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ABSTRACT

Flash-based key-value caching plays an important role in Internet
services. Compared to in-memory key-value caches, flash-based
key-value caches can provide a 10 to 100 times larger cache space,
allowing to accommodate more data for a higher hit ratio. However,
the current design relies on a simple hash-based indexing structure,
which maintains the entire mapping table in DRAM memory. As
the cache capacity continues to grow, such an “all-in-memory”
approach raises concerns on cost, power, and scalability.

To address this critical memory challenge, we propose a hier-
archical mapping scheme, called Cascade Mapping. This scheme
exploits a widely existing phenomenon in key-value caches—only
a small set of key-value items in the cache is frequently requested.
Leveraging the strong temporal locality, we create a multi-tier map-
ping structure, aiming to serve the most popular key-value map-
pings within a small memory space and organize the majority in a
highly optimized indexing structure in flash. We have implemented
a prototype, called SlickCache, based on Twitter’s Fatcache. Our
experimental results show that we can achieve nearly identical per-
formance as the conventional all-in-memory scheme, while using
only a fraction (10%) of the required memory. Alternatively, this
approach allows us to build a 10 times larger flash cache with the
same amount of memory, which in turn increases the hit ratio by
up to 8.2 times and the throughput by up to 125 times.
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1 INTRODUCTION

In the past years, we have witnessed an unprecedented quick
growth of Internet data. According to recent statistics in 2017, ev-
ery 60 seconds, over 25,000 Tumblr posts, 210,000 Snaps, 350,000
Tweets, and 243,000 Facebook photos were uploaded [2, 12]. Much
of such Internet data are managed in the form of key-values.

In order to handle the huge Internet traffic in a low latency,
Internet service providers often deploy a fleet of key-value cache
servers, such as Memcached [9, 33] and Redis [10], in data centers to
absorb time-consuming I/Os to backend data stores [38, 45]. These
memory-based key-value caches, though effective, heavily rely on
a large amount of expensive DRAM memory, raising increasingly
high concerns on cost, power, and scalability.

A recent trend in the industry is to adopt a more efficient al-
ternative, flash-based key-value cache. Two representative systems
are Facebook’s McDipper [8] and Twitter’s Fatcache [3]. Unlike
memory-based key-value caches, flash-based key-value cache sys-
tems use high-speed flash SSDs as the main storage media for
caching the key-value data, and maintain a hash-based mapping
table in memory, which tracks each key-value item and its location
in flash. Upon a key-value query (GET), the system first queries the
mapping table in memory, and then loads the corresponding key-
value data from the flash SSD. This design effectively guarantees
that a key-value query needs no more than one flash I/O, providing
satisfactorily high throughput and low latency. It is reported that
McDipper allows Facebook to reduce the cache server deployment
by as much as 90% while still delivering over 90% of GET responses
with sub-millisecond latencies [8].

1.1 Scalability Challenges

Although the above-said mapping scheme works reasonably well
with a relatively small-capacity flash cache, as flash capacity further
grows, such an “all-in-memory” approach is reaching its scalability
limit. This is for two main reasons.

First, the high index-to-data ratio of key-value cache drives the
memory overhead up to an intolerably high level. A unique prop-
erty of key-value caches is the dominance of small objects. A study
on Facebook’s Memcached workloads reports that 90% of the cache
space is used for storing objects smaller than 500 bytes [18], mean-
ing that indexing a huge number of small key-value items in a
large-capacity flash cache demands an excessively large amount
of DRAM memory. For example, Twitter’s Fatcache uses a 44-byte
index entry for each key-value item. Assuming an average key-
value item size of 300 bytes, we need about 150 GB of memory
space to index a 1-TB flash cache, solely for the mappings, not to
mention the other overhead. As a consequence, we are facing an
undesirable but must-address dilemma—the quick growth of flash
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capacity allows us to accommodate more data in cache, but we lack
sufficient amount of DRAM memory to index these data, which in
effect limits the usable cache space.

Second, it is a well-known fact that the capacity of DRAM mem-
ory grows at a much slower pace (25-40% per year) than flash
memory (50-60% per year) [35]. In today’s market, the cost of 1-TB
flash is already below $500, while the same amount of server-grade
DDR4 memory could cost over $10,000. The widening capacity
and price gaps have a strong implication for us—it will become
increasingly more difficult to have proportionally enough memory
to index all the key-value data in the future. Further considering
that the capacity of DRAM memory in a system is also limited
by the processors and the DIMM slot budget on the motherboard,
users would have to purchase unnecessarily high-end processors
or multi-socket systems, simply for the purpose of being able to
install more memory on board, further boosting the cost up.

In short, the current mapping structure design in flash-based
key-value cache is cost-inefficient and unable to scale in a long run.
We need an alternative solution.

1.2 Cascade Mapping

In this paper, we present a highly efficient hierarchical mapping
scheme, called Cascade Mapping, to address the above-said memory
challenge for flash-based key-value caching.

Essentially, the struggles in the current design are all due to an
unrealistic attempt to maintain the entire indexing structure in
memory, which is understandable for the performance reason but
unfortunately infeasible in reality. We argue that with a careful
design and implementation, we do not need to preserve all the
key-value mappings in memory, and we will still be able to achieve
nearly identical performance as the all-in-memory solution by using
only a fraction of the needed memory.

This seemingly ambitious goal is indeed achievable due to a sim-
ple fact—only a small set of key-value items in the cache is of high
interest and being frequently accessed [18]. Leveraging the strong
temporal locality in key-value workloads, we have designed a hier-
archical mapping structure to differentiate the key-value mappings
based on their popularity and manage them in multiple tiers. Such
a differentiation offers us an opportunity to optimize the use of
the precious memory space, holding the most important key-value
mappings in DRAM memory, while leaving the majority in flash.
This approach would naturally involve extra flash I/Os. We have
designed a set of effective techniques to minimize the incurred flash
I/Os and their effects on performance.

Cascade Mapping is a three-tier mapping structure. Tier 1 main-
tains the “hot” mappings in memory, serving most incoming query
requests and incurring no flash I/Os for mapping lookups; Tier 2
retains the “warm” mappings in a highly efficient structure in flash,
supporting a fast, parallel search among a batch of blocks in a high-
bandwidth manner; Tier 3 holds the majority of the mappings in a
memory-efficient structure on flash, serving a small percentage of
requests to the “cold” key-value mappings.

Cascade Mapping is designed to not only reduce the memory
demand but also deliver fast and reliable caching services. For this
purpose, our design exploits the unique properties of the hierarchi-
cal mapping structure and is particularly optimized for key-value
caches. Leveraging the multi-tier structure, the Garbage Collection
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(GC) procedure is optimized to improve the cache hit ratio. Exploit-
ing the persistent mappings and the FIFO-based slab management,
a highly efficient checkpointing mechanism is designed for quick
and reliable crash recovery.

We have implemented a prototype, called SlickCache, based on
Twitter’s Fatcache with the proposed Cascade Mapping scheme.
Our experimental results show that SlickCache can achieve nearly
identical performance as the all-in-memory mapping scheme by
using only a fraction (10%) of the needed memory. Alternatively,
for a given memory capacity, we can build a 10 times larger flash
cache, which in turn increases the hit ratio by up to 8.2 times and
the throughput by up to 125 times. Our design only introduces a
small (about 6%) flash space overhead, which is trivial compared to
the significant memory saving and performance improvement.

The rest of the paper is organized as follows. Section 2 and Sec-
tion 3 present the background and motivations. Section 4 introduces
the design. Section 5 discusses evaluation results. Related work is
presented in Section 6. The final section concludes this paper.

