare our results with the simulator-generated results. In our experiments, we confine the
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Fig. 17. Latency and throughput for set

operation with different buffer size.

Fig. 18. Latency and throughput for get

operation with different buffer size.

Table 1. Garbage Collection Overhead

GC Scheme Key-values Flash Page Erase

DIDACache-Space 7.48GB N/A 4,231
DIDACache-Locality 0 N/A 3,679

DIDACache 2.05GB N/A 3,829
Fatcache-Greedy 7.48GB 5.73GB 5,024

Fatcache-Kick 0 3.86GB 4,122
Fatcache-FIFO 15.35GB 0 5,316

available SSD size to 30GB, and preload it with 25GB data with workloads generated with the
truncated Generalized Pareto distribution, and then do SET operations (80 million requests, about
30GB), following the Normal distribution.

Table 1 shows GC overhead in terms of valid data copies (key-values and flash pages) and block
erases. We compare DIDACache using space-based eviction only (“DIDACache-Space”), locality-
based eviction only (“DIDACache-Locality”), the adaptively selected eviction approach (“DIDA-
Cache”) with the stock Fatcache using three schemes (“Fatcache-Greedy,” “Fatcache-Kick,” and
“Fatcache-FIFO”). In Fatcache, the application-level GC has two options, copying valid key-value
items from the victim slab for retaining hit ratio or directly dropping the entire slab for speed.
This incurs different overheads of key-value copy operations, denoted as “Key-values.” In this ex-
periment, both Fatcache-Greedy and Fatcache-Kick use a greedy algorithm to find a victim slab,
but the former performs key-value copy operations while the latter does not. Fatcache-FIFO uses a
FIFO algorithm to find the victim slab and copies still-valid key-values. In the table, the flash page
copy and block erase operations incurred by the device-level GC are denoted as “Flash Page” and
“Erase,” respectively.

Fatcache schemes show high GC overheads. For example, both Fatcache-Greedy and Fatcache-
FIFO recycle valid key-value items at the application level, incurring a large volume of key-value
copies. Fatcache-Kick, in contrast, aggressively drops victim slabs without any key-value copy.
However, since it adopts a greedy policy (as Fatcache-Greedy) to evict the slabs with least valid
key-value items, erase blocks are mixed with valid and invalid pages, which incurs flash page
copies by the device-level GC. Fatcache-FIFO fills and erases all slabs in a sequential FIFO manner,
thus, no device-level flash page copy is needed. All three Fatcache schemes show a large number
of block erases.

The GC process in our scheme is directly driven by the key-value cache. It performs a fine-
grained, single-level, key-value item-based reclamation, and no flash page copy is needed (denoted
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Fig. 19. Wear distribution among

blocks without wear-leveling.

Fig. 20. Wear distribution among

blocks with wear-leveling.

as “N/A” in Table 1). The locality-based eviction policy enjoys the minimum data copy overhead,
since it aggressively evicts the LRU slab without copying any valid key-value items. The space-
based eviction policy needs to copy 7.48GB key-value items and incurs 4,231 erase operations.
DIDACache dynamically chooses the most appropriate policy at runtime, so it incurs a GC over-
head between the above two (2.05GB data copy and 3,829 erases). Compared to Fatcache schemes,
the overheads are much lower (e.g., 28% lower than Fatcache-FIFO).

5.4.4 Wear-leveling. To investigate the block aging status in DIDACache, we carry out exper-
iments by keeping issuing SET and GET operations to DIDACache and collect the distribution of
block erase operations in our library layer. In this experiment, to control the experimental time,
we further confine the available SSD size to 15GB, and preload it with 10GB data with workloads
generated with the truncated Generalized Pareto distribution, and then do SET and GET operations
with workloads (480 million requests, about 240GB, SET/GET ratio is 1:1) that follow the Normal
distribution. During the experiment, we count the number of GC operations, and our wear-leveling
policy is periodically triggered when the total GC time comes up to two times of the total number
of flash blocks. When the wear-leveling is triggered, we mark those blocks whose erase count is
less than half of the average block erase count as victim blocks, and then reclaim these flash blocks
with the GC process.

Figures 19 and 20 show the block wear out distribution before and after we apply our wear-
leveling policy, respectively. It can be observed that after applying our wear-leveling policy, flash
blocks in the system are worn out much more evenly. Without wear-leveling, the minimum block
erase count is 0, and the maximum block erase count is 17. With our wear-leveling policy, the flash
block erase counts vary between 6 and 11. The maximum gap is only 5, which is much smaller than
17 in the former case. Figures 21 and 22 give the CDF graphs of block erase counts accordingly.
From them, we can see that with our wear-leveling policy, more than 90% flash blocks are erased
9 or 10 times. For the scheme without wear-leveling, although the majority of flash blocks are also
erased by 9 or 10 times, but the percentage is much smaller, and the variance range is also much
larger.

