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Abstract—HPC applications pose high demands on I/O per-
formance and storage capability. The emerging non-volatile
memory (NVM) techniques offer low-latency, high bandwidth,
and persistence for HPC applications. However, the existing
I/O stack are designed and optimized based on an assumption
of disk-based storage. To effectively use NVM, we must re-
examine the existing high performance computing (HPC) I/O sub-
system to properly integrate NVM into it. Using NVM as a fast
storage, the previous assumption on the inferior performance of
storage (e.g., hard drive) is not valid any more. The performance
problem caused by slow storage may be mitigated; the existing
mechanisms to narrow the performance gap between storage and
CPU may be unnecessary and result in large overhead. Thus fully
understanding the impact of introducing NVM into the HPC
software stack demands a thorough performance study.

In this paper, we analyze and model the performance of I/O
intensive HPC applications with NVM as a block device. We
study the performance from three perspectives: (1) the impact
of NVM on the performance of traditional page cache; (2) a
performance comparison between MPI individual I/O and POSIX
I/O; and (3) the impact of NVM on the performance of collective
I/O. We reveal the diminishing effects of page cache, minor
performance difference between MPI individual I/O and POSIX
I/O, and performance disadvantage of collective I/O on NVM due
to unnecessary data shuffling. We also model the performance
of MPI collective I/O and study the complex interaction between
data shuffling, storage performance, and I/O access patterns.

I. INTRODUCTION

Modern high performance computing (HPC) applications

are often characterized with huge data sizes and intensive

data processing. For example, the Blue Brain project aims

to simulate the human brain with a daunting 100PB memory

that needs to be revisited by the solver at every time step; the

cosmology simulation studying Q continuum works on 2PB

per simulation. Both of these simulations require transforma-

tion of data representation, which poses high demands on I/O

performance and storage capability.

The emerging Non-volatile Memory (NVM) techniques,

such as Phase Change Memory [1] and STT-RAM [2], offer

low-latency access, high bandwidth, and persistency. Their

performance is much better than the traditional hard drives,

and close to or even match that of DRAM. The non-volatility

and high performance of NVM blur the line between storage

and main memory, hinting at opportunities to overhaul classi-

cal IO system and memory hierarchies. Table I summarizes the

characteristics of different NVM technologies and compares

them to traditional DRAM and storage technologies.

TABLE I: Memory Technology Summary [3]

Read time (ns) Write time (ns) Read BW (MB/s) Write BW (MB/s)

DRAM 10 10 1,000 900

PCRAM 20-200 80-104 200-800 100-800

SLC Flash 10
4-105 10

4 -107 0.1 10
−3-10−1

ReRAM 5-105 5-108 1-1000 0.1-1000

Hard drive 10
6

10
6 50-120 50-120

The emergence of NVM has compound impacts on the

existing HPC systems and applications. Given the high per-

formance and non-volatility of NVM, we must re-examine

the existing I/O system to properly integrate NVM into it.

Using NVM as a fast storage, the previous assumption on

the inferior performance of storage, such as disk drives, is

not valid any more. The performance problem caused by

slow storage may be mitigated; The performance bottleneck

along the I/O path may be shifted from storage to other

middle-level system components; The existing mechanisms to

narrow the performance gap between storage and CPU may

be unnecessary and result in undesirable overhead.

In this paper, we analyze the performance of I/O intensive

HPC applications with NVM as the high-speed block device.

Given its high compatibility, we anticipate that such a block-

based NVM model is likely to become the mainstream in

industry (e.g., the recently announced Intel Optane [4]) and

be adopted in the near future soon . We pose the following

questions to gain important insight into the application perfor-

mance with NVM.

• What is the impact of NVM on the performance of

traditional page cache? Is it still reasonable to use page

cache for NVM-based storage?

• Comparing MPI individual I/O and POSIX I/O based on

NVM, what is their performance difference in the HPC

domain? With a high-speed NVM device, would MPI

individual bring too much overhead because it brings one

extra layer on top of POSIX I/O?

• MPI I/O introduces collective I/O techniques to optimize

application performance, based on the assumption of poor

I/O performance. Is it still valid to use those techniques

under the deployment of NVM?

To answer the above questions, we use a set of represen-

tative HPC applications to evaluate their performance based



on Intel’s Persistent Memory Block Driver (PMBD) [5]. We

make several findings through our study.

• The benefits of page cache is diminished with the deploy-

ment of NVM, but still plays an important role to improve

I/O performance. Comparing with SSD and regular hard

drive, NVM is less sensitive to page cache size when the

working set size of the application is very large. This

is due to the superior performance of NVM. However,

when the working set can be accommodated in page

cache, NVM does not exhibit significant performance

advantages over SSD and hard drive.

• MPI individual I/O and POSIX I/O have minor per-

formance difference with the existence of NVM. The

overhead of MPI individual I/O is not pronounced, even if

we use NVM as a fast storage. In a single-node deploy-

ment, MPI individual I/O performs only 4.87% worse

than POSIX I/O. In a multiple-node deployment, there

is almost no performance difference between the two.

This indicates that given the current highly optimized

implementation of MPI individual I/O, the performance

overhead of MPI individual I/O would not become a

problem for the future HPC, even if we have a fast storage

device, such as NVM.