2 BACKGROUND

In this section, we briefly introduce flash memory, SSDs, and the
current flash-based key-value cache system design.
Flash memory. A typical NAND flash memory chip is composed
of multiple planes. Each plane contains thousands of blocks. A block
consists of multiple pages. Flash memory supports three major
operations, read, write, and erase. Reads are typically fast (10s of
microseconds), and writes are relatively slow (100s of microseconds).
Reads and writes are normally performed in pages, while erases
must be performed in units of blocks. A unique constraint is that
the pages in a block must be written in a sequential manner. Once a
page is programmed (written), it cannot be overwritten again until
the entire block is erased, which takes several milliseconds.
Flash SSD. A flash SSD includes several components, including
a host interface logic, an SSD controller, a dedicated RAM bufer,
flash memory controllers and chips. To provide a high bandwidth,
modern SSDs often have multiple (e.g., 2-10) channels to connect
the controllers to flash memory chips. A channel may be shared by
multiple chips. To address the technical constraints of flash memory,
a Flash Translation Layer (FTL) is implemented in the firmware for
flash management, such as garbage collection and wear-leveling,
and to provide a generic Logical Block Address (LBA) interface to
mimic a Hard Disk Drive (HDD). More details can be found in prior
studies [14, 22, 25, 26]. In this paper, we use “flash” and “flash SSD”
interchangeably, unless otherwise specified.
Flash-based Key-value Cache. Flash memory provides high band-
width and low latency [14, 25], which makes it suitable to serve
as a cache or fast storage in various environments [17, 23, 24, 36,
38, 41, 43, 44, 47, 48]. A recent application is to move key-value
cache from memory to flash. Two popular examples are Facebook’s
McDipper [8] and Twitter’s Fatcache [3], which use flash as the
storage media to provide key-value cache services. Here we take
Fatcache as an example to briefly introduce the current design.
Fatcache adopts a classic slab-based space management [20],
following the Memcached protocol. In Fatcache, the flash space is
segmented into fixed-size slabs, each being further divided into a
group of fixed-size slots. Each slot stores a key-value item. The slabs
are logically grouped in different slab classes based on the slot size.
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Given a key-value item, the smallest slot that can accommodate
the key-value and the related metadata is selected. A hash table is
maintained in DRAM memory to index the key-value items stored
in flash. A query (GET) is completed by searching the mapping table
to find the location (slab/slot) of the corresponding value in flash
and then loading it into memory. An update (SET) writes the data
to a new location in flash and updates the mapping accordingly.
Deleting a key-value item (DELETE) only removes the mapping from
the hash table. The deleted or obsolete key-value items are left in
the slabs for Garbage Collection (GC) to reclaim later.

3 MOTIVATIONS

A large capacity of flash space allows us to build a huge cache to
accommodate more key-value data. However, to locate and retrieve
the target data, the key-value items cached in flash must be in-
dexed. The current all-in-memory mapping scheme, unfortunately,
demands an excessively large amount of memory. Here we discuss
several critical issues that motivated this work.

3.1 Inefficiency of All-in-memory Mapping

The current design of flash-based key-value cache is a close em-
ulation of their memory-based counterpart. As the main reason
to adopt flash for caching is to expand the cache space, a natural
solution is to directly move the key-value data into flash, while
leaving the mapping structure, which receives intensive small and
random accesses, in DRAM memory for fast queries.

Such an approach is effective (only one flash I/O is needed), but
unscalable. Due to the small size of key-value items in typical Inter-
net services, the memory demand for holding the mappings entirely
in memory turns DRAM memory into a critical and expensive bot-
tleneck. In the current Fatcache, as mentioned previously, 150 GB
of memory is needed for indexing 300-byte key-values in a 1-TB
cache. For the same reason, the limited memory capacity would
become the factor constraining the usable flash cache space. In the
same example, assuming a memory capacity of 75 GB, only half of
the flash space would be usable for caching.

The root cause of the above-said large memory demand problem
is that, the current design simply assumes all the key-value items are
equally important, which is a false assumption. A recent analysis on
Facebook’s workloads points out that a strong locality is observed
in real-world cache systems—a few key-value items are accessed
millions of times a day, while most key-values are only accessed
a handful of times [18]. Further considering that a typical flash
key-value cache is 10 to 100 times larger than an in-memory cache,
we cannot continue to assume all the data are the same and treat
them equally. In other words, it is unnecessary to hold them all in
memory. We may reduce the memory needs by only holding the
mappings for the most popular key-values in memory.

3.2 Limitations of Swapping

A possible solution to address the memory challenge is to directly
use a flash SSD as a swap device [37]. Modern operating systems,
such as Linux, allow to use an external block device as a swap
space to temporarily store “cold” memory pages. For key-value
caching, unfortunately, such a solution is unsuitable. This is for
several reasons unique to key-value cache systems.

First, compared to a mapping entry (44 bytes in Fatcache), the
system-level swapping happens in a much coarser granularity (4-KB
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page in default). An access to a hot mapping entry would misguide
the operating system to label the whole page as a hot page, even
when the other entries in the same page could be cold. Second,
due to its random nature, the hash mapping entries are uniformly
distributed in the hash space, meaning that hot and cold entries
are mixed together and evenly distributed in the hash space. Con-
sequently, it is difficult to differentiate the pages based on their
access temperature. Third, since the flash-based key-value cache
writes data in an out-of-place manner, each SET operation would
result in an update to the corresponding mapping entry. If directly
using flash as a swap space, a large number of small, random writes
would be generated, which is an undesirable I/O pattern for flash
devices [14, 25]. In Section 5.5, we will show an experimental com-
parison of our scheme with the swapping solution.

4 DESIGN

To address the memory challenge, we propose a hierarchical map-
ping scheme, called Cascade Mapping, for efficiently managing a
large-capacity flash-based key-value cache.

4.1 Cascade Mapping Structure

A critical component in key-value cache is the mapping structure.
Upon a query, the mapping table must be first looked up to find
the key-value’s location in flash. Thus, its design directly affects
performance. Our goal is to minimize the memory usage of the
mapping structure while still achieving high performance.

In this paper, we present a highly efficient mapping structure,
called Cascade Mapping, which exploits the strong temporal locality
in key-value workloads. As illustrated in Figure 1, Cascade Mapping
is a hierarchical structure consisting of three tiers, one in memory
and two in flash:

o Tier 1: A hash-based mapping table is completely maintained in
memory to record the mappings of hot key-value items. Though
small, this in-memory hash mapping structure is expected to serve
the majority of incoming queries, incurring no flash I/Os.

o Tier 2: A set of mapping blocks is maintained in flash to record
the mappings of warm key-value items, which are the most recently
demoted from the first tier. Leveraging the internal parallelism of
modern flash SSDs, a lookup in a batch of blocks can be quickly
completed in a parallelized, high-bandwidth manner.

o Tier 3: A dual-mode hash table resides in flash and maintains
two bucket-and-link based structures to manage the mappings of
cold key-value items, which account for the most cache space but
receive only a small percentage of queries.

With such a 3-tier mapping structure, we aim to move the infre-
quently queried key-value mappings out of the DRAM memory to
the high-speed flash SSD, allowing us to significantly reduce the
demand for memory while still being able to deliver nearly iden-
tical performance. To achieve this goal, the key challenge is—how
can we minimize the involved flash I/Os as much as possible? In the
following, we will discuss the design details of each tier and the
techniques to address this challenge.