The experimental results show that the our wear-leveling policy can effectively balance wears
across flash blocks. However, since the wear-leveling policy incurs more GC operations, it also
introduces some overhead. To illustrate the overhead of this mechanism, we compare the GC over-
heads of the systems with and without the wear-leveling policy (denoted as No wear-leveling and
Wear-leveling) in Table 2. In this table, “Data copy” and “Erase” under column “GC” represent valid
data copy and block erase operations caused by the GC process. Similarly, “Data copy” and “Erase”
under column “Wear-Leveling” represent valid data copy and block erase operations caused by the
wear-leveling process.
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Fig. 21. CDF of blocks’ erase count

without wear-leveling.

Fig. 22. CDF of blocks’ erase count

with wear-leveling.

Table 2. Wear-leveling Overhead

GC Wear-leveling
Flash Page

Data copy Erase Data copy Erase
Wear-leveling 13.48GB 16,542 6.34GB 1,323 N/A

No Wear-leveling 15.57GB 17,285 N/A N/A N/A

During the experiment, wear-leveling is triggered four times, and incurs 1,323 block erase op-
erations and 6.34GB data copy. Additionally, after applying our wear-leveling policy, the overhead
of the GC procedure is less than that without our wear-leveling policy. The reason behind this is
that we have integrated our wear-leveling procedure with the GC process. When wear-leveling
happens, instead of swapping cold blocks with hot blocks, we mark those cold blocks as victim
blocks. When reclaiming these victim blocks, we only copy those valid key-value items. If a vic-
tim block is not frequently accessed, then we would directly erase the flash block without coping
data. These measures, to some extent, can ease the pressure of the GC process. In all, with our
wear-leveling, 580 more block erase and 4.25GB more data copy operations are introduced. We
can further mitigate this overhead using a longer interval for wear-leveling, if needed.

5.4.5 Dynamic Over-Provisioning Space. To illustrate the effect of our dynamic OPS manage-
ment, we run DIDACache on our testbed that simulates the data center environment in Section 5.3.
We use the same data set containing 800 million key-value pairs (about 250GB), and the request
sequence generated with the Normal distribution model. We set the cache size as 12% (around
30GB) of the data set size. In the experiment, we first warm up the cache server with the generated
data, and then change the request coming rates to test our dynamic OPS policies.

Figure 23 shows the dynamic OPS and the number of free slabs with the varying request in-
coming rates for three different policies. The static policy reserves 25% of flash space as OPS to
simulate the conventional SSD. For the heuristic policy, we set the initial Wlow with 5%. For the
queuing theory policy, we use the model built in Equation (3) to determine the value of Wlow at
runtime. We setWhiдh 15% higher thanWlow . The GC is triggered when the number of free slabs
drops belowWhiдh .

As shown in Figure 23(a), the static policy reserves a portion of flash space for over-provisioning.
The number of free slabs fluctuates, responding to the incoming request rate. In Figure 23(b),
our heuristic policy dynamically changes the two watermarks. When the arrival rate of requests
increases, the low watermark, Wlow , increases to aggressively generate free slabs by using quick

clean. The number of free slabs approximately follows the trend of the low watermark, but we can
also see a lag-behind effect. Our queuing policy in Figure 23(c) performs even better, and it can
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Fig. 23. Over-provisioning space with different policies.

Fig. 24. Hit ratio with different OPS policies.

Fig. 25. Garbage collection overhead with different OPS policies.

be observed that the free slab curve almost overlaps with the low watermark curve. Compared
with the static policy, both heuristic and queuing theory policies enable a much larger flash space
for caching. Accordingly, we can see in Figure 24 that the two dynamic OPS policies are able to
maintain a hit ratio close to 95%, which is 7% to 10% higher than the static policy. Figure 25 shows
the GC cost, and we can find that the two dynamic policies incur lower overhead than the static
policy. In fact, compared with the static policy and the heuristic policy, the queuing theory policy
erases 15.7% and 8% less flash blocks, respectively. Correspondingly, in Figure 26, it can be observed
that the queuing policy can most effectively reduce the number of requests with high latencies.

To further study the difference of these three policies, we also compared their runtime through-
put in Table 3. We can see that the static policy has the lowest throughput (198,076 ops/sec). The
heuristic and queuing theory policies can deliver higher throughput, 223,146 and 229,956 ops/s,
respectively.

