
Understanding Intrinsic Characteristics and System
Implications of Flash Memory based Solid State Drives

Feng Chen1, David A. Koufaty2, and Xiaodong Zhang1

1Dept. of Computer Science & Engineering 2System Technology Lab
The Ohio State University Intel Corporation

Columbus, OH 43210 Hillsboro, OR 97124
{fchen, zhang}@cse.ohio-state.edu david.a.koufaty@intel.com

ABSTRACT

Flash Memory based Solid State Drive (SSD) has been called
a “pivotal technology” that could revolutionize data storage
systems. Since SSD shares a common interface with the
traditional hard disk drive (HDD), both physically and log-
ically, an effective integration of SSD into the storage hier-
archy is very important. However, details of SSD hardware
implementations tend to be hidden behind such narrow in-
terfaces. In fact, since sophisticated algorithms are usually,
of necessity, adopted in SSD controller firmware, more com-
plex performance dynamics are to be expected in SSD than
in HDD systems. Most existing literature or product spec-
ifications on SSD just provide high-level descriptions and
standard performance data, such as bandwidth and latency.

In order to gain insight into the unique performance char-
acteristics of SSD, we have conducted intensive experiments
and measurements on different types of state-of-the-art SSDs,
from low-end to high-end products. We have observed sev-
eral unexpected performance issues and uncertain behavior
of SSDs, which have not been reported in the literature. For
example, we found that fragmentation could seriously im-
pact performance – by a factor of over 14 times on a recently
announced SSD. Moreover, contrary to the common belief
that accesses to SSD are uncorrelated with access patterns,
we found a strong correlation between performance and the
randomness of data accesses, for both reads and writes. In
the worst case, average latency could increase by a factor
of 89 and bandwidth could drop to only 0.025MB/sec. Our
study reveals several unanticipated aspects in the perfor-
mance dynamics of SSD technology that must be addressed
by system designers and data-intensive application users in
order to effectively place it in the storage hierarchy.

Categories and Subject Descriptors

B.3.2 [Design Styles]: Mass storage; D.4.2 [Storage Man-
agement]: Secondary Storage

General Terms

Experimentation, Measurement, Performance

Keywords

Flash Memory, Hard Disk Drive, Solid State Drive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS/Performance’09, June 15–19, 2009, Seattle, WA, USA.
Copyright 2009 ACM 978-1-60558-511-6/09/06 ...$5.00.

1. INTRODUCTION
For the last two decades, researchers have made contin-

uous efforts to address several open issues of Hard Disk
Drive (HDD), such as long latencies of handling random
accesses (e.g. [15, 21, 32]), excessively high power consump-
tion (e.g. [10,18,20]), and uncertain reliability (e.g. [14,42]).
These issues are essentially rooted to the hard disk’s me-
chanic nature, and thus difficult to be solved physically by
disks themselves.

Recently, flash memory based Solid State Drive (SSD) has
become an emerging technology and received strong interest
in both academia and industry [3, 5, 25, 28, 29, 35]. Unlike
traditional rotating media, SSD is based on semiconductor
chips, which provides many strong technical merits, such
as low power consumption, compact size, shock resistance,
and most importantly, extraordinarily high performance for
random data accesses. Thus flash memory based SSD has
been called “a pivotal technology” to revolutionize computer
storage systems [39]. In fact, two leading on-line search en-
gine service providers, google.com and baidu.com, both an-
nounced their plans to migrate existing hard disk based stor-
age system to a platform built on SSDs [13].

An important reason behind such an optimistic prediction
and such actions is that SSD shares a common interface
with traditional hard disks physically and logically. Most
SSDs on the market support the same host interfaces, such
as Serial Advanced Technology Attachment (SATA), used
in hard disks. SSD manufacturers also carefully follow the
same standard [1] to provide an array of Logical Block Ad-
dresses (LBA) to the host. On the one hand, such a common
interface guarantees backward compatibility, which avoids
tremendous overhead for migrating existing HDD based sys-
tems to SSD based platforms. On the other hand, such a
thin interface can hide complex internals from the upper
layers, such as operating systems. In fact, many sophis-
ticated algorithms, such as cleaning and mapping policies,
have been proposed, and various hardware optimizations are
adopted in different SSD hardware implementations [3, 16].
The complicated internal design and divergent implemen-
tations behind the ‘narrow’ interface would inevitably lead
to many performance dynamics and uncertainties. In other
words, despite the same interface, SSD is not just another
‘faster’ disk. Thus we need to conduct a thorough investiga-
tion, particularly for understanding its intrinsic limits and
unexpected performance behavior.

Most existing research literature and technical papers,
however, only provide limited information beyond high level
description and standard performance data (e.g. bandwidth
and latency), similar to documented specifications for HDDs.
Some specification data provided by SSD manufacturers may

even overrate performance or not provide critical data for
certain workloads (e.g. performance data for random writes
is often not presented in SSD specifications). Some previous
work has reported SSD performance data based on simula-
tion [3]. So far, little research work has been presented to
report the first-hand data and analysis on the unique per-
formance features of different types of SSDs.

In this paper, we carefully select three representative, state-
of-the-art SSDs built on two types of flash memory chips.
Each SSD is designed to aim at different applications and
markets, from low-end PCs, middle-level performance desk-
tops, to high-end enterprise servers. By using the Intel Open
Storage Toolkit [36] to generate various types of I/O traf-
fic, we conducted intensive experiments on these SSDs and
analyzed collected performance data. Our purpose is not to
compare the performance of these competing SSDs on the
market. Instead, we attempt to get insightful understanding
on performance issues and unique behavior of SSDs through
micro-benchmarks. We hope to inspire the research com-
munity, especially OS designers, to carefully consider many
existing optimizations, which were originally designed for
hard disks, for the emerging SSD based platform. We will
answer the following questions and reveal some untold facts
about SSDs through experiments and analysis.

1. A commonly reported feature of SSD is its uniform
read access latency, which is independent of access pat-
terns of workloads. Can we confirm this or observe
some unexpected results with intensive experiments?

2. Random writes have been considered as the Achilles´
heel of SSDs. Meanwhile, high-end SSDs employ vari-
ous solutions to address this problem. Has the random
write problem been solved for the recent generation of
SSDs? Is random write still a research issue?

3. Caching plays a critical role for optimizing performance
in HDDs to mitigate expensive disk head seeks. Can
we make a case or not for a cache in SSDs, which do
not have the problem of long seek latency?

4. Writes are much more expensive than reads in flash
memory. What are the interactive effects between these
two types of operations in SSDs? Would low-latency
reads be negatively impacted by high-latency writes?
What’s the reason behind such interference?

5. Many elaborate algorithms are adopted in SSD firmware
to optimize performance. This leads to many internal
operations running in the background. Can we observe
a performance impact on foreground jobs by such inter-
nal operations? How seriously would such background
operations affect overall performance?

6. Adopting a log-structure internally, SSD can map logi-
cally continuous pages to non-continuous physical pages
in flash memory. Since a flash memory block may con-
tain both valid and invalid pages, internal fragmenta-
tion could be a problem. How would internal fragmen-
tation affect performance?

7. Having well documented our findings on SSDs, what
are the system implications? How can we use them to
guide system designers and practitioners for effectively
adding SSDs into the storage hierarchy?

The rest of this paper is organized as follows. Section
2 introduces background about flash memory and SSD de-
sign. Section 3 presents the experimental setup environ-
ment. Then we present our experimental results in Section
4 and 5. In Section 6 we summarize the key observations
from our experiments and discuss the implications to users
and OS designers. Related work is presented in Section 7
and the final section concludes this paper.

2. BACKGROUND

2.1 Flash Memory
There are two types of flash memories, NOR and NAND

[33]. NOR flash memory supports random accesses in bytes
and it is mainly used for storing code. NAND flash memory
is designed for data storage with denser capacity and only
allows access in units of sectors. Most SSDs available on the
market are based on NAND flash memories. In this paper,
flash memory refers to NAND flash memory specifically.

NAND flash memory can be classified into two categories,
Single-Level Cell (SLC) and Multi-Level Cell (MLC) NAND.
A SLC flash memory cell stores only one bit, while a MLC
flash memory cell can store two bits or even more. Compared
to MLC, SLC NAND usually has a 10 times longer lifetime
and lower access latency (see Table 1). However, considering
cost and capacity, most low-end and middle-level SSDs tend
to use high-density MLC NAND to reduce production cost.
In this paper, we examined two MLC-based SSDs and one
SLC-based SSD.