4.1.1 Tier 1: An In-memory Indexing Table. As discussed previ-
ously, the strong locality of key-value accesses implies that only
a small set of mappings is frequently requested [18]. The Tier-1
indexing structure maintains the hot mappings in DRAM memory
to handle most queries with a fast response time.
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Figure 1: An Illustration of Cascade Mapping Structure.

Figure 1 illustrates the design of the in-memory indexing struc-

ture. We first divide the hash space into multiple logical partitions.
This is for two purposes. First, each partition can be operated inde-
pendently. Second, the multiple partitions allow us to create par-
allelized I/Os. During demotion, each partition can independently
produce an I/O stream and flush the demoted mapping entries to
the SSD in parallel, fully exploiting the great bandwidth potential
of flash devices [22, 26].
Caching Policy. To evict the cold mappings, a simple Least Re-
cently Used (LRU) policy can be used to track the access recency
of the key-values as in Memcached. This approach is accurate but
demands extra memory space for maintaining the LRU stack. Simi-
lar to prior work [32], we adopt the CLOCK algorithm [27], which
approximates the LRU replacement, working as follows.

We associate each key-value mapping entry with a reference bit,
initialized to 0. Upon a request, the mapping entry’s reference bit
is set to 1. Thus, a reference bit of 0 indicates that the mapping has
not been recently accessed, i.e., the cold mappings for demotion.

When the number of Tier-1 mappings exceeds a predefined limit
(e.g., 10% of the entire set of mapping entries), we demote roughly
an equal number of cold mappings from each bucket to the second
tier. Assuming N mapping entries to be demoted from M hash
buckets, each hash bucket needs to demote n = [%] mapping
entries. We start from the first bucket and scan the list of mapping
entries. If the entry has a reference bit of 0, its mapping entry ID is
recorded for demotion; otherwise, we reset its reference bit to 0 and
skip it. If n entries are collected, we move to the next hash bucket.
This process repeats until all N mapping entries are collected.
Virtual Buffering. During the demotion, the cold mapping entries
need to be written to the flash SSD. In order to create a large,
sequential I/O pattern, we virtually maintain a pool of cold mapping
entries by recording their mapping entry IDs (not the mapping
content). The pool size is equal to the direct mapping block in flash
(see Section 4.1.2). Once the pool is filled up, we copy the mapping
entries into a dynamically allocated buffer and flush to the flash
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SSD in bulk. This design reduces the memory overhead and ensures
to generate large flash I/Os, being optimal for flash devices.

4.1.2  Tier 2: A Direct Indexing in Flash. The second mapping
tier uses flash to store the mapping entries demoted from Tier 1.
It can be regarded as an in-flash extension of the Tier-1 indexing
structure, holding the warm key-value mappings, which receive
less but considerable amount of requests.

The basic operation unit in the Tier-2 indexing structure is a
direct mapping block, which contains a set of key-value mapping
entries demoted from the first tier as described above. For each par-
tition, the second tier maintains in flash an array of direct mapping
blocks, which are organized in the First-In-First-Out (FIFO) order.
When a new direct mapping block is added into the second tier,
correspondingly the oldest one is demoted to the third tier, creating
a “waterfall” process.

Compared to Tier 1, which allows a quick hash-index based
search in memory, the entries of the Tier-2 mapping blocks are not
indexed, simply being stored in flash in their original FIFO order.
It holds two advantages: First, it saves memory and simplifies the
design. Second, it allows us to easily determine the most up-to-
date mapping according to the FIFO order (the newest one always
appears in the latest position). Also, unlike in a linked list structure,
multiple mapping blocks can be loaded simultaneously.
Parallelized Batch Search. To achieve a quick search within the
array of direct mapping blocks, the key idea is to leverage the high
bandwidth of a flash SSD, which is enabled by its rich internal
parallelism [22, 26]. It works as follows.

Upon a query, we first identify the hash partition with the hashed
key. Then we load a batch of direct mapping blocks from flash using
parallel 1/Os, starting from the newest block. In one batch, each
I/O thread loads one mapping block and directly carries out a one-
to-one comparison in memory to search for the target key. Since
modern flash SSDs are able to provide a high bandwidth (e.g., 100s
of Megabytes/Sec to Gigabytes/Sec), such parallel I/O operations
can be completed at a very high speed—multiple parallel I/Os in
effect can be completed in the time of one flash I/O, because data
can be simultaneously transferred over multiple channels inter-
nally [22, 26]. This process is repeated until finding the target key
or completing the scan of all the direct mapping blocks.

The block size can affect the response time. A large block size
(e.g., 128 KB) is more I/O efficient, but it takes longer to load and
scan a block each time; a smaller block size (e.g., 4 KB) splits the
scan into multiple batches, but due to the FIFO order, if the target
mapping is found, it can immediately stop and return.

The optimal parallelism degree is determined by the available
flash channels and CPU cores. According to prior work [22, 26],
a reasonable number of parallel I/Os is sufficient to fully utilize
the bandwidth. In our experiments, we find that 8 threads with
16-KB blocks work well in most cases. We will study the effect of
the mapping block size and the parallelism degree in Section 5.4.

4.1.3  Tier 3: A Dual-mode Linked Hash Table. Tier 3 organizes a
bucket-and-link based hash indexing structure in flash to manage
the mappings for the cold key-values, which account for the ma-
jority in the cache. The challenge is how to minimize the memory
usage and also the incurred flash I/Os.

A naive solution is to divide the key-value mappings into a set
of hash buckets based on the key’s hash index. Each bucket has a
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Figure 2: A Comparative Illustration of Narrow, Wide, and Dual-mode Hash Tables. The ellipses represent the block buffers in memory.

The white boxes represent the indirect mapping blocks stored in flash.

linked list of indirect mapping blocks, each of which stores a set
of mapping entries on flash, forming a FIFO queue. Upon a query,
the hash index is taken to find the corresponding bucket and then
traverse the link of blocks to search for the queried key.

The above-said hypothetical in-flash hash mapping structure
raises a critical issue in practice: Since we cannot write each indi-
vidual, small hash mapping entry into the flash (otherwise, it would
result in many small, random writes), we have to first temporarily
hold them in a memory buffer, whose size is equal to the indirect
mapping block. When the buffer is filled up, we flush the entire
mapping block into flash to avoid the flash-unfriendly, random
write traffic. Each bucket needs to have such a buffer.

A technical dilemma emerges—if we maintain a large number

of hash buckets (e.g., 1 million buckets), the list of the correspond-
ing bucket would be short, meaning that less I/Os are needed for
walking the linked list. However, it would suffer from high memory
overhead. Assuming a 4-KB block size, the buffers would account for
about 4 GB memory in total, which is non-trivial. On the contrary,
if we maintain a small number of hash buckets (e.g., 1 thousand
buckets), the memory consumption is low (only 4 MB), but the list
of the indirect mapping blocks in each bucket would be excessively
long, meaning that a large number of flash I/Os would be involved
for the list walk, causing performance issues.
Dual-mode Mapping. To address this critical challenge, we have
developed a Dual-mode Mapping scheme. We maintain two bucket-
and-link structures on flash, an active hash table and an inactive
hash table. The former is a narrow hash table, which has a small
number of hash buckets, while the latter is a wide hash table, which
has a large number of hash buckets. The key difference between
the two lies on the memory buffers: In the active hash table, each
bucket has a dedicated memory buffer; in the inactive hash table,
for the sake of memory saving, only a subset of the buckets are
given a dynamically allocated temporary buffer.