• MPI collective I/O can perform worse than MPI individ-

ual I/O with the deployment of NVM. MPI collective I/O

aims to aggregate I/O operations to improve performance

of MPI individual I/O. However, the data shuffling cost

in MPI collective I/O is often larger than the performance

benefit of collective I/O, given the high speed of NVM.

For example, our results show that using collective I/O for

a workload with random I/O data accesses from multiple

MPI processes performs 38.4% worse than using MPI

individual I/O for the same workload in NVM.

Based on our observations, in this paper we further intro-

duce a performance model to analyze the tradeoff between

I/O aggregation overhead and benefit. Based on the model,

we explore how the collective I/O should be employed with

the upcoming NVM technology.

The paper proceeds as follows. Section II covers the back-

ground. Section III presents application performance on NVM

under various test environments. Section IV introduces our

performance model for the MPI collective I/O. We discuss

related work and conclude in Sections V and VI, respectively.

II. BACKGROUND

A. NVM Usage Model

Drawing a blurry line between traditional volatile memory

and persistent storage, NVM has at least two usage models.

(1) Memory-based Model. NVM is treated as the regu-

lar, byte-addressable main memory: NVM is attached to the

memory bus in form of DIMMs and directly managed by the

memory controller. The NVM space is exposed to the host

as part of physical memory address space, which could be

directly accessed through load and store instructions. To

bridge the potential performance gap between NVM-only main

memory and the traditional DRAM-only main memory, NVM

could be paired with a small portion of DRAM to mitigate

intensive writes and enhance lifetime. On one hand, such a

memory-based model provides high performance and directly

opens many attractive properties, such as byte addressability

and persistence, to applications. On the other hand, this model

introduces high complexity to programmers, especially for

handling data integrity and consistency issues upon power

and system failure. Prior studies, such as Mnemosyne [6],

CDDCS [7], and NV-heap [8], aim to provide an easy and

flexible programming interface to alleviate such a program-

ming burden. Also, in order to fully exploit the potential of

memory-based model, applications have to be redesigned to fit

this model, which introduces backward compatibility issues.

(2) Storage-based model. Another model is to use NVM

as a block device, similar to traditional HDD or SSD: NVM

can be used to directly displace NAND flash in an SSD and

managed by an I/O controller. The host can access the device

through a regular block I/O interface (e.g., PCI-E or SATA)

via read and write commands. Limited by the I/O bus

bandwidth, the storage-based model cannot fully exploit its

potential, such as byte-addressability. However, this scheme

provides a maximum compatibility to the existing applications

and operating systems, which allows it to be a simple drop-

in solution. A user can simply use an NVM device as a

regular flash SSD, create partition and file systems atop,

and immediately enjoy the high I/O speed. Recently Intel

announced their 3D XPoint based product, called Optane,

which is a PCI-E device based on the block device model [4].

In this work, We assume a storage-based model in this work,

which is the most practical NVM solution in the near future.

B. MPI Collective I/O

In conventional disk based storage, I/O performance is

highly sensitive to not only the amount of data being accessed

but also the access pattern (e.g., sequential vs. random). In an

MPI-based application, multiple I/O streams could be issued

individually and independently from multiple MPI processes,

which is normally considered as the worst situation for disk

drives, because this situation creates a disk head’s “seek storm”

and causes performance loss. Thus, creating a disk-friendly

access pattern is an important consideration by MPI I/O.

Collective I/O is a mechanism to improve MPI-based par-

allel I/O performance. The basic idea of MPI collective I/O is

to scatter and gather data between MPI processes that need to

perform I/O operations. Such scatter and gather operations are

performed by only a limited number of MPI processes, named

as aggregator. Each aggregator coalesces I/O requests and

iteratively performs I/O operations for all MPI processes or a

subset of them. Figure 1 depicts the MPI collective I/O scheme

for write operation. Read operation happens similarly but in

an opposite data path. In the figure, there are two aggregators

(MPI processes 1 and 2). Each aggregator gathers data from

all MPI processes in two iterations. Then each aggregator

coalesces the data and writes into persistent storage.
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Fig. 1: The MPI collective I/O scheme. The numbers in circles are MPI
process IDs. There are two aggregators (MPI processes 1 and 2) in this
example. Letters A, B, C, and D represent data from four contiguous blocks
on NVM.

The collective I/O approach reduces the number of I/O

transactions, enables contiguous I/O operations, and avoids

fetching useless data, effectively improving I/O performance

for certain workloads. However, MPI collective I/O also brings

the so-called “data shuffling” overhead, which is associated

with the process of data gathering (for write operations) and

scattering (for read operations).

Given the poor performance of conventional storage de-

vices, the data shuffling overhead is often overweighted by

performance benefits of optimized I/O operations from MPI

collective I/O. However, with high-speed solid state storage,

such as NVM and SSD, which are relatively insensitive to

I/O patterns (e.g., random accesses) and deliver much higher

I/O performance, MPI collective I/O may not always remain

advantageous.

The current MPI library also allows individual I/O, where

MPI processes conduct I/O operations individually without the

coordination of MPI collective I/O and do not involve data

shuffling.

C. Benchmarks

For our experimental study, we have carefully selected four

representative I/O intensive HPC benchmarks.