For both SLC and MLC NAND, a flash memory package is
composed of one or more dies (chips). Each die is segmented
into multiple planes. A typical plane contains thousands
(e.g. 2048) of blocks and one or two registers of the page size
as an I/O buffer. A block usually contains 64 to 128 pages.
Each page has a 2KB or 4KB data part and a metadata area
(e.g. 128 bytes) for storing Error Correcting Code (ECC)
and other information. Exact specification data varies across
different flash memory packages.

Flash memory supports three major operations, read, write,
and erase. Read is performed in units of pages. Each read
operation may take 25µs (SLC) to 60µs (MLC). Writes are
normally performed in page granularity, but some NAND
flash (e.g. Samsung K9LBG08U0M) supports sub-page op-
erations [41]. Pages in one block must be written sequen-
tially, from the least significant to the most significant page
addresses. Each write operation takes 250µs (SLC) to 900µs
(MLC). A unique requirement of flash memory is that a
block must be erased before being programmed (written).
An erase operation can take as long as 3.5ms and must be
conducted in block granularity. Thus, a block is also called
an erase block.

Flash memory blocks have limited erase cycles. A typical
MLC flash memory has around 10,000 erase cycles, while a
SLC flash memory has around 100,000 erase cycles. After
wearing out, a flash memory cell can no longer store data.
Thus, flash memory chip manufacturers usually ship with
extra flash memory blocks to replace bad blocks.

2.2 SSD Internals
Since an individual flash memory package only provides

limited bandwidth (around 40MB/sec [3]), flash memory
based SSDs are normally built on an array of flash memory
packages. As logical pages can be striped over flash memory
chips, similar to a typical RAID-0 storage, high bandwidth
can be achieved through parallel access. A serial I/O bus

connects the flash memory package to a controller. The con-
troller receives and processes requests from the host through
connection interface, such as SATA, and issues commands
and transfers data from/to the flash memory array. When
reading a page, the data is first read from flash memory into
the register of the plane, then shifted via the serial bus to
the controller. A write is performed in the reverse direction.
Some SSDs are also equipped with an external RAM buffer
to cache data or metadata [9,19].

A critical component, called the Flash Translation Layer
(FTL), is implemented in the SSD controller to emulate
a hard disk and exposes an array of logical blocks to the
upper-level components. The FTL plays a key role in SSD
and many sophisticated mechanisms are adopted to optimize
SSD performance. We summarize its major roles as follows.

Logical block mapping – As writes in flash cannot be
performed in place as in disks, each write of a logical page is
actually conducted on a different physical page. Thus some
form of mapping mechanism must be employed to map a log-
ical block address (LBA) to a physical block address (PBA).
The mapping granularity could be as large as a block or as
small as a page [19]. Although a page-level mapping [23]
is efficient and flexible, it requires a large amount of RAM
space (e.g. 512MB in [9]) to store the mapping table. On
the contrary, a block-level mapping [2], although space-wise
efficient, requires an expensive read-modify-write operation
when writing only part of a block. Many FTLs [12,22,26,30]
adopt a hybrid approach by using a block-level mapping to
manage most blocks as data blocks and using a page-level
mapping to manage a small set of log blocks, which works
as a buffer to accept incoming write requests efficiently. A
mapping table is maintained in persistent flash memory and
rebuilt in volatile RAM buffer at startup time.

Garbage Collection – Since a block must be erased be-
fore it is reused, an SSD is usually over-provisioned with a
certain amount of clean blocks as an allocation pool. Each
write of a page just needs to invalidate the previously occu-
pied physical page by updating the metadata, and the new
data can be quickly appended into a clean block allocated
from the pool, like a log, without incurring a costly erase op-
eration synchronously. When running out of clean blocks,
a garbage collector scans flash memory blocks and recycles
invalidated pages. If a page-level mapping is used, the valid
pages in the scanned block are copied out and condensed into
a new block; otherwise, the valid pages need to be merged
together with the updated pages in the same block. Such a
cleaning process is similar to the Log-Structured File Sys-
tem [40] and can be conducted in the background.

Wear Leveling – Due to the locality in most workloads,
writes are often performed over a subset of blocks (e.g. file
system metadata blocks). Thus some flash memory blocks
may be frequently overwritten and tend to wear out earlier
than other blocks. FTLs usually employ some wear-leveling
mechanism to ‘shuffle’ cold blocks with hot blocks to even
out writes over flash memory blocks.

A previous work [3] has an extensive description about
the broad design space of flash memory based SSD. Their
work indicates that many design trade-offs can be made in
SSD, which lead to very different SSD performance. Our
experimental results confirmed that diverse performance is
resident on various types of SSDs. Since details of SSD
hardware design, especially their FTL algorithms, are re-
garded as the intellectual property of SSD manufacturers
and remain highly confidential, we can only speculate about
detailed SSD internals and we may not be able to explain

all performance behavior observed on SSD hardware. On
the other hand, our intention is not to reverse engineer the
internal design of SSDs. Instead, we attempt to reveal per-
formance issues and dynamics observed on SSD hardware
and give a reasonable explanation to help explore the impli-
cations to system designers and practitioners.

3. MEASUREMENT ENVIRONMENT

3.1 Solid State Drives
Currently, many SSDs are available on the market. Their

performance and price is very diverse, depending on many
factors, such as flash memory chips (MLC/SLC), RAM buffer
size, and complexity of hardware controller. In this work,
we selected three representative, state-of-the-art SSDs fab-
ricated by two major SSD manufacturers. Each SSD targets
at a different market with various performance guarantees,
from low-end, middle-class, to high-end. Among them, two
SSDs are based on MLC flash memory, and the high-end one
is based on SLC flash memory. Since our intention is not to
compare the performance of these competing SSDs, we refer
to the three SSDs using SSD-L, SSD-M, and SSD-H, from
low-end to high-end. Table 1 shows more details about the
SSDs. Listed price is as of October 2008.

SSD-L SSD-M SSD-H

Capacity 32GB 80GB 32GB
Price ($/GB) $5 $10 $25

Flash memory MLC MLC SLC
Page Size (KB) 4 4 4
Block Size (KB) 512 512 256

Read Latency (µs) 60 50 25
Write Latency (µs) 800 900 250
Erase Latency(µs) 1500 3500 700

Table 1: Specification data of the SSDs.

3.2 Experiment System
Our experiment system is a Dell� PowerEdge� 1900 server.

It is equipped with two Intel® Core� 2Quad Xeon X5355
2.66GHz processors and 16GB FB-DIMM memory. Five
146GB 15,000 RPM SCSI hard drives are attached on a
SCSI interface card to hold the operating system and home
directories. We use RedHat Enterprise Linux Sever 5 with
Linux Kernel 2.6.26 and Ext3 file system. The SSDs are
connected through the on-board SATA 3.0Gb/s connectors.
There is no partition or file system created on the SSDs. All
requests are performed to directly access SSDs as raw block
devices to avoid interference from the OS kernel, such as the
buffer cache and the file system.

In our experiment system, the hard disks use the CFQ
(Completely Fair Queuing) scheduler, the default I/O sched-
uler used in the Linux kernel, to optimize the disk perfor-
mance. For the SSDs, which have sophisticated firmware
internally, we use the noop (No-Op) scheduler to leave the
I/O performance optimization directly handled by the block
devices, so that we can expose internal behavior of the SSDs.
In our experiments, we also found noop usually outperforms
the other I/O schedulers on the SSDs.

3.3 Intel® Open Storage Toolkit
We attempt to gain insightful understanding of the be-

havior of SSDs for handling workloads with clear patterns.
Thus, our experiments are mainly conducted through well-
controlled micro-benchmarks, whose access patterns are known
in advance. Macro-benchmarks, such as TPC-H database

�
�
�
�

��

��

�
�
�
�

HDD
SSD−L

SSD−M

SSD−H

��
��
��
��

�� �
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

 0

 50

 100

 150

 200

 250

RND−RD RND−WR SEQ−RD SEQ−WR

B
an

d
w

id
th

 (
M

B
/S

ec
)

Figure 1: SSD Bandwidths. Four workloads, Ran-
dom Read, Sequential Read, Random Write, and Sequen-
tial Write, are denoted as RND-RD, SEQ-RD, RND-WR,
and SEQ-WR in the figure.

workloads, usually have complicated and variable patterns
and thus would not be appropriate for our characteristic
analysis of the SSDs. The Intel® Open Storage Toolkit [36]
is designed and used for storage research at Intel. It can gen-
erate various types of I/O workloads to directly access block
devices with different configurations, such as read/write ra-
tio, random/sequential ratio, request size, and think time,
etc. It reports bandwidth, IOPS, and latency.