The dual-mode mapping works as a two-level structure (see
Figure 2c). The key-value mappings demoted from Tier 2 are first
accommodated in the buffer of the corresponding hash bucket of
the active hash table. When it is filled up, the buffered mappings are
flushed into an indirect mapping block, which is added to the head
of the corresponding bucket list in the FIFO order. When the list
length exceeds a threshold (e.g., 64 blocks), the entire FIFO list is

taken off the active bucket, and a compaction procedure is launched
to move the mappings into the inactive hash table.

The compaction procedure walks through the full list of the
active hash table, loads each key-value mapping entry, and inserts
it into a dynamically allocated buffer of the corresponding hash
bucket in the inactive hash table. Note that since the inactive table
is much “wider” than the active table, compacting one active hash
list could involve a range of inactive hash buckets. For example,
assuming that we have 1,024 active hash buckets and 1,048,576
inactive hash buckets (i.e., Inactive/Active Ratio of 1,024), it would
take 1,024 inactive buckets to cover the range of one active bucket
in the hash space. Since each time the compaction procedure only
handles one active hash bucket, it would only involve a small set of
inactive hash buckets at a time.

The dual-mode mapping design dramatically reduces the need
for memory. In the worst case, we only need 2,048 block buffers
(1,024 for the active table and 1,024 for the inactive table) in the
example above. It allows us to enjoy the advantages of both—the
narrow active table allows us to reserve only a small amount of
memory to maintain the buffers for collecting incoming mappings;
the wide inactive flash table allows us to walk through a short list
and use only a few flash I/Os to load the blocks for a lookup.

Upon a query, the active hash table is first searched and then the

inactive hash table. The active and inactive hash tables do not form
a cache hierarchy but simply a two-level structure, i.e., the active
hash table is essentially a large buffer. We will study the effect of
compaction and the active table list length in Section 5.4.
Jump List. Compared to the Tier-2 indexing, which allows a fast,
parallel scanning of a batch of blocks in a high-bandwidth manner,
the Tier-3 hash tables organize the mapping blocks in a linked list
structure, which is suitable for lookups among a large and growing
amount of mapping entries. However, walking through a long hash
bucket list would cause a chain of flash I/Os.

In the narrow active hash table, each hash bucket has a relatively
long list of mapping blocks, meaning that a query may involve many
flash I/Os in a sequence. We present a simple method, called Jump
List, for optimization. Every D blocks, we insert a Bloom filter [1]
in the list to indicate the existence of the key-value mappings in
the following D blocks. When walking through the FIFO list, we
first check the Bloom filter, if it indicates that the queried key is
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not resident in the following D blocks, we simply skip these blocks
and check the next Bloom filter, and so on.

Linked List

\ - \ -
| Jump Distance | | Jump Distance |

Jump List

Figure 3: Linked List vs. Jump List.The grey boxes represent the
Bloom filters. The white boxes represent the mapping blocks.

We set the jump distance D as [VK ], where K is the list length
(in blocks). It ensures that scanning the list would take no more
than D x 2 flash I/Os. In our prototype, we use a relatively large
block size, 128 KB, since the jump list search is a serial operation
and a large I/O request size is more efficient [25].

For I/O efficiency, a Bloom filter and its immediate following
mapping block are stored together in flash, and also loaded together
into memory during the list walk (see Figure 3). We have considered
to add a large Bloom filter to cover the entire list, but we find that
as the list grows, the Bloom filter needs to be updated for each
insertion and its effectiveness also quickly weakens. Our prototype
uses a 128-KB Bloom filter for every 8 blocks (2 bytes per mapping
entry), which has a false positive rate of 0.5%.

4.2 Key-value Cache Operations

There are four basic operations in SlickCache, read, update, inser-
tion, and deletion. The workflow of each one is as follows.

Read. Upon a key-value query (GET), SlickCache first calculates a
hash value Hash(key) for the key being searched. (1) We first look
up the hashed key in the Tier-1 hash table of the corresponding
partition in memory. If found, we follow the pointer (Slab_ID and
Offset) to retrieve its value data from the flash SSD. If the hashed
key is not found in memory, we continue the search on the Tier-2
indexing structure in flash. (2) In Tier 2, multiple parallel I/Os load
the direct mapping blocks into memory to quickly search for the
target key. It may take multiple batches, and if the key is found,
the search stops. If more than one matched record is found, the
latest one is returned. If the above two steps both fail, which is a
relatively rare case, we need to search among the Tier-3 mappings
via the dual-mode hash tables. (3) In Tier 3, the active hash table
is searched first by walking through the list of indirect mapping
blocks. Jump list and Bloom filter accelerate this process. If nothing
found, we continue to search the inactive hash table. In the above
steps, if the mapping is found in flash, we promote it to Tier 1 and
retrieve the value data; otherwise, the key-value item is not cached,
and the client needs to request the data directly from the backend
data store and then inserts the key-value into SlickCache.
Insertion/Update. In SlickCache, insertion and update are treated
in a similar way. Upon an insertion request, SlickCache first writes
the key-value data into a slab, which is selected according to the
slot size. Then we add its mapping entry to the Tier-1 hash table
in memory. Update is similar, except that if the mapping is found
in memory, we simply update the mapping entry with the key-
value item’s new location; otherwise, a new mapping is created and
inserted into the Tier-1 in-memory hash table.
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Deletion. In Fatcache, deleting a key-value item simply removes its
mapping with no further actions. With our in-flash mapping design,
this does not suffice to ensure that the deleted data are unreachable,
since the mapping could still be found in the two in-flash tiers. There
are two possible solutions: (1) Search and delete the mappings of
the target key from flash, or (2) insert a “tombstone” key-value
with a magic number (a randomly selected 160-bit SHA-1 hash)
in the value field and mark the mapping entry as “deleted”. Both
have advantages and disadvantages. The former incurs high time
overhead, while the latter consumes extra flash space. Considering
the performance requirement and the abundance of flash capacity,
we choose the second option and let GC to reclaim the space later.
It is also worth noting that inserting the tombstone key-values
in effect logs the deletion operations, which facilitates safe crash
recovery (see Section 4.4).

4.3 Garbage Collection

Flash SSDs favor large and sequential writes. Upon operations, such
as deletion and update, the flash cache simply writes the update to
a new location and changes the mapping accordingly. The deleted
or obsolete data are left in the original slab. When the system runs
low on free slabs, Garbage Collection (GC) is triggered to reclaim
the oldest slab in the FIFO order.

The victim slab may contain both alive and invalid (deleted or
obsolete) data. SlickCache implements two eviction schemes.

e Space-oriented Eviction: A simple scheme is to erase the entire
slab, disregarding the aliveness of the key-values in the slab. This
process is fast, since no data need to be copied to a new location.
However, due to the FIFO nature, such a simple approach may
blindly evict hot data, negatively affecting the hit ratio. Twitter’s
Fatcache adopts such a scheme for its simplicity.

e Hit Ratio-oriented Eviction: Cascade Mapping has a unique advan-
tage that allows us to easily obtain the locality information—if a
key-value can be found in the Tier-1 mapping, it implies that this
is a hot item. Leveraging this opportunity, we can quickly identify
the locality of a key-value item in the victim slab by querying the
Tier-1 mapping. If found, this key-value is reasonably hot, then we
copy it to a new slab, preserving frequently accessed key-values in
cache. Otherwise, we simply drop it. Any deleted or obsolete item
will also be dropped during this process, since it is impossible to be
referenced by any valid mapping entry in memory.