1) MADBench2: This benchmark is a “stripped-down” ver-

sion of MADCAP (a Microwave Anisotropy Dataset Compu-

tational Analysis Package) [9]. MADBench2 has an I/O mode

that performs MPI I/O in three phases, S, W, and C. The three

phases have complicated write-only, read-only, and read/write

operations respectively.

2) IOR: IOR is a benchmark widely used to study parallel

I/O performance at both POSIX and MPI-IO levels [10].

It is highly configurable and supports various I/O patterns,

including “sequential” and “random offset” file access, and

individual I/O and collective I/O.

Several IOR configuration parameters are related to our

work, including “segment count”, “block size”, and “transfer

size”, shown in Figure 2. For collective I/O, the given data in

an MPI process is partitioned into segments, and then each

segment is further partitioned into blocks. During the data

shuffling phase, an MPI process in each iteration of the data

shuffling sends or receives at most “transfer size” of data.

IOR also has a parameter, called “reorder tasks to random”,

which enables random I/O accesses. We use this option for

IOR throughout the paper.
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Fig. 2: Configuration parameters for IOR benchmark.
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Fig. 3: HPC I/O system Hierarchy

3) HACC-IO: This benchmark is the I/O kernel of HACC

(an HPC application based on N-body simulation) [11]. It

has random I/O write operations with all-to-all communication

patterns. This benchmark allows us to configure the number

of particles (“numparticles”) simulated in HACC-IO to change

the workload size. The total amount of data to write is the

“numparticles” multiplied by the number of MPI processes.

4) S3aSim.: This benchmark is an MPI-IO based sequence

similarity search algorithm framework [12]. S3aSim emulates

IO access patterns in mpiBLAST [13], which is “streaming-

like”, read-only data accesses. S3aSim has five working

phases, and we focus on one of the phases (i.e., the I/O phase).

D. PMBD Emulator

As NVM devices are not available in the market, we use

Persistent Memory Block Driver (PMBD) [14], which is a

DRAM based NVM emulator driver, for our experiments.

PMBD is a light-weight PM (Persistent Memory) block driver

based on an OS kernel module in Linux 2.6.34. It reserves a

portion of DRAM-based physical memory space by changing

the e820 table in the high memory address space. PMBD

provides a standard block I/O interface after being loaded

into OS as a regular block device, on top of which partitions

and file systems can be created. Internally, the PMBD driver

is responsible for mapping the logical block addresses to

physical memory pages, receiving the incoming read and

write commands, and translating them to load and store

instructions. From the perspective of application level soft-

ware and other system components, a PMBD device has no

difference from other physical block devices, while it provides

configurable features of NVM devices, such as emulating

various bandwidths, latencies, protections, etc.

E. HPC I/O Hierarchy

The I/O stack in a typical HPC system has multiple layers,

shown in Figure 3. The block devices at the bottom level

3



provide data persistence. Given the variety of different storage

devices (e.g., HDD, SSD, PMBD), raw data access latencies

range from microseconds to milliseconds, and are sensitive

to distinct access patterns (e.g., sequential vs. random). To

alleviate the impact of slow I/O operations, the page cache

layer in the operating system attempts to hold the workload’s

working set in memory, satisfying most data accesses in

DRAM. Due to its “filtering” effect, the page cache can have

a strong impact on I/O performance. The file system layer

is responsible for managing storage devices and provides a

file system abstraction to allow applications to access storage

devices, either connected locally or remotely. In our study, we

use network file system (NFS) for remote storage access. MPI

I/O built on top of POSIX I/O enables coordinated and remote

I/O accesses for MPI processes.

III. PERFORMANCE STUDY

We present our performance analysis results in this section.

We deploy our tests in a local cluster. Each node of the cluster

has two Intel Xeon E5-2630 processors (2.4GHz) with 32GB

DDR memory. All nodes in the cluster are connected through

1Gb Ethernet interconnect. We use three types of block

devices: one is a regular hard drive (Seagate Constellation.2

500GB hard drive attached by SATA, notated as “HDD” in

this section), one is an SSD (Intel SSD730 240GB attached

by SATA, notated as “SSD” in this section), and the third is an

NVM device emulated with PMBD. NVM is configured with

the same bandwidth and latency as DRAM. We use MPICH-

3.2 for MPI throughout the paper.

A. Impact of Page Cache

The page cache is a transparent cache for pages originat-

ing from a secondary storage device. The operating system

(OS) keeps a page cache, which enables quicker accesses to

those frequently accessed pages and improves performance.

We measure the performance of the three I/O devices with

different page cache configurations and study the impact of

the page cache on the observed application performance.

We use three benchmarks in our tests, HACC-IO, MAD-

Bench2, and S3aSim. The benchmarks are compiled with gcc

4.4.7 and Open MPI-1.10.0. We use one node with four MPI

processes for our tests. Figures 4, 5, and 6 show the results

for HACC-IO, MADBench2, and S3aSim, respectively.