In order to analyze I/O traffic to storage devices in de-
tail, we use blktrace [7], which comes with the Linux 2.6
kernel, to trace the IO activities at the block device level.
The blktrace tool captures various I/O activities, including
queuing, dispatching, completion, etc. The most interest-
ing event to us is the completion event, which reports the
latency for processing each individual request. In our exper-
iments, the trace data is collected in memory during test and
then copied to the hard disks that are connected through an
RAID interface card to minimize the interference from trac-
ing. The collected data is further processed using blkparse
and our post-processing scripts and tools off line.

4. GENERAL TESTS
Before we proceeded to the detailed analysis, we first made

some general performance measurements on the SSDs. We
used the toolkit to generate four distinct workloads, Ran-
dom Read, Random Write, Sequential Read, and Sequential
Write. The random workloads used a request size of 4KB to
randomly access data in the first 1024MB storage space. The
sequential workloads used a request size of 256KB. All the
workloads created 32 parallel jobs to maximize the band-
width usage, and we used direct I/O to bypass the buffer
cache and access the raw block devices synchronously. Each
test ran for 30 seconds. In order to compare with hard disks,
a Western Digital WD1600JS Caviar 7200RPM hard disk
was used as a reference HDD.

Figure 1 shows the bandwidths of the four workloads run-
ning on the devices. As expected, when handling random
read, the SSDs exhibit clear performance advantages com-
pared to the HDD. Specifically, all the three SSDs signifi-
cantly outperform the HDD (0.54MB/sec) by over 31 times
higher bandwidths. For random write, SSD-M and SSD-
H achieve bandwidths of 46MB/sec and 48MB/sec, respec-
tively. SSD-L, the low-end device, has a much lower band-
width (1.14MB/ sec), which is only comparable to the HDD
(1.49MB/sec). When handling sequential read, the band-
width of SSD-L reaches 133MB/sec, and both SSD-M and
SSD-H achieve an adorable bandwidth of over 240MB/sec,
which is nearly 2/3 of the full bandwidth supported by the
SATA bus. In contrast, the HDD has a bandwidth of only
56.5MB/sec. For sequential write, SSD-L and SSD-M have

bandwidths of 88MB/sec and 78MB/sec, respectively. SSD-
H, the enterprise SSD, achieves a much higher bandwidth,
196MB/sec. Considering the long-held belief that SSD has
poor write performance, this number is surprisingly high.

As we see in the figure, the performance of the SSDs is
better than or comparable to the HDD for all workloads.
Compared to SSD-L, the two recently announced higher-
end SSDs do show better performance, especially for random
write.1 In the next few sections, we will further examine
other performance details about the SSDs.

5. EXPERIMENTAL EXAMINATIONS

5.1 Micro-benchmark Workloads
In general, an I/O workload can be characterized by its

access patterns (random or sequential), read/write ratio, re-
quest size, and concurrency. In order to examine how an
SSD handles various types of workloads, we use the toolkit
to generate I/O traffic using various combinations of these
factors. Three access patterns are used in our experiments.

1. Sequential - Sequential data accesses using specified
request size, starting from sector 0.

2. Random - Random data accesses using specified re-
quest size. Blocks are randomly selected from the first
1024MB data blocks of the storage space.

3. Stride - Strided data accesses using specified request
size. The distance between the end and the beginning
of two consecutive accesses is the request size.

In default, each micro-benchmark runs for 10 seconds to
limit trace size while collecting enough data. In order to
simplify analysis, we set only one job for all experiments
but vary the other three factors, access pattern, read/write
ratio, and request size, according to various experimental
needs. All workloads directly access the raw block devices.
Requests are issued to devices synchronously.

Before our experiments, we first filled the whole storage
space using sequential writes with request size of 256KB.
After such an initial overwrite, the SSDs in our experiments
are regarded as ‘full’, and the status would remain stable.2

Note that such a full status remains unchanged thereafter,
even if users delete files or format the device, since the live-
liness of blocks is unknown at the device level.

Writes into SSDs may change the page mapping dynam-
ically. In order to guarantee that the status of the SSDs
remains largely constant across experiments, before each ex-
periment we reinitialize the SSD status by sequentially over-
writing the SSD with request size of 256KB. In this way, we
make sure that the logical page mapping would be reorga-
nized into an expected continuous manner before each run.

5.2 Do reads on SSD have a uniform latency?
Due to its mechanical nature, the hard disk has a non-

uniform access latency, and its performance is strongly cor-
related with workload access patterns. Sequential accesses
on hard disks are much more efficient than random accesses.
An SSD, without expensive disk head seeks, is normally
believed to have a uniform distribution of access latencies,
which is independent of access patterns. In our experiments,
we found this is not always true, for both reads and writes.
In this section, we will first examine read operations.

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

SSD-L - CDF of Request Latency

4KB-Random
4KB-Sequential

4KB-Stride

(a) SSD-L

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

SSD-M - CDF of Request Latency

4KB-Random
4KB-Sequential

4KB-Stride

(b) SSD-M

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

SSD-H - CDF of Request Latency

4KB-Random
4KB-Sequential

4KB-Stride

(c) SSD-H

Figure 2: CDF of request latencies for Read operations on the SSDs.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

SSD-L - CDF of Request Latency

4KB-Random
4KB-Sequential

4KB-Stride

(a) SSD-L

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

SSD-M - CDF of Request Latency

4KB-Random
4KB-Sequential

4KB-Stride

(b) SSD-M

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

SSD-H - CDF of Request Latency

4KB-Random
4KB-Sequential

4KB-Stride

(c) SSD-H

Figure 3: CDF of request latencies for Write operations on the SSDs.

In order to examine the distribution of read latencies on
SSDs, we run sequential, random, and stride workloads us-
ing 4KB read requests on the three SSDs. Figure 2 shows
the Cumulative Distribution Function (CDF) of request la-
tencies for the three workloads on the SSDs.

SSD-L does not distinguish random and sequential reads,
which is an expected uniform distribution. Nearly all reads
of the three workloads have latencies of 200-250µs on SSD-L.
However, SSD-M and SSD-H, the two higher-end SSDs, do
show a non-uniform distribution of latencies. Specifically,
sequential has latencies of only 75-90µs, which is nearly 65%
less than stride and random (200-230µs).

Several reasons may contribute to the unexpected non-
uniform distribution of latencies in SSD-M and SSD-H. First,
a sequential read in flash memory is three orders of magni-
tude faster than a random read. For example, in the Sam-
sung K9LBG08U0M flash memory, a random read needs
60µs, while a sequential read needs only 25ns [41]. Sec-
ond, similar to hard disks, a readahead mechanism can be
adopted in an SSD controller to prefetch data for sequential
reads with low cost. Most flash memory packages support
two-plane operations to read multiple pages from two planes
in parallel. Also, operations across dies can be interleaved
further [41]. Since logical pages are normally striped over
the flash memory array, reading multiple logically continu-
ous pages in parallel for readahead can be performed effi-
ciently.

Concerning our measurement results, we believe reada-
head is the main reason for the observed non-uniform distri-
bution of latencies. On SSD-M and SSD-H, each sequential
read accounts for only 75-90µs, which is even smaller than
the time (100µs) to shift a 4KB page out over the serial
bus, not to mention the time to transfer data across the
SATA interface. Thus, the data is very likely to be fed di-
rectly from an internal buffer rather than from flash memory.
If data accesses become non-sequential (stride or random),
readahead would be ineffective and the latency increases to
around 200-230µs. We also found that the first four requests

in sequential have latencies of around 220µs, which appears
to be an initial period for detecting a sequential pattern. In
contrast, as a low-end product, SSD-L does not have a large
buffer for readahead, thus each read has to load data directly
from flash memory with a similarly long latency for differ-
ent access patterns, which leads to a uniform distribution of
latencies. Another interesting finding is that when handling
random reads, the three SSDs have comparable latencies,
though SSD-H uses expensive SLC flash.