The above-said two policies both have advantages and disadvan-
tages. The former can quickly reclaim space but may impair the hit
ratio, while the latter incurs costly data copy but retains a high hit
ratio. Thus, the former is more suitable for urgent situations where
free slabs are needed immediately, while the latter is suitable for
maintaining a long-term cache effectiveness.

Adaptive Two-phase GC. SlickCache adopts an adaptive two-
phase GC approach, similar to prior work [48]. It dynamically
switches between the two policies. We set a low watermark Wp,,,
and a high watermark Wj; 4. (1) When the system is under high
pressure (the number of free slabs is below Wp,,,), a quick space
reclamation is needed, so the space-oriented eviction is triggered to
free slab space quickly. (2) When the number of free slabs reaches a
moderate level (between Wy,,, and Wy;4p), the GC policy switches
to the hit ratio-oriented eviction for a better overall performance. (3)
When the number of free slabs reaches a high level (above Wp;4p),
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the GC stops until it falls below the watermarks again. We will
study the effect of GC and the watermarks in Section 5.4.
Zero-1/0 Demapping. When reclaiming the alive key-values in a
victim slab, we must remove the corresponding mappings from the
indexing structure (i.e., demapping). Otherwise, they will become
dangling pointers. A critical challenge in our scheme is how to
invalidate the in-flash mappings without incurring costly I/Os.

A simple solution is to arbitrarily generate a “delete” request to
directly remove the key-value. However, it would generate much
traffic to the indexing structure and the key-value cache, incur-
ring non-trivial overhead. In the following, we present an zero-I/O
demapping scheme.

We maintain a global Slab Sequence Counter, Sgs which incre-
ments upon each allocation of a free slab. The Slab_ID recorded in
the mapping entry is a combination of the ID of the physical slab
and the global sequence counter value upon allocation. Since the
slabs are reclaimed in the FIFO order, if a slab i’s sequence number,
si, is no greater than S; — N, where N is the total number of slabs,
it must have already been reclaimed. Leveraging this rule, we can
simply reclaim the key-values in the victim slab without explic-
itly removing the mappings. This is safe—upon a request, after the
mapping lookup, we can easily recognize if the found mapping
entry points to an already-reclaimed slab or not, since a reclaimed
slab’s sequence number must be no greater than Sy — N. If true,
we simply discard it and return; otherwise, we can safely retrieve
the data. Using this demapping strategy, no flash I/Os are needed
during GC. The obsolete mappings only consume a trivial amount
of flash space. If needed, they can be removed offline by a routine
service, which is not implemented in our current prototype.

4.4 Crash Recovery

A critical problem with the all-in-memory mapping approach is
that upon power failure or system crash, the mapping information
would be destroyed, rendering the loss of the entire key-value cache.
As aresult, the cache has to be warmed up again, which often takes
a long period of time (hours or days) for a large cache [51].

In Cascade Mapping, when the system is restarted, only a small
amount of in-memory mappings would be lost, but the in-flash
mappings would survive, making it possible to keep the cache warm
across power cycles. However, a complication must be addressed:
A mapping entry stored in flash could be outdated, since a more
recent version may have existed in memory before the crash. In
such a case, an obsolete value would be returned erroneously.

A possible solution is to log every change made to the in-memory
mappings, such as deletion and update. Although it ensures that
all the in-memory updates be made persistent immediately, this
approach would incur many small, synchronous writes to flash,
affecting performance. A battery-backed NVM can partially address
the problem, but it would cause additional cost. We have developed
a more efficient solution to handle this situation.

Slab-based Log Recovery. Our method is a type of data journal-
ing [46] for efficient crash recovery. We leverage the fact that the
slabs are allocated and reclaimed in the FIFO order. As each slab slot
contains the complete key-value information, the FIFO sequence of
slabs in effect forms a big “log”, i.e., journal.

o Checkpointing: We periodically flush the dirty in-memory map-
pings and record the latest slab sequence counter (see Section 4.3)
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in a reserved space in flash, as a checkpoint. It indicates the point
before which all the mappings have been persistently saved.

® Crash Recovery: Upon crash recovery, we first reload the mappings
from the reserved space to restore the in-memory mappings to the
latest checkpoint. Then we scan the slabs in the order of their
sequence numbers, starting from the one right after the checkpoint,
to reconstruct the mapping structure by rolling it forward to the
most recent state before the crash.

It is possible that a restored mapping entry might also be in flash
due to the demotion. It is safe, since the mappings are in the FIFO
order. We may avoid such duplication by querying each recovered
key, but it would significantly extend the recovery time. As crash
recovery happens rarely and such a flash space waste is minimal,
we choose to simply leave them in flash and phase them out by GC.
We will study the effect of crash recovery in Section 5.6.
Discussions. The crash recovery process can quickly restore the
cache to its original state before the crash. In practice, it is still possi-
ble that the cache server becomes out of sync with the backend data
store during the short downtime. In fact, it is a common challenge
for persistent caches, especially in distributed environment [31].
Although completely addressing this issue is out of the scope of this
paper, simple solutions exist. For example, the client or a proxy can
log the uncommitted changes during the downtime and resubmit
(or invalidate) the out-of-sync key-values when the cache server is
back on-line. The bottom line is, if necessary, the entire cache can
be easily invalidated, which in effect makes the handling of system
crash identical to the current key-value cache design.

5 EVALUATION

5.1 Implementation

We have prototyped SlickCache based on Twitter’s Fatcache [3].
Our implementation adds about 3,800 lines of code in C to Fatcache-
Async [4, 48]. Several implementation details are as follows.

Our current prototype divides the hash space into 32 partitions
in Tier 1. We currently reserve dedicated space for the reference
bits for the CLOCK algorithm. A bit in the unused expiry of the
mapping entry could be borrowed as the reference bit. In Tier 2, we
create a shared pool of 64 threads using pthread to carry out the
parallel I/Os. For the compaction in Tier 3, we maintain a temporary
buffer for each involved inactive hash bucket. If the active hash list
is short and the inactive/active ratio is large, the buffer may not
be completely filled up for a large (128 KB) mapping block. In our
current prototype, we bypass this issue by reserving a block-size
space in flash but allowing to append data multiple times. Each I/O
must be no smaller than 4 KB. Another solution is to use a smaller
inactive block size, but it would incur more I/Os upon queries.

5.2 Experimental Setup

Our experiments are conducted on three Lenovo ThinkServers.
Each server is equipped with a 4-core Intel Xeon 3.4 GHz processor,
16 GB memory, and a 7,200 RPM 1-TB Seagate disk drive. The
cache server is equipped with a 240-GB Intel 730 SSD, which is
used as our cache media, and runs 8 key-value cache instances
as in prior work [48]. To complete our tests in a reasonable time
frame, we only use part of the SSD capacity for caching in our
experiments, being proportional (6-12%) to the workload’s dataset
size. Our backend data store is a MongoDB 3.4 database running on
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Figure 4: Overall Performance with Fixed Cache Size. The key-value cache size is set in proportion (6% to 12%) to the workload’s dataset
size. Results are collected for the workloads with Hotspot, Zipfian, and Normal distributions.
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Figure 5: Overall Performance with Fixed Memory Size. The memory portion is configured to hold 10% of the entire set of mapping entries
for SlickCache and SlickCache-GC. Results are collected for the workloads with Hotspot, Zipfian, and Normal distributions.

a 7,200 RPM Seagate 2-TB hard drive. The system and database are
installed on two separate disks. The client server runs 32 clients
for generating requests to the cache server. The three machines are
connected in a 1Gbps local Ethernet network. For the software, we
use Ubuntu 16.04 with Linux kernel 4.12 and Ext4 file system.