HACC-IO in Figure 4 simulates 13,107,200 particles in

total (i.e., numparticles=13,107,200). It computes and then

generates about 2GB data for four MPI processes, and writes

them into the three block devices. The figure reveals that the

page cache plays an important role to improve performance

for HDD and SSD, while it has a limited impact on the

performance of NVM. When the page cache size is large (e.g.,

9GB and 11GB), there is almost no performance difference

between the three devices, because most of the I/O data is

cached in the page cache. However, as we reduce the page

cache size, there is significant performance difference between

the three devices. In general, decreasing the cache size from

11GB to 1GB, the performance of this workload on HDD
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Fig. 4: The performance study for the impacts of page cache on HACC-IO.
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Fig. 5: The performance study for the impacts of page cache on MADBench2.

and SSD is reduced by 92.7% and 84.8% respectively, while

the performance with NVM is only reduced by 11.5%. This

example illustrates well that with high-speed NVM, the effect

of the page cache is weakened.

MADBench2 in Figure 5 uses a working set size of

about 4GB (particularly the parameters NO PIX, NO BIN,

NO GANG, and BLOCKSIZE of MADBench2 are set as

5000, 8, 1, and 1024 respectively), larger than that of HACC-

IO. The figure presents the performance of the phase W , which

includes both read and write operations. MADBench2 tells

us a story slightly different from HACC-IO. As we decrease

the cache size from 11GB to 3GB, the performance on the

three devices remains stable. This is because of the fact that

MADBench2 has a larger working set size and the page cache

is unable to effectively cache all data, including those for

MADBench2 and system. However, NVM performs the best

among the three cases due to its high bandwidth.

S3aSim in Figure 6 uses a working set size of 2GB (with

100 total query number, max size of each query as 5,000, and

max count of each query as 10,000). Comparing the perfor-

mance of MADBench2 and S3aSim, we find that they have the

same performance trend: the NVM has the best performance

in all cases. But when the page cache is reduced from 3GB

to 1GB, MADBench2 on NVM has significant performance

reduction, 40.16%, while S3aSim on NVM has only 5.91%

performance reduction. We attribute such difference in the

performance reduction to the distinct data access patterns

of the two applications: S3aSim has streaming-like access

pattern, hence the page cache cannot work well, no matter

how large the page cache size is; for MADBench2, the page

cache takes effect, although the caching effect of page cache

4
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Fig. 6: The performance study for the impacts of page cache on S3aSim.

becomes weaker, when the page cache size is small (1GB).

Conclusions. With the emergence of NVM, the impact of

page cache on application performance is diminishing. Com-

pared with the traditional HDD and SSD, NVM is relatively

insensitive to the page cache size.

Our study has an important implication on how much

page cache space should be allocated for future NVM-based

HPC systems. In general, NVM makes it possible to use a

smaller page cache, which would save cost and incur ignorable

performance impact. We could even explore the possibility

of completely bypassing page cache for certain workloads on

NVM-based block device, which will save the limited page

cache space for other system data and in turn improve the

performance of the whole system.

B. POSIX I/O and MPI Individual I/O

MPI I/O is built on top of POSIX I/O (see Figure 3), and

is designed to improve the performance of POSIX I/O in the

setting of parallel I/O and provide user-friendly I/O abstract.

In the system stack, MPI I/O layer ensures data validness

for MPI I/O operations and re-organizes data distribution for

better performance. However, as an additional layer in the

system stack, MPI I/O could introduce certain overhead. With

conventional disk storage devices, such overhead is negligi-

ble compared to its advantages, however, it could be more

pronounced with NVM, because NVM alleviates performance

bottleneck at I/O devices and makes the overhead in the other

system components more obvious. In this section, we study

the performance of MPI individual I/O, and further study the

performance of MPI collective I/O in the next section.

We first study the performance of POSIX I/O and MPI

individual I/O without the involvement of network commu-

nication. In particular, we run the IOR benchmark on a single

node. We use 4 MPI processes, each of which performs I/O

operations. For the IOR benchmark, we set “block size” as

256MB, “segment count” as 2, and “transfer size” as 16MB,

and enable “reorder tasks to random”. The final aggregated

result file from IOR is a 16GB file (each MPI process writes

4GB data). Figure 7 shows the results.

The figure reveals that there is almost no performance

difference between MPI individual I/O and POSXI I/O on a

single node for HDD and SSD. However, when we use NVM,

we notice that POSIX I/O performs slightly better than MPI

individual I/O by 4.87%. We attribute the appearance of such
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Fig. 7: Comparing the performance of MPI individual I/O and POSIX I/O on
a single node with IOR.
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Fig. 8: Comparing the performance of MPI individual I/O and POSIX I/O on
multiple nodes with IOR.

performance difference to the better performance of NVM

which makes the overhead of MPI I/O more pronounced.

To further study the performance of MPI individual I/O and

POSIX I/O, we use five nodes and re-do the tests. Among the

five nodes, four nodes run the IOR benchmark with 4 processes

per node (16 processes in total), and the fifth node works as a

storage node where the other four nodes remotely perform I/O

operations. Hence, different from Figure 7, such a deployment

has the involvement of communication between the four nodes

and the storage node. POSIX I/Os are performed with NFS in

our test environment. Figure 8 shows the results.

The figure reveals that MPI individual I/O has almost no

performance difference than POSIX I/O in all cases, no matter

whether we use HDD, SSD, and NVM. The communication

cost in our tests is the major performance bottleneck, much

larger than those caused by MPI individual I/O overhead.