5.3 Would random writes be the worst case?
A random write on flash memory is normally believed less

efficient than a sequential write. Considering an erase block
of N pages, a random write may incur up to N − 1 page
reads from the old block, N page writes to the new block,
and one block erase. In contrast, a sequential write only in-
curs one page write and 1/N erase operations on the average.
In practice, a log-structured approach [3,5,19] is adopted to
avoid the high-cost copy-erase-write for random writes. Akin
to the Log-Structured File System [40], each write only ap-
pends data to a clean block, and garbage collection is con-
ducted in the background. Using such log-structured FTLs,
the write is expected to be largely insensitive to access pat-
terns. In this section, we will examine the relationship be-
tween writes on SSDs and workload access patterns.

Similar to the previous section, we run three workloads,
sequential, random, and stride on the SSDs, except that all
requests are write-only. Figure 3 plots the CDF of request
latencies of the three workloads.

SSD-L shows a non-uniform distribution of request laten-
cies for workloads with different access patterns. Sequential
accesses are the most efficient. As shown in Figure 3(a), 88%
of the writes in sequential have latencies of only 140-160µs.
In contrast, stride and random are much worse. Over 90%
of the requests in both workloads have latencies higher than
1.4ms. This seems to confirm the common perception that
writes on SSD are highly correlated with access patterns.

In order to investigate why such a huge difference exists

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 100 200 300 400 500

L
a

te
n

c
y
 (

m
ill

i-
s
e

c
)

Sequence Num.

I/O latency of Data Accesses

Figure 4: The first 500 requests of
sequential write on SSD-L.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

SSD-M (Write) - CDF of Request Latency

cache on

cache off

Random-(off)
Random-(on)

Sequential-(off)
Sequential-(on)

Stride-(off)
Stride-(on)

(a) SSD-M

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

SSD-H (Write) - CDF of Request Latency

cache on

cache off

Random-(off)
Random-(on)

Sequential-(off)
Sequential-(on)

Stride-(off)
Stride-(on)

(b) SSD-H

Figure 5: The effect of a disk cache to writes on SSDs. Disk cache state
is denoted as off and on.

between sequential and non-sequential writes on SSD-L, we
plot the first 500 write requests of sequential in Figure 4
and we see an interesting pattern. As shown in the figure,
most requests have a latency of around 140-160µs. A spike
of around 1.4-1.5ms appears every 64 requests, and three
spikes of around 1ms, 700µs, and 300µs periodically appear
in between. The average latency is 209µs.

Our explanation is as follows. From the figure, SSD-L
seems to use a small buffer (e.g. 32 pages) to hold data of
incoming write requests, because most writes have a latency
much lower than the programming time (800µs). If write
requests are coming sequentially, data can be temporarily
held in the buffer. Since the logically continuous pages can
be striped over multiple flash memory chips, the buffered
pages can be written into flash memory in parallel later.
If incoming requests are non-sequential, such optimization
cannot be done, thus data has to be directly written into
flash memory, which leads to a much higher latency for each
individual write. However, since SSD-L does not employ a
sufficiently large buffer (only 16KB) to hold 32 pages, we
suspect that SSD-L actually takes advantage of the 4KB
registers of the 32 planes, which are organized in 16 flash
memory packages, as a temporary buffer. As the data has
to be transferred to the register through the serial bus, each
write would cause a latency of around 140-160µs, which is
slightly lower than a read (200-230µs) that needs extra time
to read data from flash memory. When the registers are
full, a page program confirm command is issued to initi-
ate the programming process and data can be written into
flash memory in parallel, which results in the observed high
spikes.

Writes on SSD-M and SSD-H, in contrast, are nearly in-
dependent of workload access patterns. On both SSDs, over
90% of the requests of all the three workloads have latencies
of 75-90µs. Since the observed latency is much lower than
the latency for writing a page to flash memory, writes should
fall into an on-drive cache instead of being actually written
to flash memory medium. Actually, the observed write la-
tency is nearly equal to the latency of sequential reads, which
transfer data across SATA bus in the reverse direction. This
also confirms our previous hypothesis about readahead on
SSDs. As write requests can return to the host as soon as
data reaches on-drive cache, distinct access patterns would
not make any difference on the write latencies.

5.4 Is a disk cache effective for SSDs?
Modern hard disks are usually equipped with an on-drive

RAM cache for two purposes. First, when the disk platter
rotates, blocks under the disk head can be prefetched into
the cache so that future requests to these blocks can be

satisfied quickly. Second, write requests can immediately
return as soon as data is transferred into the disk cache,
which helps reduce write latency. Similar to disks, SSDs can
also benefit from a large RAM cache, especially for relatively
high-cost writes. For brevity, we still use the term, disk
cache, to refer to the RAM buffer on SSDs.

In practice, many low-end SSDs omit the disk cache to
lower production cost. For example, SSD-L has no exter-
nal RAM buffer, instead, it only has a 16KB buffer in the
controller, which cannot be disabled. In order to assess the
value of the disk cache, we run random, sequential, and stride
workloads with requests of 4KB on SSD-M and SSD-H. We
use hdparm tool to enable and disable the disk cache and
compare the performance data to examine the impact of the
disk cache. In our experiments we found that disabling the
disk cache would not affect read-only workloads. Thus we
only present experimental results for write operations.

A disk cache has a significant impact on write perfor-
mance. Figure 5(a) shows that with disk cache disabled,
both SSD-M and SSD-H experienced a significant increase
of latencies. On SSD-M, more than 50% of the requests suf-
fer latencies of over 1.3ms, and all requests have latencies
of over 400µs. Even with a disabled disk cache, the three
workloads share the same distribution of latencies on both
SSDs. This indicates that they adopt a log-structured ap-
proach and thus are insensitive to workload access patterns.

As a high-end SSD, SSD-H performs substantially better
than SSD-M, when the disk cache is disabled. Without the
disk cache, the performance strength of SLC over MLC is
outstanding. Nearly all requests have latencies of 400-500µs.
However, we should note that these latencies are still over
5 times higher than the latencies (75-90µs) observed when
the disk cache is enabled. This means that the disk cache is
critical to both MLC and SLC based SSDs.

5.5 Do reads and writes interfere with each
other?

Read and write in SSDs can interfere with each other.
Writes on SSDs often bring many high-cost internal op-
erations running in the background, such as cleaning and
asynchronous write-back of dirty data from the disk cache.
These internal operations may negatively affect foreground
read operations. On the other hand, reads may have nega-
tive impact on writes too. For example, reads may compete
for buffer space with writes. Moreover, mingled read/write
requests can break detected sequential patterns and affect
pattern-based optimization, such as readahead.

Since requests submitted in parallel apparently would in-
terfere with each other, we only examine requests submitted
in sequence. We especially designed a tool to generate four

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

Only-Read
Read(n)-Write(n)

Read(n)-Write(n+1)
Read(n)-Write(n+4MB)

Write(n)-Read(n)

(a) Read - SSD-L

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

Only-Write
Read(n)-Write(n)

Read(n)-Write(n+1)
Read(n)-Write(n+4MB)

Write(n)-Read(n)

(b) Write - SSD-L

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

Only-Read
Read(n)-Write(n)

Read(n)-Write(n+1)
Read(n)-Write(n+4MB)

Write(n)-Read(n)

(c) Read - SSD-M

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

Only-Read
Read(n)-Write(n)

Read(n)-Write(n+1)
Read(n)-Write(n+4MB)

Write(n)-Read(n)

(d) Read - SSD-H

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

Only-Read
Read(n)-Write(n)

Read(n)-Write(n+1)
Read(n)-Write(n+4MB)

Write(n)-Read(n)

(e) Read - SSD-L (10ms)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

Only-Write
Read(n)-Write(n)

Read(n)-Write(n+1)
Read(n)-Write(n+4MB)

Write(n)-Read(n)

(f) Write - SSD-L (10ms)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

Only-Read
Read(n)-Write(n)

Read(n)-Write(n+1)
Read(n)-Write(n+4MB)

Write(n)-Read(n)

(g) Read - SSD-M (10ms)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

Only-Read
Read(n)-Write(n)

Read(n)-Write(n+1)
Read(n)-Write(n+4MB)

Write(n)-Read(n)

(h) Read - SSD-H (10ms)

Figure 6: Interference between reads and writes. The second row shows workloads with 10ms interval.

workloads to see how read and write running in sequence
interfere with each other. Similar to the Intel® Open Stor-
age Toolkit, this tool directly accesses storage devices as raw
block devices, and the other system configurations remain
the same. Since sequential workloads are the most efficient
operations on SSDs, as shown in previous sections, we use
sequential read and sequential write as two baseline cases,
denoted as only-read and only-write, respectively. We create
four types of read/write sequences as follows. Each workload
is composed of 1,000 requests for 4KB data.