5.5 Overhead Analysis

DIDACache is highly optimized for key-value caching and moves certain device-level functions up
to the application level. This could raise consumption of host-side resources, especially memory
and CPU.
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Fig. 26. Request latency with different OPS policies.

Table 3. Effect of Different OPS Policies

GC Scheme Hit Ratio GC Latency Throughput

Static 87.7% 2,716 79.95 198,076
Heuristic 94.1% 2,480 64.24 223,146
Queuing 94.8% 2,288 62.41 229,956

Table 4. CPU Utilization of Different Schemes

Scheme SET GET SET/GET (1:1)

DIDACache 47.7% 20.5% 37.4%
Fatcache-Async 42.3% 20% 33.8%
Fatcache-Sync 40% 20% 31.3%

Memory Utilization: In DIDACache, memory is mainly used for three purposes. (1) In-memory
hash table. DIDACache maintains a host-side hash table with 44-byte mapping entries (<md, sid,
offset>), which is identical to the stock Fatcache. (2) Slab buffer. DIDACache performance is
insensitive to the slab buffer size. We use a 128MB memory for slab buffer, which is also identical
to the stock Fatcache. (3) Slab metadata. For slab allocation and GC, DIDACache introduces two
additional queues (Free Slab Queue and Full Slab Queue) for each channel. Each queue entry is 8
bytes, corresponding to a slab. Each slab also maintains an erase count and a valid data ratio, each
requiring 4 bytes. Thus, in total, DIDACache adds 16-byte metadata for each slab. For a 1TB SSD
with a regular slab size of 8MB, it consumes at most 2MB memory. In our experiments, we found
that the memory consumptions of DIDACache and Fatcache are almost identical during runtime.
Also note that the device-side demand for memory is significantly decreased, such as the removed
FTL-level mapping table.

CPU utilization: DIDACache is multi-threaded. In particular, we maintain 12 threads for mon-
itoring the load of each channel, one global thread for garbage collection, and one load-monitoring
thread for determining the OPS size. To show the related computational cost, we compare the CPU
utilization of DIDACache, Fatcache-Async, and Fatcache-Sync in Table 4. It can be observed that
DIDACache only incurs marginal increase of the host-side CPU utilization. In the worst case (100%
SET), DIDACache only consumes extra 7.6% and 5.4% CPU resources over Fatcache-Sync (40.1%)
and Fatcache-Async (42.3%), respectively. Finally, it is worth noting that DIDACache removes much
device-level processing, such as GC, which simplifies device hardware.

Cost implications: DIDACache is cost efficient. As an application-driven design, the device
hardware can be greatly simplified for lower cost. For example, the DRAM required for the
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on-device mapping table can be removed and the reserved flash space for OPS can be saved.
At the same time, our results also show that the host-side overhead, as well as the additional
utilization of the host-side resources are minor.

6 DISCUSSION ON EXTREME CONDITIONS

Due to hardware constraint, some extreme cases are not triggered in our experiment. In this sec-
tion, we will discuss the cache performance on some extreme conditions. We model the working
procedure and analyze the performance of SET and GET operations, which are the two typical op-
erations for key-value cache system. We breakdown and compare request latency for both the
conventional key-value caching design and DIDACache.

• SET Operation: In both DIDACache and the conventional key-value caching, SET operations
are served in an asynchronous way. When a SET operation comes, it will be firstly served by a
memory slab. If the key-value item is stored in memory slab, then the request can be returned, and
the full memory slabs are flushed to flash in background as described in Algorithm 4.1. So, in the
best case, one key-value item SET operation only consists of one hash index build operation and
one memory store operation. The request latency can be presented as

tSET = thash + twmem . (4)

In here, thash and twmem stand for the hash index build time and memory store time, respectively.
However, in the worst case, the memory slab buffer and flash slabs are consumed very fast,

which may cause incoming requests wait for the flash write and GC process synchronously. For
DIDACache, in the worst case, the incoming SET request needs to wait for one flash block write
operation and one integrated GC process. DIDACache adopts the quick clean scheme, which di-
rectly erases the victim block without copying data; so, when the system is starving for space, the
integrated GC process only incurs one flash block erase operation. In the worst case, the request
latency for SET operation can be denoted as

tSET = thash + twmem + tf wr ite + ter ase . (5)

In here, tf wr ite is the time for one flash block write operation, ter ase is the time consumed by
erasing one flash block.