Hence, the overhead for MPI individual I/O is not clearly

spotted in the figure, even if we use a fast storage device,

such as SSD and NVM.

Conclusions. The emergence of NVM brings better perfor-

mance, and also may make some overhead more pronounced

than before. In this section, we study the overhead of MPI

individual I/O. We find such overhead only sightly impacts

performance in a deployment of a single node, and in a

multi-node environment, MPI individual I/O has ignorable

performance overhead, even if we use NVM. This finding

implies that the current implementation of MPI individual I/O

is quite efficient, which would introduce little overhead for the

future HPC system equipped with NVM.

5
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C. MPI Collective I/O and MPI Individual I/O

MPI collective I/O can bring performance benefit over

MPI individual I/O, when I/O operations from MPI processes

are interleaved and scattered. By coalescing I/O operations

and reorganizing data between MPI processes, MPI collective

I/O can reduce the number of I/O transactions and avoid

fetching useless data. However, this happens at the cost of

data shuffling operations between MPI processes, as discussed

in Section II-B. The design of MPI collective I/O is based

on a fundamental assumption that the I/O block device is

slow and pattern sensitive, such that the data shuffling cost

can be overweighted by the performance benefit of using MPI

collective I/O. In this section, we study the performance of

collective I/O with NVM, and compare the performance of

MPI collective I/O and MPI individual I/O.

We use the IOR benchmark and the same configuration

(including workload size, block size, and data transfer size)

as that for MPI individual I/O and POSIX I/O (Section III-B).

We use five nodes for the tests, four of which run IOR, and

the fifth node works as a remote storage node for parallel I/O

operations. For MPI collective I/O, we use one aggregator per

node. Figures 9 and 10 show results for the case of 1 process

per node (4 processes in total) and 4 processes per node (16

processes in total), respectively.

The figures reveal that MPI collective I/O brings little ben-

efit in most of cases. For HDD with intensive I/O operations

(i.e., 4 processes per node), the collective I/O performs better.

But, for SSD and NVM, MPI collective I/O always performs

worse than MPI individual I/O.

With conventional HDD, MPI collective I/O demonstrates

its performance benefits, even if there is data shuffling cost.

However, with the introduction of faster storage device (e.g.,

SSD and NVM), the I/O cost on the storage device is alle-

viated, and relatively, the data shuffling cost becomes more

pronounced in the overall I/O cost. The results suggest that

using MPI individual I/O instead of collective I/O makes more

sense for fast storage device due to its low overhead.

Furthermore, we notice that the performance difference

between MPI collective I/O and individual I/O becomes bigger

in the case of 4 processes per node than in the case of 1

process per node. Such larger performance difference is due

to the higher data shuffling cost when dealing with a large

number of concurrently running processes.

Conclusions. MPI I/O used to assume slow and pattern-

sensitive HDDs as the secondary storage, which makes col-

lective I/O a desirable optimization choice, disregarding the

associated small overhead. As storage device performance

improves to a point that the performance benefit cannot offset

such overhead, MPI collective I/O becomes a detrimental

“optimization”, especially for NVM. This urges us to revisit

other existing mechanisms, besides MPI collective I/Os, that

aim to optimize performance based on the ill assumption

of slow storage devices. With the emergence of NVM, the

existing mechanisms may not be necessary and could be even

harmful. In this case, we demonstrate that MPI collective I/O

is one of such mechanisms.

In Section IV, we further study the performance of MPI

collective I/O and investigate why it has worse performance.

We also introduce a performance model that facilitates to make

a decision on when to use MPI collective I/O.

IV. DETAILED PERFORMANCE STUDY FOR MPI

COLLECTIVE I/O

MPI collective I/O is more than just I/O operations. It

includes a set of communication between participating MPI

processes before or after I/O operations. We conduct a detailed

analysis on the performance of MPI collective I/O.

A. Workflow of MPI Collective I/O

MPI collective I/O performs differently for read and write

I/O operations. For read operations, the aggregator processes

fetch data from the remote storage node and then redistribute

the data among other MPI processes. For write operations, the

aggregator processes collect data from other MPI processes

and then write the data to the storage node. As discussed in

Section II, the whole dataset is partitioned into many data

blocks, and the aggregators scatter/gather data among MPI

processes iteratively.

Listing 1 shows the workflow for write operations in MPI

collective I/O, based on the implementation of MPI collective

I/O in MPICH (in particular, ROMIO [15]). In each iteration

of MPI collective I/O (ntimes iterations in total), before each

collective data write (Line 10), data shuffling is called to gather

data from MPI processes (Line 7).
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Listing 2 shows the logic of data shuffling in each iter-

ation of MPI collective I/O. Data shuffling is implemented

based on MPI asynchronized point-to-point communication

(MPI Irecv/MPI Isend and MPI Waitall).

Based on the above discussion, we conclude that MPI col-

lective I/O alternates between data shuffling and I/O operation.

In each iteration, data shuffling must be finished before the

aggregator starts to write (or read) data. From the view of an

individual aggregator, data shuffling and I/O can be treated as

blocking operations.

1 ADIOI_Exch_and_write(...)

2 {

3 ...