1. Read(n)+Write(n) - sequentially read a page and
then write the same page.

2. Write(n)+Read(n) - sequentially write a page and
then read the same page.

3. Read(n)+Write(n+1) - sequentially read a page n

and write page n + 1, then read page n + 2 and write
paper n + 3, and so on.

4. Read(n)+Write(n+4MB) - sequentially read page
0,1,2..N. Simultaneously, we sequentially write pages
4MB apart. Thus, there are two sequential streams.

Figure 6 shows the CDF of read and write latencies of four
workloads running on the SSDs. Since writes on SSD-M and
SSD-H in this experiment show the same distribution as in
Section 5.3, we only show CDF of read latencies here.

Compared to only-read and only-write, both reads and
writes in the four workloads running on SSD-L experienced
a substantial degradation (Figure 6(a) and 6(b)). Even when
sequentially reading and writing the same page (read(n) +
write(n) and write(n) + read(n)), performance is seriously
affected. This indicates that SSD-L does not use a shared
buffer for read and write, since a read that immediately fol-
lows a write to the same page still encounters a high latency.

As mentioned in Section 5.3, SSD-L optimizes performance
for sequential writes. It seems to detect a sequential write
pattern by recording the previous write request’s LBN, in-
stead of tracking the sequence of mingled read and write
requests. Among the four workloads, read(n) + write(n+1)
is the only one whose write requests are non-continuous. As
expected, it shows the worst write performance, and nearly
all requests have a latency of over 1.3ms. Its read operations

are also interfered with mingled writes, but it outperforms
the other three workloads. We found that inserting an inter-
val of 10ms between two consecutive requests (Figure 6(e))
improves its read performance close to that when running
without interleaved with writes. This suggests that the in-
crease of read latencies is a result of asynchronous operations
triggered by the previous write.

The other three workloads on SSD-L show nearly identical
curves (overlapped in the figures). We can see that writes are
apparently affected by mingled reads, but much less severely.
Reads, however, are significantly affected by writes, and in-
serting a delay would not improve performance. We believe
that this is because writes just transfer data to the flash
memory plane registers, and reads trigger the programing
process and cause a synchronous delay (800µs). This also
explains the fact that over 80% of the reads in these work-
loads have a latency of higher than 1ms.

SSD-M and SSD-H both have a disk cache, thus only reads
are sensitive to the interleaved read and write accesses. For
read(n)+write(n) and read(n)+write(n+4MB), read laten-
cies (around 75µs) do not change, even when being inter-
leaved with writes, just like in only-read. This indicates that
readahead is effective for both cases. However, read(n) +
write(n+1) and write(n) + read(n) are negatively impacted
by mingled writes. In the former workload, since each in-
coming read request is not continuous with the previous read
request (interrupted by a write), all of the reads have a la-
tency of over 220µs (i.e. random read latency). In the latter
case, it is interesting to see in Figure 6(c) that the curve is
similar to the curve of writes when the disk cache is disabled
(see Figure 5(a)). This is because when the previous write
returns, its dirty data held in the disk cache is flushed to
flash memory asynchronously. When a read request arrives,
it has to wait for the asynchronous write-back to complete,
which leads to a delay. To confirm this, we again inserted an
interval of 10ms after each write, and this high read latency
disappears, as expected (Figure 6(g)). We also found that
even with a delay, both cases only can achieve the perfor-
mance of random read, which shows that readahead is not
in effect. We have similar findings for SSD-H.

5.6 Do background operations affect perfor-
mance?

SSDs have many internal operations running in the back-

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

SSD-L - CDF of Request Latency

Read-0ms
Read-10ms

Write-0ms
Write-10ms

(a) SSD-L - CDF of Request Latency

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
e
rc

e
n
ta

g
e
 o

f
a
ll

R
e
q
u
e
s
ts

 (
%

)

Request Latency (millisec)

SSD-M - CDF of Request Latency

Read-0ms
Read-10ms

Write-0ms
Write-10ms

(b) SSD-M - CDF of Request Latency

 0

 3

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e
q
u
e
s
t
L
a
te

n
c
y
 (

m
ill

is
e
c
)

Sequence Num

SSD-M (Interval - 0ms) - Request Latency

 0

 3

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e
q
u
e
s
t
L
a
te

n
c
y
 (

m
ill

is
e
c
)

Sequence Num

SSD-M (Interval - 10ms) - Request Latency

(c) SSD-M - Request Latency

Figure 7: Background operations on SSD-M. All workloads use 4KB requests.

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000 30000 35000

A
v
g
.
R

e
q
u
e
s
t
L
a
te

n
c
y
 (

m
ill

is
e
c
o
n
d
s
)

Random Range (MB)

SSD-L - Avg. Request Latency

RD-256KB
RD-4KB

WR-256KB
WR-4KB

(a) Random

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000 120000

A
v
g
.
R

e
q
u
e
s
t
L
a
te

n
c
y
 (

m
ill

is
e
c
o
n
d
s
)

Stride Step (KB)

SSD-L - Avg. Request Latency

RD-256KB
RD-4KB

WR-256KB
WR-4KB

(b) Stride

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250

L
a
te

n
c
y
 (

m
ill

i-
s
e
c
)

Sequence Num.

I/O latency of Data Accesses

(c) Random Write 4KB (30GB)

Figure 8: Randomness of workloads on SSD-L. Figure 8(c) shows random write of 4KB data in 30GB range.

ground asynchronously, such as delayed writes and clean-
ing. Though these internal operations create opportunities
to leverage idle time, they may also compete for resources
with incoming foreground jobs and cause increased latencies.
Since write operations are most likely to trigger internal op-
erations, we use the toolkit to run a sequential workload
using request size of 4KB. The type (read/write) of each re-
quest is randomly determined and 50% of the requests are
writes. In order to show the performance impact, we inten-
tionally slow down the incoming requests by inserting a 10ms
interval between two consecutive requests. Only those non-
stationary latencies are likely to be caused by background
operations. We use this case to qualitatively show the im-
pact of background operations on foreground jobs. Due to
the space constraints, we only present the data for SSD-L
and SSD-M here. SSD-H has similar results.

As shown in Figure 7(a) and 7(b), we can clearly see the
performance impact of background operations on foreground
jobs, especially on reads. Specifically, after inserting a 10ms
interval, the percentage of the reads that have latencies lower
than 300µs increases from 57% to 74% on SSD-L, and from
78% to 95% on SSD-M. Writes, in contrast, are barely af-
fected by internal operations, especially on SSD-M. Most
writes still fall into the disk cache with low latency. We also
examined sequential and random with write-only requests
(not shown here), although we found that background op-
erations can cause some spikes as high as 7-8ms, the overall
performance impact on writes is still minimal. To visualize
the effect of these background operations, we show the first
5,000 requests of the workloads running on SSD-M in Figure
7(c). We can see that after inserting a 10ms interval, most
high spikes disappeared. It is apparent that the background
operations are completed during the idle periods such that
foreground jobs do not have to compete for resources with
them. Though we cannot exactly distinguish various back-
ground operations causing these high spikes, we use this case
to qualitatively show that such background operations exist
and can affect foreground jobs.

5.7 Would increasing workload randomness de-
grade performance?

In previous sections, we have seen that both read and
write on SSDs can be highly correlated to workload access
patterns (i.e. sequential or random), similar to hard disks.
In this section, we further examine how performance of ran-
dom writes varies when we increase the randomness of work-
loads (seek range). We run random write and stride write
on the three SSDs. For random write, we vary the random
range from 1GB to 30GB. For stride write, we vary the stride
step from 4KB to 128MB. Each workload uses a request size
of 4KB. We did not see an increase of latency with random
range and stride steps on SSD-M and SSD-H. Thus, we only
report experimental results for SSD-L.