In contrast, for conventional key-value caching, when the worst case happens, the serving pro-
cess of one SET operation can be separated into software part and hardware part. From the software
aspect, the request needs to wait for one software level GC process to reclaim cache space. From
the hardware aspect, the request needs to wait for one slab flush operation and one hardware
GC process to reclaim flash blocks. For the slab flush operation, the conventional SSD will slice
one slab into stripes and flush the data to all its channels in parallel. Suppose the SSD contains N
channels, and the time for one slab flush operation is tf wr ite/N . In the worst case, when hardware
GC happens, each flash block contains one invalid flash page. If each block has m flash pages, to
reclaim one flash block, then the SSD needs to copym(m − 1) flash pages, and erasem flash blocks.
So the latency for one hardware GC process can be tf wr ite × (m − 1)/N + ter ase ×m/N . Thus, in
the worst case, the request latency for SET operation is:

tSET = thash + twmem + tsдc + tf wr ite × (m − 1)/N + ter ase ×m/N . (6)

Here, tsдc is the time consumed by software level GC process. In the worst case, the software level
GC process needs to copy Sslab/SKV − 1 key-value items.

• GET Operation: Basically, the working procedure for GET operations of DIDACache and the
conventional key-value caching are the same. For a GET operation, the caching system will firstly
look up its in-memory index. If the corresponding key-value item is in memory, then the data can
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Table 5. Key-value (256Bytes) Request Latency on Extreme Conditions

Key-value Caching
Best Case Worst Case

SET Latency GET Latency SET Latency GET Latency
DIDACache 1us 1us 0.363s 370us

Conventional 1us 1us 15.492s 370us

be returned by a memory load operation. Otherwise, the system needs to read the data from SSD
flash. The difference is that in DIDACache, when reading data from SSD flash, it does not need
to use address mapping model to translate the logical disk slab number to flash pages. The time
consumption for one GET operation in the conventional key-value caching is

tGET =

{
trhash + trmem if the KV item is in memory slab,
trhash + tmappinд + tf r ead if the KV item is in disk slab .

(7)

Here, trhash represents the time consumed by searching the in-memory hash table. tmappinд

denotes the time consumed by FTL address mapping model, and tf r ead is the time for flash page
read operation. When the key-value item is in memory slab, it can be returned by just one hash
table search and one memory load operation. Otherwise, if the key-value item is in disk slab, the
latency is composed of a hash table search operation, an SSD address mapping search operation,
and a flash page read operation.

For DIDACache, the time consumption for one GET operation is

t ′GET =

{
trhash + trmem if the KV item is in memory slab,
trhash + tf r ead if the KV item is in disk slab .

(8)

Similar to the conventional key-value caching, if the key-value item is in memory slab buffer, the
latency for GET request is also trhash + trmem . But if the key-value item is in disk slab, the latency
just include one hash table search and a flash page read operation. To conclude, for both best
case and worst case, the latency for GET operation of DIDACache and the conventional key-value
caching are basically the same.

Table 5 shows an example of latencies for SET and GET request on two extreme cases with our
experimental hardware configuration. Due to space constraint, we only show the results with
key-value item size of 256 bytes. Key-value items of other sizes have the same trend. For a SET
request, in the best case, its latency only includes one index build operation and one memory
store operation. In our experiments, for both DIDACache and the conventional key-value caching,
the shortest latency is around 1us. In our experiment, the conventional SSD contains 12 channels
and each block has 512 pages, and each slab is 8MB. The time for writing and erasing one block
are 0.356s and 7ms, respectively. The time granularity for thash and twmem are in us , which can
be ignored in comparison. With Equations (5) and (6), we get that the worst latency for one SET
request in DIDACache is 0.363s, and the worst latency for one SET request of conventional key-
value caching is 15.492s. For a GET request, DIDACache and the conventional key-value caching
have quite similar working procedure. In our experiment, the shortest latency for both DIDACache
and the conventional key-value caching is 1us. In the worst case, the main bottleneck for the GET
request latency is the raw flash read performance, and it is about 370us.