4 for (m=0; m<ntimes; m++) {

5 ...

6 // Shuffling data between MPI processes
7 ADIOI_R_Exchange_data(...);

8 ...

9 // Contiguous write to storage
10 ADIO_WriteContig(...);

11 ...

12 }

13 ...

14 }

Listing 1: Pseudocode for MPI collective I/O write operations

1 ADIOI_R_Exchange_data(...)

2 {

3 MPI_Alltoall(...);

4
5 for (i=0; i < nprocs; i++) {

6 MPI_Irecv(...)

7 }

8
9 for (i=0; i < nprocs; i++) {

10 MPI_Isend(...)

11 }

12
13 MPI_Waitall(...)

14 ADIOI_Fill_user_buffer(...)

15 MPI_Waitall(...)

16 }

Listing 2: Pseudocode for data shuffling in MPI collective I/O

B. Profiling MPI Collective I/O

Based on the above analysis on the implementation of MPI

collective I/O, we add timers to measure the performance of

data shuffling (Ts) and read/write (TIO) operations in each

iteration of MPI collective I/O.

During profiling, we use the same five nodes as Sec-

tion III-C. Among the five nodes, four of them run IOR and

one works as a storage node. For IOR, we use 16 processes

(4 processes per node), and set “segment count”, “block size”,

and “transfer size” as 2, 512MB, and 16MB respectively.

Total workload size for the four nodes is 16 GB. We use one

aggregator per node. Table II shows our profiling results.

TABLE II: Profiling results for MPI collective I/O with IOR

Item HDD SSD NVM

I/O time (s) 5938.91 1002.93 986.15

Shuffle time (s) 466.21 499.30 494.61

Ratio (shuffle time to collective I/O

time)

7.85% 49.93% 50.16%

Average IO time per iteration (ms) 170.38 28.77 28.29

Average shuffle time per iteration (ms) 13.77 14.32 14.19

TABLE III: Notation of our performance modeling for MPI collective I/O

Tcollective The collective IO time.

Tindividual The individual I/O time.

Tcomm Data shuffling time.

TIO IO operation time.

Tother Other performance cost besides data shuffling.

msg sizei The size of data that are communicated between
the slowest aggregator and each MPI process
for data shuffling in an iteration i.

τ The ratio of data participated in data shuffling
to total data.

iter The number of iterations within the iterative
collective I/O.

Tw Communication time independent of the mes-
sage size.

Ts Communication time in proportion to the mes-
sage size

bdwseq Sequential end-to-end I/O bandwidth.

bdwran Random end-to-end I/O bandwidth.

The table reveals that from HDD, SSD, to NVM, the ratio

of shuffle time to total collective I/O time increases from

7.85% to 50.16%. The shuffle time accounts for a larger

percentage of performance loss, when we use NVM. Note

that the shuffle time remains stable across the cases of HDD,

SSD, and NVM, even through the ratio is different in the three

cases. Because we use the same MPI implementation and the

same I/O workload for the three cases, the communication

pattern should be identical for the three cases and the shuffle

time should be stable across the three cases.

C. Performance Modeling for MPI Collective I/O

We model MPI collective I/O performance based on the

above discussion. The notation for our models is summarized

in Table III.

MPI collective I/O (Tcollective) is generally modeled in

Equation 1. The equation includes the data shuffling time

(Tcomm), I/O operation time (TIO), and other performance

cost (Tother) because of the implementation of MPI collective

I/O. Tcomm and TIO depend on data size and data access

patterns of MPI processes. We model them as follows.

Tcollective = Tcomm + TIO + Tother (1)

Data shuffling time (Tcomm) is modeled in Equation 2.

Tcomm is for one MPI aggregator (the slowest aggregator).

There might be multiple aggregators involved in the collective

I/O, but their data shuffling times are overlapped. The data

shuffling phase iteratively sends or receives data between the

aggregator and other MPI processes.

In Equation 2, at a specific iteration i, msg sizei of data is

communicated between the aggregator and each MPI process

for data shuffling. In total,
∑iter

i=1
msg sizei of data, which

is the total amount of data from one MPI process for doing

I/O operation, is communicated. There might be multiple MPI

processes concurrently communicating with the aggregator

shown in Lines 6 and 10 of Listing 2, but their communication

times are overlapped. Note that it is possible that only a part

of the total data is really communicated, while the other part

of the data already reside in some aggregator and do not need

to be transfered between the aggregators. To capture the above
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fact, we introduce a parameter, τ . So, msg sizei × τ is the

amount of data that is really involved in the data shuffling

between an MPI process and the slowest aggregator. Note that

τ is application-dependent and related with the application’s

inherent I/O access pattern.

Based on the above discussion, the communication time for

an iteration i is modeled by Ts + Tw × msg sizei × τ , in

which Ts represents the communication time unrelated with

the message size, such as communication initialization time,

and Tw represents the communication time related with the

message size (or more precisely speaking, in proportion to the

message size).

Tcomm =

iter∑

i=1

(Ts + Tw ×msg sizei × τ) (2)

I/O operation time (TIO) is modeled in Equation 3. The

numerator of the equation is the data ready for I/O operation.

bdwseq in the denominator is the end-to-end bandwidth (be-

tween the end of a compute node and the end of a storage

node), and bdwseq is the bandwidth for doing sequential I/O,

because after data shuffling, there is supposed to be sequential

data accesses between the aggregator and storage node.