Increasing workload randomness has a significant impact
on performance of SSD-L. Figure 8(a) shows that as the
random range increases from 1GB to 30GB, the average re-
quest latency increases by a factor of 55 (from 2.17ms to
120.7ms), and the average bandwidth drops to as low as
0.03MB/sec. Such a low bandwidth is even 28 times lower
than a 7200RPM Western Digit hard disk (0.85MB/sec),
and the whole storage system is nearly unusable. The same
situation also occurs in stride write. As we increase the
stride step from 4KB to 128MB, the average latency in-
creases from 1.69ms to 151.2ms (89 times increase) and the
bandwidth drops to only 0.025MB/sec. Such a huge perfor-
mance drop only applies to writes. Increasing request size
to 256KB does not help to mitigate such a problem. After
investigating workload traces, we found that as the request
randomness increases, many requests emerge with a latency
of as high as 680ms. The more random the workload is, the
more frequently such extraordinarily high-cost requests ap-
pear. Figure 8(c) shows the case of randomly writing 4KB
data in a 30GB range. The spike of 680ms appears in nearly
every three requests in the figure.

Two reasons may cause such high spikes, metadata syn-
chronization and log block merging. An SSD maintains a

mapping table to track the mapping between logical block
addresses and physical block addresses. When writing data
into SSD, the mapping table needs to be updated in a volatile
buffer and synchronized to flash memory periodically. The
frequency of metadata synchronization could be sensitive to
access patterns. For example, some FTL algorithms employ
a B+ tree-like structure [6,43] to manage the mapping table.
Using such a data structure, the more random writes are, the
more indexing nodes have to be updated in an in-memory
data structure (e.g. journal tree in JFFS3). With limited
buffer space, SSD-L has to frequently lock the in-memory
data structure and flush the metadata in volatile cache to
persistent flash memory, which could cause a high spike to
appear repeatedly. Some other FTL algorithms (e.g. [19])
can have similar problems with limited RAM space. Inter-
estingly, we also observed similarly high spikes occasionally
appearing on SSD-M and SSD-H, and the manufacturer con-
firmed that it is caused by metadata synchronization.

Another possible reason is log block merging. In order to
maintain a small mapping table while achieving reasonable
write performance, many FTLs [12,22,26,30] adopt a large
mapping granularity (e.g. a block) and use one or multiple
log blocks to hold data for incoming writes. When running
out of log blocks, each page in the log block has to be merged
with the other valid pages in the same mapping unit, which
causes a high-cost copy-erase-write operation. Obviously, if
multiple pages in a log block belong to the same mapping
unit, only one merge is needed. Thus, the more random the
writes are, the more merge operations are needed. In the
worst case, each individual page in a log block would belong
to a different mapping unit and needs a merge operation cor-
respondingly. This may explain why the performance would
not get worse when the stride range exceeds 16MB (Figure
8(b)), because at that time, each page in a log block would
belong to an individual mapping unit anyway. Although this
speculation still needs confirmation from the SSD manufac-
turer, it reasonably explains the observed behavior.

5.8 How does fragmentation affect performance?
In order to achieve acceptable performance, many FTL

algorithms are based on a log structured approach [3] to
handle writes. With such a design, a logical page may be
dynamically mapped to any physical flash memory page.
When a logical page is overwritten, the data is appended to
a clean block, like a log. The logical page is mapped to the
new position, and the obsolete physical page is only invali-
dated by updating its metadata. Therefore, if the incoming
writes are randomly distributed over the logical block ad-
dress space, sooner or later all physical flash memory blocks
may have an invalid page, which is called internal fragmen-
tation.

Such an internal fragmentation may negatively impact
performance. First of all, the cleaning efficiency drastically
drops down. Suppose an erase block has N pages and each
block has only one invalid page. In order to get a clean
block, N flash memory blocks have to be scanned. During
this process, N × (N − 1) page reads, N × (N − 1) page
writes, and N block erases are needed. Second, since logi-
cally continuous pages are not physically continuous to each
other, the readahead mechanism would not be effective any
more, which impacts read performance.

We designed a workload, called striker, to create frag-
mentation in SSDs. This workload randomly writes 4GB
data into SSD, each request writes only 4KB data, and each
overwritten block is randomly selected from the whole SSD

�
�
�
�

��

�
�
�
�

�
�
�
�

SSD−M

SSD−M−fragmented

SSD−H

SSD−H−fragmented

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

RND−RD SEQ−RD RND−WR SEQ−WR

B
an

d
w

id
th

 (
M

B
/S

ec
)

Figure 9: Bandwidth of fragmented SSDs. Four
workloads, Random Read, Sequential Read, Random
Write, and Sequential Write, are denoted as RND-RD,
SEQ-RD, RND-WR, and SEQ-WR. All workloads use
a request size of 4KB.

space. Under the impact of such extremely intensive ran-
dom writes, an SSD would be significantly fragmented. In
order to show the performance impact of fragmentation, we
run sequential and random workloads using read and write
requests of 4KB, and we compare the SSD performance be-
fore and after fragmentation. Since striker runs excessively
slowly on SSD-L, we only report data for SSD-M and SSD-H.

Figure 9 shows the bandwidths of four workloads running
on SSD-M and SSD-H before and after being fragmented.
Note that we use request size of 4KB and one job here, thus
the sequential workloads do not reach the previously ob-
served bandwidths (Figure 1). We can see that both SSD-
M and SSD-H experienced significant performance degrada-
tion after being fragmented. Due to the internal fragmenta-
tion, logically continuous pages are actually physically non-
continuous to each other, which makes readahead ineffective.
This causes the bandwidth of sequential read to drop from
43MB/sec to only 15MB/sec, which is close to the band-
width of random read. Such a 2.8 times bandwidth decrease
is reflected by the corresponding increase of latency from
75µs to 235µs. However, random read is not affected much
by fragmentation.

Fragmentation has even more significant impact on per-
formance of writes. After fragmentation, the bandwidth of
sequential write on SSD-M collapses from 42.7MB/sec to
3.02MB/sec (14 times lower). This bandwidth is even much
lower than that on a regular laptop disk. Although the disk
cache is enabled in this case, the average latency on the
fragmented SSD-M increases to as high as 1.27ms. Similar
performance degradation is present for random write. Com-
pared to that on SSD-M, the write performance drop is less
significant on SSD-H, an enterprise-level SSD. Its bandwidth
still reaches 40.3MB/sec for sequential write and 11.4MB/sec
for random write. This is attributed to its larger pool of
over-provisioned erase blocks (25% of the SSD capacity) and
faster erase and write in SLC flash memory.

We believe that the huge performance drop in SSD-M is
mainly due to internal fragmentation and exhausted clean
blocks. When aggressively writing into SSD-M in a very ran-
dom manner, the allocation pool of clean blocks is exhausted
quickly. Meanwhile, considering the limited life-cycles of
MLC flash memory, SSD-M may take a ‘lazy’ cleaning policy.
This causes each write to clean and recycle invalidated pages
synchronously. Meanwhile, since most flash memory blocks
are significantly fragmented by random writes, each write
becomes excessively expensive. The result is that nearly
38% of the writes have a latency higher than 1ms in sequen-
tial write, and many of them have a latency of 8-9ms. This in
turn results in a bandwidth of as low as 3.02MB/sec. On the

other hand, we have to point out that such aggressive ran-
dom writes only represent a very extreme case, which is un-
likely to appear in real-life workloads. However, since most
file systems normally generate writes smaller than 256KB,
the fragmentation problem still needs to be paid attention,
especially in an aged system.

We have attempted to restore SSD performance by in-
serting a long idle time or mixing read and write requests
to create more chance for the firmware to conduct cleaning
in the background. However, it seems that a long idle pe-
riod would not automatically cure a fragmented SSD. Even-
tually we found a tricky way to restore the SSD perfor-
mance. We first fill the SSDs with big sequential writes
(256KB), then we repeatedly write the first 1024MB data
using sequential writes of 4KB many times. The reason
this method is effective may be that the cleaning process
is triggered by continuous writes to generate clean blocks
in the background. Meanwhile, since writes are limited in
the first 1024MB, newly generated clean blocks would not
be quickly consumed, which helps refill the allocation pool
slowly. Other tricks may also be able to recover performance,
such as reinitializing the mapping table in the firmware.