7 OTHER RELATED WORK

Both flash memory [3, 8–10, 12, 18, 26, 28, 33, 36, 44, 50, 53, 59] and key-value systems [4, 5, 11, 16,
30, 32, 58, 61] are extensively researched. This section discusses prior studies most related to this
article.
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A recent research interest in flash memory is to investigate the interaction between appli-
cations and underlying flash storage devices. Yang et al. investigate the interactions between
log-structured applications and the underlying flash devices [60]. Differentiated Storage Ser-
vices [39] proposes to optimize storage management with semantic hints from applications. Name-
less Writes [62] is a de-indirection scheme to allow writing only data into the device and let the
device choose the physical location. Similarly, FSDV [63] removes the FTL level mapping by di-
rectly storing physical flash addresses in the file systems. Multi-stream SSD [25] maintains multiple
write streams with different expected lifetime for SSD. Applications write to different streams ac-
cording to data lifetime. This design aims to make the NAND capacity unfragmented and handle
the GC without costly data movement. Although sharing a similar principle of leveraging appli-
cation semantics for efficient device management, DIDACache aims to bridge the semantic gaps
between application and the underlying hardware and is specific for key-value cache systems.
For example, DIDACache leverages the properties of key-value cache for aggressive quick-clean
without incurring a problem. Willow [49] exploits on-device programmability to move certain
computation from the host to the device. FlashTier [48] uses a customized flash translation layer
optimized for caching rather than storage. OP-FCL dynamically manages OPS on SSD to balance
the space needs for GC and for caching [41]. Some commercial SSDs allow users to define their
own OPS space, such as Samsung 840 Pro [47]. However, these SSDs only allow applications to
adjust the OPS space statically, and the OPS space cannot be dynamically adjusted according to the
applications’ runtime patterns. Our DIDACache dynamically determines the minimum reserved
space for OPS purpose and maximizes the usable cache space during the runtime according to the
application workload pattern. RIPQ [55] optimizes the photo caching in Facebook particularly for
flash by reshaping the small random writes to a flash-friendly workload. FlashBlox [22] proposes
to utilize flash parallelism to improve isolation between applications by running them on dedi-
cated channels and dies, and balance wear within and across different applications. LightNVM [6]
is an open-channel SSD subsystem in the Linux kernel, which introduces a new physical page ad-
dress I/O interface that exposes SSD parallelism and storage media characteristics. Our solution
shares a similar principle of removing unnecessary intermediate layers and collapsing multi-layer
mapping into only one, but we particularly focus on tightly connecting key-value cache systems
and the underlying flash SSD hardware.

Key-value cache systems recently show their practical importance in Internet services [5, 16,
32, 61]. A report from Facebook discusses their efforts of scaling Memcached to handle the
huge amount of Internet I/O traffic [40]. McDipper [14] is their latest effort on flash-based key-
value caching. Several prior research studies specifically optimize key-value store/cache for flash.
Ouyang et al. propose an SSD-assisted hybrid memory for Memcached in high performance net-
work [43]. This solution essentially takes flash as a swapping device. Flashield [13] is also a hybrid
key-value cache, which uses DRAM as a “filter” to minimize writes to flash. NVMKV [34, 35] gives
an optimized key-value store based on flash devices with several new designs, such as dynamic
mapping, transactional support, and parallelization. Unlike NVMKV, our system is a key-value
cache, which allows us to aggressively integrate the two layers together and exploit some unique
opportunities. For example, we can invalidate all slots and erase an entire flash block, since we are
dealing with a cache rather than storage.

Some prior work also leverages Open-Channel SSDs for domain optimizations. Our prior
study [51] outlines the key issues and a preliminary design of flash-based key-value caching.
Ouyang et al. present SDF [42] for web-scale storage. Wang et al. further present a design of
LSM-tree based key-value store on the same platform, called LOCS [57]. KAML [23] presents
a key-addressable multi-log SSD, which exposes a key-value interface to enable applications to
make use of internal parallelism of flash channels through using Open-Channel SSD. This article

ACM Transactions on Storage, Vol. 14, No. 3, Article 26. Publication date: October 2018.



DIDACache: An Integration of Device and Application for Flash-based Key-value Caching 26:29

and its earlier version [52] present DIDACache, an Open-Channel based solution that deeply
integrates device- and application-level semantics. We share the common principle of bridging
the semantic gap and aim to deeply integrate device and key-value cache management.

8 CONCLUSIONS

Key-value cache systems are crucial to low-latency high-throughput data processing. In this arti-
cle, we present a co-design approach to deeply integrate the key-value cache system design with
the flash hardware. Our solution enables three key benefits, namely, a single-level direct mapping
from keys to physical flash memory locations, a cache-driven fine-grained garbage collection, and
an adaptive over-provisioning scheme. We implemented a prototype on real Open-Channel SSD
hardware platform. Our experimental results show that we can significantly increase the through-
put by 35.5%, reduce the latency by 23.6%, and remove unnecessary erase operations by 28%.

Although this article focuses on key-value caching, such an integrated approach can be gener-
alized and applied to other semantic-rich applications. For example, for file systems and databases,
which have complex mapping structures in different levels, our unified direct mapping scheme can
also be applied. For read-intensive applications with varying patterns, our dynamic OPS approach
would be highly beneficial. Various applications may benefit from different policies or different
degrees of integration with our schemes. As our future work, we plan to further generalize some
functionality to provide fine-grained control on flash operations and allow applications to flexibly
select suitable schemes and reduce development overheads.
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