TIO =

∑iter

i=1
msg sizei

bdwseq

(3)

Tother in Equation 1 is the other performance cost besides

data shuffling, including memory mapping, variable initializa-

tion, system logs, and data checking for data alignment.

MPI individual I/O. To make a comparison between MPI

collective I/O and individual I/O, we also model the perfor-

mance of individual I/O, shown in Equation 4. Tindividual

is much simpler than the collective I/O, because it does not

have data shuffling, and I/O operations (TIO) from each MPI

process happen independently. To calculate TIO, we use the

end-to-end bandwidth for random data access (bdwran), shown

in Equation 5. This is based on an assumption that data

accesses from MPI processes are random without coordination

as the collective I/O, but whether this assumption is true

depends on the data access pattern of the application.

Tindividual = TIO + Tother (4)

TIO =

∑iter

i=1
msg sizei

bdwran

(5)

Model usage. To use the model, we need to know a

set of parameters, including application-independent ones and

application-dependent ones. The application-independent pa-

rameters include Ts, Tw, bdwseq , bdwran, and Tother, which

are measured only once on any platform. The application-

dependent parameters include msg size, τ , and number of

iterations iter.

Ts and Tw are measured by running an MPI-based micro-

benchmark doing ping-pong communication between compute

node and storage node with different message sizes. We mea-

sure the communication time for each message size and use

a linear regression to get Ts and Tw. In our test environment,

Ts = 5.39e− 3 (s) and Tw = 3.35e− 2 (s/MB).

The parameters, bdwseq and bdwran, can be measured

by using IOR. In particular, we deploy IOR on our test

environment with four compute nodes and one storage node.

Using IOR, we perform read or write I/O operations for 2GB

data. We set “reorder tasks to random” to enable either random

or sequential I/O accesses with 16 MPI processes (4 processes

per node), and then calculate bdwseq and bdwran. Table IV

summarizes the results in our test platform. One interesting

observation is that between SSD and NVM, there is no big

difference in terms of bdwseq and bdwran, shown in the

table. This is because of the fact that SSD and NVM have

a larger device bandwidth than HDD, such that the end-to-end

bandwidth is limited by networking.

TABLE IV: bdwseq and bdwran in our test platform.

HDD SSD NVM

bdwseq (MB/s) 58.11 110.98 112.31

bdwran (MB/s) 26.72 101.86 110.51

Tother is assumed to be constant in our model, and can

be measured through IOR as well. In particular, we deploy

the same tests as the ones for measuring bdwseq and bdwran,

and measure Tindividual, Tcollective, I/O operation time and

shuffling time. Then, we calculate Tother based on Equations 1

and 4 for collective I/O and individual I/O, respectively. In our

tests, we find that Tother is much smaller than I/O operation

time and data shuffling time. Hence we set Tother as zero

during model validation (Section IV-D).

The total data size (see the discussion on
∑iter

i=1
msg sizei

in the MPI collective I/O modeling) can be obtained by

examining the application, particularly MPI I/O calls (e.g.,

MPI File write all() and MPI File read all()). In each itera-

tion, msg size is constant in our model, which is equal to

the collective buffer size (16MB in our tests) in ROMIO.

The number of iterations (iter) is equal to the total data size

divided by the constant collective buffer size.

The parameter τ depends on the application I/O access

pattern and MPI implementation. It is challenging to predict

or choose a universally appropriate value for all possible

cases. Also, it is challenging to ask the user to quantify

their workload characteristics and choose τ . For simplicity,

assuming that each MPI process needs to do the same size

of IO, and during the two phases (data shuffling and I/O

phases) of collective IO, the data sent from all non-aggregator

MPI processes are evenly handled by the aggregators, then

we roughly estimate τ as the number of non-aggregator MPI

processes divided by total number of MPI processes.

For example, suppose that we have 8 processes in total, 2

of them are I/O aggregators, and each process needs to write

1MB data (i.e., 8MB for 8 processes). Then during the two

phases of collective IO, the 6 non-aggregators need to send

totally 6MB data to the 2 aggregators. Based on the definition

of τ , τ = 6MB/8MB = 75%. Based on our estimation of τ ,

τ = (#non-aggregators / total number of MPI processes) =

6/8 = 75%. Our estimation of τ has a great match to the real

value of τ .
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TABLE V: Comparison of estimated and measured I/O times with 4 compute
nodes (4 processes per node). The percentage numbers in brackets are
prediction errors.

Device HDD SSD NVM

Collective I/O esti-

mated time (s)

411.78(6.7%) 286.21(3.2%) 284.46(14.4%)

Collective I/O

Measured time (s)

385.86 277.46 242.54

Individual I/O es-

timated time (s)

613.17(3.4%) 160.84(9.8%) 145.88(3.2%)

Individual I/O

Measured time (s)

593.04 146.50 146.35

Note that when estimating τ , we assume that the data sent

from all non-aggregator MPI processes are evenly handled by

the aggregators. In practice, the data can be unevenly handled

by the aggregators. It is even possible that some aggregator

does not need to do any data shuffling. However, our model is

for the slowest aggregator that has the longest data shuffling

time and dominates data shuffling time of all aggregators. τ for

the slowest aggregator can be estimated well by our method

in most cases.