6. SYSTEM IMPLICATIONS
Having comprehensively evaluated the performance of three

representative SSDs through extensive experiments and anal-
ysis, we are now in a position to present some important
system implications. We hope that our new findings are
insightful to SSD hardware architects, operating system de-
signers, and application users, and hope that our suggestions
and guidance are effective for them to further improve effi-
ciencies of SSD hardware, software management of SSDs,
and data-intensive applications on SSDs. This section also
provides an executive summary of our answers to the ques-
tions we raised at the beginning of this paper.

Reads on SSD: Read access latencies on SSDs are not
always as uniform as commonly believed. Reads on low-
end SSDs with no readahead are generally insensitive to
access patterns. On higher-end SSDs, however, sequential
reads are much more efficient than random reads. This indi-
cates that many existing OS optimizations, such as file-level
readahead, will still be effective and beneficial even when
migrating to an SSD-based storage. For SSD manufactur-
ers, conducting readahead in SSD firmware is a cost efficient
design, which can significantly boost read performance with
low cost. More importantly, since most existing file systems
have already taken a lot of effort to organize sequential read
requests for performance optimization, hardware support on
SSDs can be especially effective. For application designers
and practitioners, they may believe that high performance
can be naturally achieved on SSDs, even without considering
data placement. This assumption has to be corrected. Op-
timizing data placement on SSD is still needed at all levels
for improving read performance.

Writes on SSD: As expected, writes on low-end SSDs
are strongly correlated to access patterns. Random writes
in a large storage space can lead to excessively high latency
and make the storage system nearly unusable. However, on
higher-end SSDs equipped with a disk cache, write perfor-
mance is exceptionally good and nearly independent of ac-
cess patterns. The indication is two-fold. On the one hand,
operating system designers should still be careful about ran-
dom write performance on low-end SSDs. An OS kernel can
intentionally organize large and sequential writes to improve
write performance. For example, the file system can sched-

ule write-back conservatively with a long interval for cluster-
ing writes. Also, flushing out dirty data in a large granular-
ity would be an option. On the other hand, random writes
may not continue to be a critical issue on high-end SSDs.
Considering the technical trend that a disk cache would be-
come a standard component on SSDs, future research work
should not continue to assume that random writes are ex-
cessively slow. Instead, avoiding the worst case, such as
fragmentation, is worth further research.

Disk Cache: A disk cache can significantly improve per-
formance for both reads and writes in an SSD. With a large
cache, high-latency writes can be effectively hidden, and an
MLC-based SSD can achieve performance comparable to an
SLC-based SSD in most cases. SSD manufacturers should
consider a disk cache as a cost-effective configuration and in-
tegrate it as a standard component in SSDs, even on low-end
ones. With a disk cache, higher-level components, such as
OS kernels, can be relieved of optimizing writes specifically
for SSDs, and system complexity can be reduced.

Interactions between reads and writes: Reads and
writes on SSDs have a surprisingly high interference with
each other, even when they are submitted in sequence rather
than in parallel. This indicates that upper-level layers should
carefully separate read and write streams by clustering dif-
ferent types of requests. Actually, some existing I/O sched-
ulers in OS kernels already manage reads and writes sepa-
rately, which would be effective on SSDs. Moreover, appli-
cation designers should attempt to avoid generating inter-
leaved read and write operations. For example, when pro-
cessing many files in a directory, we should avoid reading
and updating only one individual file each time.

Background operations on SSDs: We observed many
background operations on SSDs, as well as their performance
impact on foreground jobs, especially on reads. Since many
operations (e.g. delayed write) must be done sooner or later,
if the arrival rate of requests is very high, the performance
impact is essentially inevitable. A sophisticated firmware
may mitigate the problem. For example, we can estimate
the idle period and avoid scheduling long-latency operations
(e.g. erase) during a busy time. Moreover, a large write-
back buffer can hide the interference more effectively. On
the OS and application level, avoiding an interleaved traffic
of reads and writes, as aforementioned, is a wise choice.

Internal Fragmentation: On the two higher-end SSDs,
we observed significant performance degradation caused by
internal fragmentation. In such a condition, the SLC-based
SSD obviously outperforms the MLC-based SSD. Although
the excessively intensive random writes, which are generated
by striker in our experiments, rarely happen in practice, it
warns that random writes still need to be carefully handled,
even on high-end SSDs. Many optimizations can be done in
the operating system. For example, some sort of throttling
mechanism can be incorporated to intentionally slow down
writes into SSD to create more opportunity to cluster con-
secutive small writes. In addition, spatial locality of writes
becomes important. For example, when selecting dirty pages
to evict from the buffer cache, intentionally selecting pages
that can be grouped sequentially is a wise choice. In order to
solve this problem, SSD manufacturers should design more
efficient mapping algorithms, and over-provisioning a suffi-
cient number of clean blocks can alleviate the problem. As a
short-term solution, a firmware-level defragmentation tool,
which can automatically reorganize the page layout inside
SSD, is highly desirable. For practitioners, selecting high-
end SLC-based SSDs, which show relatively better perfor-

mance under extreme conditions, is a wise choice to handle
enterprise workloads with intensive small writes.

Comparing with HDD: If we compare an SSD with a
hard disk, the SSD would not necessarily win in all cate-
gories. Besides higher price and smaller capacity, even the
performance of an SSD is not always better than an HDD.
When handling random reads, it is confirmed that SSDs do
show much higher bandwidth than a typical 7200RPM hard
disk. However, when handling other workloads, the perfor-
mance gap is much smaller. Under certain workloads, such
as random writes in a large area, a low-end SSD could be
even substantially slower than a hard disk.

More importantly, we should note that the essential differ-
ence between SSD and HDD is not just the performance but
the different internal mechanisms to manage data blocks.
On HDDs, each logical block is statically mapped on the
physical medium, which leads to a simplified management
and relatively repeatable performance. On SSDs, the phys-
ical location of logical blocks depends greatly on the write
order and could change over time (e.g. during cleaning or
wear-leveling). This naturally leads to many performance
uncertainties and dynamics. In general, we believe it is still
too early to conclude that SSD will replace HDD very soon,
especially when considering that the ‘affordable’ SSDs still
need significant improvement. System practitioners should
also carefully consider many issues exposed in this work be-
fore integrating SSDs into the storage hierarchy.

7. RELATED WORK
Flash memory based storage has been actively researched

for many years, and a large body of research work is focused
on addressing the ‘no in-place write’ problem of flash mem-
ory, either through an flash memory-based file system [4, 6,
17,34] or a flash translation layer (FTL) [12,16,22–24,26,30].
This pioneering research work serves as a concrete founda-
tion in the SSD hardware design.

Recently, some research work has been conducted specif-
ically on flash memory-based SSDs. For example, Agrawal
et al. presented a detailed description about the hardware
design of flash memory based SSD [3]. In addition to re-
vealing the internal architecture of SSDs, they also reported
performance data based on an augmented DiskSim simula-
tor [8]. Similarly, Birrell et al. [5] also presented a hardware
design of flash memory based SSD in detail. Concerning the
RAM buffer in SSD, Kim and Ahn proposed a write buffer
management scheme called BPLRU [25] in SSD hardware
to mitigate the problem of high-cost random writes in flash
memory. Gupta et al. [19] also proposed a selective caching
method to cache a partial mapping table in limited RAM
buffer to support efficient page-level mapping. Some papers
also suggest to modify the existing interfaces to leverage the
unique features of SSDs. For example, the JFTL [11] is de-
signed to remove redundant writes in a journaling file system
by directly transferring semantic information from the file
system level to the SSD firmware. Transactional Flash [38]
further suggests to integrate a transactional interface API to
SSDs for supporting transactional operations in file systems
and database systems.

Concerning the application of flash memory based SSDs,
Sun® has designed a general architecture [31] to leverage
the SSD as a secondary-level cache in the standard mem-
ory hierarchy. Aiming specifically at peta-scale storage sys-
tems, Caulfield et al. [9] proposed a flash memory based
cluster to optimize performance and energy consumption for
data-intensive applications. Recently, Narayanan et al. [37]

presented an interesting model to analyze the potential of
merging SSDs into enterprise storage systems from a cost-
efficiency perspective. Their study suggests that SSD may
not be as appropriate as expected for enterprise workloads.