We use the Yahoo! Cloud Serving Benchmark (YCSB) [6, 13] as
the tool to generate key-value workloads, following three popularity
distributions, Hotspot and Zipfian in YCSB, and Normal as described
in prior work [21, 49], to simulate the traffic in cloud services. The
key-value data content is not of interest in this study and thus
filled with random data. Our synthesized workloads follow the size
distribution reported in prior work [18]. The average key size is
30 bytes and average value size is 270 bytes. All throughput and
latency data are collected on the client machine.

In our evaluation, we run Fatcache with all-in-memory mapping,
SlickCache with Cascade Mapping, and SlickCache-GC, which is
further optimized with our two-phase GC (see Section 4.3). Our
first experiment set evaluates overall performance with a complete
system setup. Then we focus on the cache server to study each
component individually. Finally, we give the overhead analysis.

5.3 Overall Performance

We first evaluate the overall system performance, given a fixed
flash cache size or a fixed memory size. Our experimental system
simulates a typical key-value caching environment, consisting of
multiple clients, a key-value cache server, and a MongoDB database
server as the backend. The parameter settings of SlickCache are as
described in Section 5.4.

o Fixed Cache Size. For a given flash capacity, SlickCache is ex-
pected to consume significantly less memory while still retaining
satisfactory performance. We vary the cache size in a range from

6% to 12% of the entire workload dataset. We first generate 1 billion
key-value pairs, which account for about 300 GB. All key-value
pairs are inserted into MongoDB, indexed by the keys. We generate
500 million access requests to the cache server with a SET/GET ratio
of 1:30 as described in prior work [18]. We first warm up the cache
with the first 400 million requests, and then collect results for the
rest 100 million requests.

Our SlickCache is configured to hold the hottest (10%) mappings
in memory at Tier 1. As we use direct I/O in our experiments, the
memory is only for storing the mappings not for caching data. A
possible use of the saved memory is to create a data cache to further
improve performance. We leave it as our future study.

Although SlickCache only uses about 10% of the memory used by
Fatcache, it still achieves comparable or even better performance.
Figure 4 shows the throughput results. Despite the much lower
memory usage and more complicated indexing structure, Slick-
Cache achieves comparable performance to the stock Fatcache (less
than 1% difference). SlickCache-GC further increases the through-
put by 85% (in Hotspot distribution) when cache size is set to 12%.
Under such setting, the hit ratios for Fatcache and SlickCache are
67.8% and 90.2%, respectively. This is due to the optimized GC policy,
which leverages the locality information enabled by our multi-tier
design and effectively keeps the hot key-value items in the cache
server (see Section 4.3), yielding a higher performance.
¢ Fixed Memory Size. As an alternative approach for optimization,
for a given memory space, SlickCache can significantly enlarge the
usable cache space by maintaining part of the mapping table in
flash, allowing us to deploy a much larger cache than the stock
Fatcache, whose usable cache space is fundamentally limited by
the DRAM memory capacity. In this experiment, we use the same
data set as above and vary the total usable memory space in the
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system from 512 MB to 4 GB. The Tier-1 is configured to cover 10%
of the entire mapping entries. Figure 5 shows that both SlickCache
and SlickCache-GC significantly increase the throughput by up to
125 times, which is due to the significant hit ratio increase (by up
to 8.2 times) enabled by the much larger cache space.

5.4 Cache Server Performance

In this section, we focus on the cache server and study each design
component individually, as well as important parameter settings.
All requests are directly sent to the cache server without involving
the backend database to fully load the cache system for testing.

o Tier-1: In-memory Indexing. The design of Cascade Mapping
leverages the access skewness of key-value workloads. Thus the
size of its in-memory portion (Tier 1) has a strong effect on the
cache performance. We test a variety of in-memory mapping table
sizes (4% to 20% of the “all-in-memory” mapping table size as in
Fatcache). In this test, we synthesize a working set of 100 million
key-value pairs with a SET/GET ratio of 1:30, following the three
popularity distributions.

Figure 6 shows the cache hit ratio with the increase of the portion
of mapping entries in memory. The results show diminishing gains.
By increasing the in-memory portion from 4% to 10%, the cache hit
ratio significantly increases by 46.1, 42, and 13.5 percentage points
(p-p.) for Hotspot, Zipfian, and Normal distributions, respectively.
Further increasing the Tier-1 portion from 10% to 20% only receives
a small (3.4-10.5 p.p.) hit ratio increase but doubles the memory
cost. This trend is less noticeable with Normal distribution due to
the weaker temporal locality. As our goal is to balance between the
overall performance and memory consumption, caching 10% of the
workload’s mappings in memory works well in general.

The Tier-1 cache replacement algorithm identifies the cold map-
pings for demotion. Figure 7 compares the performance of three
algorithms, FIFO, LRU, and CLOCK, for the Zipfian distribution
workload. As an approximation of the LRU algorithm, CLOCK
achieves nearly identical performance but is more memory effi-
cient (only 1 bit per mapping entry). FIFO performs the worst, as
expected, which also explains the suboptimal performance of the
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Figure 10: Efficiency vs. Number of Blocks. Figure 11: Length of Active Hash Table List.

FIFO based slab management in the stock Fatcache. Our enhanced
GC addresses this issue effectively as shown in Section 5.3.

o Tier-2: Direct In-flash Indexing. The second tier manages an
array of direct mapping blocks, which are stored on flash in the
FIFO order. To speed up the lookup, Tier 2 uses parallel I/Os to
aggressively load a batch of mapping blocks for a one-to-one com-
parison in memory. A proper setting of parallelism degree and block
size is important for both throughput and latency.

We first test a variety of block sizes (4 KB to 128 KB) and paral-
lelism degrees (1 to 16 jobs) to study their effect on performance.
As this micro-benchmark is for testing the Tier-2 structure, we only
use the demotion buffer of the first tier to accumulate mapping
entries into an in-flash block and we directly insert the key-value
if not found in Tier-2, which in effect bypasses the two other tiers.
This test uses a SET/GET ratio of 1:30 with Zipfian distribution.

Figure 8 and Figure 9 show the throughput and the latency with
different parameter combinations. We can see that with 8 parallel
1/Os, the overall throughput reaches nearly the peak (about 7,100
ops/sec), and further increasing parallelism degree only brings lim-
ited throughput benefit but quickly increases the latency, since the
device is saturated. Block size affects the latency significantly. With
8 parallel I/Os, the average latency is 0.29 ms for 16-KB blocks,
only about half of using 32-KB blocks. It is because as the device
bandwidth reaches the peak, increasing the block size would pro-
portionally take more time to transfer the data and to complete the
one-to-one comparison in memory, resulting in a longer response
time. Thus, using 8 parallel I/Os with 16-KB blocks on our platform
(4 Cores, 8 Channels) generally reaches a balance between fully
using the bandwidth and retaining a low latency.

The Tier-2 size (i.e., the total number of direct mapping blocks) is
important. Maintaining a large array of blocks allows more mapping
entries to be scanned in a high-bandwidth manner, rather than
walking a long linked list as in Tier 3, but more batches of I/Os
could be involved without contributing much to hit ratio. Figure 10
shows the I/O efficiency (i.e., the number of hits per batch). We
enable Tier 1 and use 8 parallel I/Os with 16-KB blocks in this test.
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We can see that increasing from 8 blocks (one batch) to 64 blocks (8
batches), the efficiency stays stable, about 0.8 hits/batch, meaning
that one batch of parallel I/Os can find 0.8 mapping. Compared
to Tier 3, which needs 8 to 9 flash I/Os for a mapping query, this
efficiency is satisfactory. When it exceeds 64 blocks, the efficiency
decreases. Thus we set an array of 64 mapping blocks in Tier 2.

o Tier-3: Dual-mode Mapping. The dual-mode mapping in Tier 3
is a hybrid indexing structure with a narrow active table and a wide
inactive table. The shape of the two hash tables are determined by
the list length of the active hash table and the inactive/active ratio,
both affecting the lookup performance.

We vary the number of mapping blocks in the linked list of
active hash table bucket from 4 blocks to 1,024 blocks, and the
inactive/active ratio from 128 to 1,024. Since we are only interested
in Tier-3 mappings, we set the Tier-1 table size to 16 KB and the
Tier-2 mapping block to 1, so both tiers simply pass the mapping
data to Tier 3. To illustrate the effect of compaction, we configure
a mixed read-write workload (SET/GET ratio of 1:1) and generate
100 million requests with Zipfian distribution. We use a 128-KB
block size for I/O efficiency, as described in Section 4.1.3.

Figure 11 shows that increasing the length of active hash table

list from 4 blocks to 64 blocks effectively improves the throughput
by 2.9 times (for ratio 1,024). With a short list, the compaction hap-
pens frequently and interferes incoming requests, but less indirect
mapping blocks need to be scanned, meaning less I/Os. A long list,
on the contrary, involves more I/Os but triggers compaction less
often. This effect is evident in the curves. Setting the active list
length to 64 blocks reaches the peak performance. We find this
setting also works well in read-intensive workloads (SET/GET ratio
of 1:30). We choose an inactive/active ratio of 1,024, which creates a
wider hash table compared to using a lower ratio (512) and demands
a reasonable amount of temporary buffer (at most 128 MB).
e Garbage Collection (GC). The GC process reclaims slabs by
adaptively switching between two eviction policies, the space-
oriented eviction and the hit ratio-oriented eviction. The former is
fast but disregards the locality; the latter is slower but retains hot
items in cache. The setting of low and high watermarks determines
which policy is used when the system runs low on free slabs.

GC Watermarks: Low-High (%)
1-4  2-5 3-8 5-10 10-15

Hit Ratio (%) 89.0 894 87.1 825 76.6
Throughput (k ops/s) 137 141 139 133 127
Latency (us) 592 543 538 526 517

Table 1: Garbage Collection Watermark Settings.

To study the effect of the watermarks, we configure a write-
intensive workload (SET/GET ratio of 1:1) with Zipfian distribution.
We vary the watermark settings as shown in Table 1. As we raise
the watermarks, the system tends to quickly clean slabs, including
hot key-values. Although it reduces the latency, the hit ratio de-
creases substantially (from 89% to 76.6%), affecting throughput. If
the backend database is involved, a significant performance loss
would happen due to the high miss penalty. Thus we choose to set
the low and high watermarks as 2% and 5%, respectively.

o Put All Together. Finally, we run a set of experiments to test the
cache server with the above-said parameter settings. Figure 12 and
Figure 13 show the throughput and latency results, respectively.
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We can see that the performance of SlickCache is comparable to
Fatcache in most tests, even though it uses only 10% of the memory.
The worst case scenario comes in Normal distribution with 100%
GET operations, in which SlickCache and SlickCache-GC are about
23% slower than Fatcache due to the weaker locality. In Hotspot
and Zipfian workloads, SlickCache-GC shows a similar throughput
to Fatcache, if not better. Noticeably, with a write-intensive work-
load (SET/GET ratio of 75:25), SlickCache-GC outperforms Fatcache
by 8.4% in terms of throughput for Zipfian distribution. For write-
intensive workloads, GC runs frequently. SlickCache-GC excels
due to the more effective GC policy and the higher hit ratio. In
comparison, SlickCache performs slightly worse (6.6%) than Fat-
cache due to the extra flash I/Os. In the worst case, SlickCache and
SlickCache-GC take about 237 ps and 241 ps longer than Fatcache
to process a query, as shown in Figure 13c. When the database is
involved, such a small loss is almost negligible, not to mention the
significant hit ratio benefit (see Section 5.3).

Tier 1
Hotspot  95.2%

Tier 2 Tier 3
13% (241)  0.5% (8.22)
Zipfian  85.8% 11.9% (3.57) 2.3% (8.86)
Normal 71.7% 22.1% (6.80) 6.2% (9.72)
Table 2: Hit Ratio and I/Os for Mapping Lookups. The average
number of I/Os per mapping lookup is shown in parentheses.

Table 2 shows the percentage of mapping lookups served by
each tier. The results confirm that the majority of requests can be
satisfied in the fast Tier 1 and Tier 2. Only a small portion (0.5%
to 6.2%) of the mapping lookups reaches the slower Tier 3, each
incurring 8.22 to 9.72 flash I/Os on average.

5.5 Comparison with Other Solutions

We also compare SlickCache with two alternative solutions, using
an expensive but fast NVM-based SSD and using a simple swapping-
based solution. Similar to the previous test, the backend database
is not involved in this set of experiments.

o SlickCache on NVM SSDs. Besides NAND flash SSDs, the re-
cently available Intel Optane SSD [5] can also be used as a high-
speed storage media to maintain the mapping entries. The Optane
SSD is built on 3D XPoint Non-volatile Memory (NVM). It is a block
device but provides high bandwidth (2.5 GB/sec) and low latency
(10 ps). Such a high speed makes it a potential storage media for
holding the mapping structures.

In this set of experiments, we move the Tier-2 and Tier-3 map-
pings to a 280-GB Intel Optane 900P SSD. The key-value data are
still stored in the flash SSD for a fair comparison. Optane-GC in
Figure 12 and Figure 13 represents SlickCache-GC with all the map-
pings stored on the Optane SSD. Interestingly, despite the 6 times
higher throughput and 5 times lower latency compared to the flash
SSD, the performance improvement by running SlickCache-GC on
the Optane SSD is rather limited (3.4% to 16.6%). This is because
Cascade Mapping successfully retains the hot mapping entries in
memory, which absorbs the most queries. Only a small portion of
the mapping queries needs to access the SSD.

o Flash as a Swap Device. As discussed in Section 3.2, a straight-
forward solution for addressing the memory challenge is to use a
flash SSD as the swap device. In this set of experiments, we run the
stock Fatcache with mixed read and write operations (SET/GET ratio
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Figure 12: Performance of Cache Server (Throughput). Fatcache stores the mapping entries all in memory. SlickCache and SlickCache-GC
store the off-memory mapping entries in the flash SSD. Optane-GC stores the off-memory mapping entries in the Optane SSD.
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Figure 14: SlickCache vs. Swapping.

of 1:1). We configure to use the same amount of DRAM memory as
SlickCache, and use the flash and the Optane SSDs as the swap de-
vices. Fatcache and SlickCache-GC data in Figure 12 are also shown
for reference. As shown in Figure 14, we can find that using flash
as a swap device results in a poor performance (17.5-18.7 kops/sec),
compared to Fatcache (129-148 kops/sec). Swapping on Optane is
much faster (53.7-59.8 kops/sec) thanks to the advanced NVM tech-
nology, but the overall throughput is still 58.3-59.6% worse than the
all-in-memory Fatcache and 52.5-60.9% worse than SlickCache-GC.
It shows that simply using the swapping mechanism cannot satisfy
the performance requirement. A well-designed structure, such as
Cascade Mapping, is needed to exploit the SSD performance.