SSDs are also received strong interest in the database com-
munity. Lee et al. [29] examined the performance potential
for using SSDs to optimize operations in DBMS, such as
hash join and temporary table creation. Lee and Moon pro-
posed an in-page logging approach [28] to optimize write
performance for flash-based DBMS. Koltsidas et al. [27] sug-
gested to incorporate both flash and hard disks in a database
system by placing read-intensive data on a flash disk and
write-intensive data on a hard disk. In general, these SSD
related solution papers are based on a common understand-
ing about flash memory based SSD – random writes have
poor performance. In our experiments, we confirmed that
such assumption still holds on the low-end SSD. However, on
the high-end SSDs, we did not see significant performance
issues on random writes in normal conditions.

8. CONCLUSION
We have designed a set of comprehensive measurements

on three representative, state-of-the-art SSDs fabricated by
two major manufacturers. Our experimental results con-
firmed many well understood features of SSDs, such as the
exceptional performance for handling random reads. At the
same time, we also observed many unexpected performance
issues in the dynamics, most of which are related to random
writes. In general, our findings do show that significant
advances have been made in SSD hardware design, provid-
ing high read access rates combined with reasonable write
performance under many regular workloads. However, the
substantial performance drop after a stress test showed that
it is still too early to draw the firm conclusion that HDD
will soon be replaced by SSD. For researchers on storage
and operating systems, our work shows that SSD presents
many challenges as well as opportunities.

Acknowledgments

We are grateful to our shepherd Prof. Pete Harrison and
the anonymous reviewers for their constructive comments
to improve the quality of this paper. We also thank our col-
league Bill Bynum for reading this paper and his comments.
We also thank Shuang Liang and Xiaoning Ding for many
interesting and inspiring discussions during this work. This
research was partially supported by the National Science
Foundation under grants CCF-0620152 and CCF-072380.

9. REFERENCES

[1] Serial ATA revision 2.6. http://www.sata-io.org.
[2] SmartMedia specification. http://www.ssfdc.or.jp.
[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for
SSD performance. In Proc. of USENIX’08, 2008.

[4] P. L. Barrett, S. D. Quinn, and R. A. Lipe. System for
updating data stored on a flash-erasable,
programmable, read-only memory (FEPROM) based
upon predetermined bit value of indicating pointers.
In US Patent 5,392,427, 1995.

[5] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A
design for high-performance flash disks. In Microsoft
Research Technical Report, 2005.

[6] A. B. Bityutskiy. JFFS3 design issues.
http://www.linux-mtd.infradead.org.

[7] Blktrace. http://linux.die.net/man/8/blktrace.
[8] J. Bucy, J. Schindler, S. Schlosser, and G. Ganger.

DiskSim 4.0. http://www.pdl.cmu.edu/DiskSim.
[9] A. M. Caulfield, L. M. Grupp, and S. Swanson.

Gordon: using flash memory to build fast,
power-efficient clusters for data-intensive applications.
In Proc. of ASPLOS’09, 2009.

[10] F. Chen, S. Jiang, and X. Zhang. SmartSaver:
Turning flash drive into a disk energy saver for mobile
computers. In Proc. of ISLPED’06, 2006.

[11] H. J. Choi, S. Lim, and K. H. Park. JFTL: a flash
translation layer based on a journal remapping for
flash memory. In ACM Transactions on Storage,
volume 4, Jan 2009.

[12] T. Chung, D. Park, S. Park, D. Lee, S. Lee, and
H. Song. System software for flash memory: a survey.
In Proc. of ICEUC’06, 2006.

[13] T. Claburn. Google plans to use Intel SSD storage in
servers. http://www.informationweek.com/news/ stor-
age/systems/showArticle.jhtml?articleID=207602745.

[14] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Journal-guided resynchronization for
software RAID. In Proc. of FAST’05, 2005.

[15] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang.
DiskSeen: Exploiting disk layout and access history to
enhance I/O prefetch. In Proc. of USENIX’07, 2007.

[16] E. Gal and S. Toledo. Algorithms and data structures
for flash memories. In Computing Survey’05, 2005.

[17] E. Gal and S. Toledo. A transactional flash file system
for microcontrollers. In Proc. of USENIX’05, 2005.

[18] C. Gniady, Y. C. Hu, and Y. Lu. Program counter
based techniques for dynamic power management. In
Proc. of HPCA’04, 2004.

[19] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash
translation layer employing demand-based selective
caching of page-level address mappings. In Proc. of
ASPLOS’09, 2009.

[20] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir,
and H. Franke. DRPM: Dynamic speed control for
power management in server class disks. In Proc. of
ISCA’03, 2003.

[21] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang.
DULO: An effective buffer cache management scheme
to exploit both temporal and spatial localities. In
Proc. of FAST’05, 2005.

[22] J. Kang, H. Jo, J. Kim, and J. Lee. A
superblock-based flash translation layer for NAND
flash memory. In Proc. of ICES’06, 2006.

[23] A. Kawaguchi, S. Nishioka, and H. Motoda. A
flash-memory based file system. In Proc. of USENIX
Winter, 1995.

[24] B. Kim and G. Lee. Method of driving remapping in
flash memory and flash memory architecture suitable
therefore. In US Patent No 6,381,176, 2002.

[25] H. Kim and S. Ahn. BPLRU: A buffer management
scheme for improving random writes in flash storage.
In Proc. of FAST’08, 2008.

[26] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho.
A space-efficient flash translation layer for
compactflash systems. In IEEE Transactions on
Consumer Electronics, volume 48(2):366-375, 2002.

[27] I. Koltsidas and S. Viglas. Flashing up the storage
layer. In Proc. of VLDB’08, 2008.

[28] S. Lee and B. Moon. Design of flash-based DBMS: An
in-page logging approach. In Proc. of SIGMOD’07,
2007.

[29] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim. A case
for flash memory SSD in enterprise database
applications. In Proc. of SIGMOD’08, 2008.

[30] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and
H. Song. A log buffer based flash translation layer
using fully associative sector translation. In IEEE
Tran. on Embedded Computing Systems, 2007.

[31] A. Leventhal. Flash storage memory. In
Communications of the ACM, volume 51, July 2008.

[32] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou.
C-Miner: Mining block correlations in storage
systems. In Proc. of FAST’04, 2004.

[33] M-Systems. Two technologies compared: NOR vs
NAND. In White Paper, 2003.

[34] C. Manning. YAFFS: Yet another flash file system.
http://www.aleph1.co.uk/yaffs, 2004.

[35] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and
K. Grimsrud. Intel Turbo Memory: Nonvolatile disk
caches in the storage hierarchy of mainstream
computer systems. In ACM Transactions on Storage,
volume 4, May 2008.

[36] M. Mesnier. Intel open storage toolkit.
http://www.sourceforge.org/projects/intel-iscsi.

[37] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety,
and A. Rowstron. Migrating enterprise storage to
SSDs: analysis of tradeoffs. In Proc. of EuroSys’09,
2009.

[38] V. Prabhakaran, T. L. Rodeheffeer, and L. Zhou.
Transactional flash. In Proc. of OSDI’08, 2008.

[39] D. Robb. Intel sees gold in solid state storage.
http://www.enterprisestorageforum.com/technology/
article.php/3782826, 2008.

[40] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. In
ACM Transactions on Computer Systems, volume
10(1):26-52, 1992.

[41] Samsung Elec. Datasheet (K9LBG08U0M). 2007.
[42] B. Schroeder and G. Gibson. Disk failures in the real

world: What does an MTTF of 1,000,000 hours mean
too you? In Proc. of FAST’07, 2007.

[43] C. Wu, L. Chang, and T. Kuo. An efficient B-Tree
layer for flash memory storage systems. In Proc. of
Int. Conf. on Real-Time and Embeded Computing
Systems and Applications 2003, 2003.

Notes
1When connecting through a SATA controller card sup-

porting parallel I/Os, SSD-M and SSD-H can achieve even
higher bandwidths for random workloads and show more
significant performance advantages over the low-end SSD.
Since handling parallel I/O jobs is out of the scope of this
paper, we still use the on-board SATA connectors in our ex-
periments to avoid extra overhead that may be introduced
by the controller card.

2 When filling an SSD for the first time, the mapping
table is being created and the number of clean blocks that
are available for allocation decreases. During this process,
the SSD may experience performance degradation.