5.6 Crash Recovery

In SlickCache, the dirty mapping entries in memory are periodically
saved in flash as a checkpoint. Upon crash recovery, the in-memory
mapping structure is reconstructed by loading the latest checkpoint
and then applying changes made after that. Thus, the frequency of
checkpointing plays an important role and affects performance.
We simulate a sudden crash on the cache server by killing the
cache manager process, and restart it immediately after the crash.

Run Time (min)

Figure 15: Crash Recovery.

4 16 64
Checkpointing Interval (Slab)
Figure 16: Checkpointing Frequency.

We keep a working set of 300 GB in MongoDB, the cache server is
configured to hold 10% of key-value data for the Hotspot workload,
as in Section 5.3. Upon crash, SlickCache reacts with its recovery
policy (see Section 4.4), while Fatcache loses the entire cache and
needs to reload all the data from the backend database.

Figure 15 shows the throughput over time with the Hotspot
workload. The crash happens 4 minutes after the cache is warmed
up. We can see that SlickCache is still capable of serving requests at
a relatively high throughput after the crash. A 14.2% performance
drop was observed due to the loss of clean mappings, but it recovers
to a stable level quickly. In contrast, Fatcache suffers an 82.4%
throughput decrease, since the entire cache is lost and needs to be
warmed up from scratch again, taking hours to bring the throughput
back to the normal level.

Figure 16 shows the effect of the frequency of checkpointing. We
can see that as the checkpointing interval increases from every 1
slab to every 256 slabs, its impact to the normal latencies is reduced
to almost negligible, and the crash recovery time increases to nearly
1 second, since more slabs need to be scanned. Considering that
system crash rarely happens and the normal performance is more
important, we choose to checkpoint every 256 slabs.
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5.7 System Resource Usage

Cascade Mapping is a deeply optimized key-value caching mapping
scheme with a small memory demand. In this section, we analyze
the system resource usage in our current prototype.

o Flash Usage. Several structures are needed in flash. (1) Check-
point for Tier 1 takes at most 176 MB for a checkpointing interval
of 256 slabs. (2) On Tier 2, for each partition, 64 mapping blocks
with the size of 16 KB each are kept on flash. (3) On Tier 3, each
mapping uses a compact 16-byte entry (8 bytes for hash prefix,
4 bytes for Slab_ID, and 4 bytes for Offset) in flash. Assuming the
average object size is 300 bytes, it adds about 6% overhead on flash
storage. The entry size can be doubled to 32 bytes to support a
larger capacity at the cost of about 12% overhead. As the price and
power consumption of flash is much cheaper than DRAM, such an
extra flash space overhead is rather small.

e Memory Usage. To manage the data in flash, and to keep track
of the hot mapping entries in memory, memory overhead in Slick-
Cache is as follows: 1 bit for dirty/clean denotation; 1 bit for ref-
erence bit; a 2-byte clock hand pointer for each in-memory hash
table list; a 2-byte pointer for each Tier-2 mapping block; a 128-KB
dedicated buffer for each Tier-3 active hash table list, and 1,024
dynamically allocated 128-KB buffers for Tier-3 compaction.

Scheme SET GET SET/GET (1:1)

Fatcache 455% 21.9% 38.7%
SlickCache 50.5% 22.7% 40.8%
SlickCache-GC  52.5% 23.1% 42.5%

Table 3: A Sample of CPU Usage.

o CPU Usage. Our prototype adds a shared pool of 64 threads for
parallel I/Os in Tier 2 and a compaction thread in Tier 3, which
incur extra computational overhead. Table 3 shows a sample of the
average CPU usage in the cache server experiments (Section 5.4).
We can find that the CPU usage increase in SlickCache is trivial.
The worst case is observed with 100% SET, in which SlickCache-GC
uses an extra of 7% CPU resource over Fatcache.

6 RELATED WORK

Memory efficiency has been studied in the context of flash storage
and key-value systems in prior work. This section discusses earlier
studies that are most related to this paper.

Flash device firmware manages a logical-to-physical mapping
table as part of the FTL. As the flash capacity increases, the lim-
ited on-board RAM space becomes a technical challenge at the
device level. For example, DFTL [34] selectively stores popular
mappings in RAM to support page-level mapping. GeckoFTL [28]
introduces a structure, called Logarithmic Gecko, to reduce the
integrated RAM requirement and to speed up recovery. Nameless
Writes [50] removes the need for the large and costly indirection ta-
ble by exposing a new interface to the host system. SlickCache aims
to improve memory efficiency for flash-based key-value caches at
the application level, being orthogonal to these prior research.

Flash memory has been recently used in key-value caches. Be-
sides Facebook’s McDipper [8] and Twitter’s Fatcache [3], which
store key-value data completely in flash, Blott et al. has proposed
an FPGA based hybrid solution to store key-value data in both
DRAM and flash SSD according to the value size [19]. In contrast,
SlickCache focuses on managing the mapping information.

K. Wang and F. Chen

Memory efficiency has been considered in prior research on
key-value systems. For example, MemC3 [32] improves the mem-
ory efficiency and throughput for Memcached with CLOCK and
Concurrent Cuckoo hashing techniques. NVMKYV [42] leverages
native FTL capabilities for processing key-value requests and re-
ducing RAM overhead. DIDACache [48] removes the intermediate
mapping layer by directly controlling the flash hardware on Open-
Channel SSDs. SlickCache optimizes flash-based key-value caches
and uses off-the-shelf SSDs, requiring no special hardware.

Several prior works particularly minimize the memory usage in
key-value systems. For example, FAWN [16] reduces memory usage
by using only a fragment of each hash key at the cost of extra flash
reads for verification. BufferHash [15] holds a hash table in memory
as a buffer and flushes it to flash if being filled up, but a lookup
possibly needs to load and search in multiple in-flash hash tables.
BloomStore [40] maintains a chain of Bloom filters to keep the
indexing structure all in flash, demanding a sequence of flash I/Os
to locate a key-value pair. SkimpyStash [29] aggressively reduces
the memory footprint size by keeping a small in-memory hash
table, of which each slot points to a chain of key-value records in
flash with a Bloom filter. Thus a query also involves a chain of flash
reads. SILT [39] optimizes the memory usage by simultaneously
maintaining three types of stores with different memory costs,
which demands a substantial flash space and involves frequent
conversion and merge operations. In contrast, SlickCache does
not require to compact any value data. Compared to these earlier
work, SlickCache, as a cache solution, is more lightweight and uses
a hierarchical mapping structure to optimize the memory usage
while still retaining a low overhead.

Flash has also been used in open-source key-value databases. For
example, RocksDB [11] is a widely used key-value database based
on LevelDB [7] and is optimized for flash SSDs. Facebook recently
presents another system, called MyNVM [30], which integrates
NVM to reduce the DRAM footprint of MyRocks, an MySQL data-
base built on top of RocksDB. Unlike key-value databases, which
need to persistently store data, our design is optimized for key-value
caching, which has different requirements and unique properties,
e.g., if needed, even valid data can be safely dropped.

7 CONCLUSION

Flash-based key-value cache is essential in today’s web applica-
tions and Internet services. However, the all-in-memory approach
adopted in the current systems is unscalable due to the limited
DRAM memory capacity. In this paper, we present a hierarchical
mapping structure, called Cascade Mapping, to efficiently manage
the mapping information in a combination of DRAM and flash SSD.
We have implemented a prototype based on Twitter’s Fatcache,
called SlickCache. Our experimental results show that SlickCache
can substantially reduce the memory needs while still achieving
satisfactory performance.
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