Discussion. Our model has two limitations. First, we do not

distinguish intra- and inter-node communication in Equation 2

when modeling data shuffling time. In particular, we measure

Ts and Tw based on inter-node communication and use them in

Equation 2, no matter whether data shuffling happens within

a node or between nodes. Second, we assume that the data

shuffling times of all aggregators can be greatly overlapped.

However, depending on data access patterns of MPI processes,

different aggregators working with different MPI processes can

have different, non-overlapped data shuffling time.

To fix the above model limitation, we must have good

knowledge on the execution environment, such that we know

how MPI processes are mapped to nodes in order to determine

intra- and inter-node communication; we must also have deep

knowledge on data access patterns of each MPI process.

However, having the above knowledge greatly limits the model

usability and generality, while providing limited help for

modeling accuracy. Hence, we do not assume such knowledge

is available in our model. Our results show that the current

model works reasonably well.

D. Model Validation

We verify our model accuracy with IOR. We test two cases,

one with 4 compute nodes (4 processes per node) and the other

with 2 compute nodes (8 processes per node). Both cases have

one storage node. For IOR, “segment count”, “block size”,

and the collective buffer size are set as 2, 64MB, and 16MB

respectively. We use one aggregator per node in validation

tests.

Tables V and VI show the validation results. In general, our

model achieves high accuracy in 12 validation tests (average

error 4.93% and at most 14.4%). More importantly, our model

correctly captures performance trend across the three devices

in different cases.

E. Model Implication

Our model enables us to explore the tradeoff between

data shuffling cost and collective I/O benefit in a variety of

TABLE VI: Comparison of estimated and measured I/O times with 2
compute nodes (8 processes per node). The percentage numbers in brackets
are prediction errors.

Device HDD SSD NVM

Collective I/O esti-

mated time (s)

350.90(1.04%) 216.58(0.53%) 214.83(0.85%)

Collective I/O

Measured time (s)

354.59 217.74 213.01

Individual I/O es-

timated time (s)

613.17(5.66%) 160.84(9.86%) 145.88(0.46%)

Individual I/O

Measured time (s)

580.32 146.40 146.55

Fig. 11: Explore the performance tradeoff between data shuffling cost and
collective I/O benefit.

environments with different storage devices. Hence it can be

used to enable adaptive performance optimization and improve

I/O performance for the future HPC using NVM-based storage.

As a case study, we use our model to study the trade-

off between data shuffling cost (Equation 2) and collec-

tive I/O benefit. The collective I/O benefit is quantified by

(Tindividual − Tcollective). We focus on one iteration (i.e.,

iter = 1) and change the message size. We use bandwidth and

communication parameters (i.e., Tw and Ts) measured in our

platform for our study. Figure 11 shows the result, assuming

that there are 4 compute nodes, 1 storage node, and 4 MPI

processes per node.

The figure reveals that both data shuffling cost and collective

I/O benefit increase as the message size increases, but at

different rates. For HDD, although the data shuffling cost is

larger than the benefit when the message size is small (32KB),

the data shuffling cost is smaller than the benefit when the

message size is large (2MB and 16MB). However, for SSD and

NVM, the data shuffling cost is always larger than the benefit,

which explains why collective I/O performs consistently worse

than individual I/O in Tables V.

V. RELATED WORK

Non-volatile memory. Prior NVM studies can be roughly

classified into several categories. Some earlier studies focus

on the architecture-level design issues of NVM [16], [17],

[18], [19], such as wear-leveling, read-write disparity issues,

etc. Most of these studies consider NVM as a displacement

of DRAM at the architecture level. Another alternative is

to consider NVM as a storage device, such as Onyx [20],

Moneta [21], and PMBD [14]. The recently announced Intel

Optane product [4] also falls into this category. Researchers

have also studied on the system and application level support

for NVM. Some prior studies have explored file systems

for NVM. For example, BPFS [22] uses shadow paging
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techniques for fast and reliable updates to critical file system

metadata structures. SCMFS [23] adopts a scheme similar to

page table in memory management for file management in

NVM. PMFS [24] allows to use memory mapping (mmap)

for directly accessing NVM space and avoids redundant data

copies. In order to take advantage of byte-addressability and

persistency of NVM, a large body of research on NVM is on

developing new programming models for NVM. For example,

Mnemosyne [6] gives a simple programming interface for

NVM, such as declaring non-volatile data objects. CDDS [7]

attempts to provide consistent and durable data structures. NV-

Heaps [8] gives a simple model with support of transactional

semantics. SoftPM [25] offers a memory abstraction similar

to malloc for allocating objects in NVM. In this study

we treat NVM as a storage device and deploy conventional

file systems atop for HPC applications. Our observations

have confirmed that the high-speed NVM could significantly

improve HPC application performance, however, the end-to-

end effect is workload dependent and related to a variety of

factors in the I/O stack.

MPI I/O. ROMIO [26] is a widely used implementation of

MPI-IO, which is included in the MPICH library. ROMIO uses

two-phase I/O strategy [27] for collective I/O. Some prior work

explores the determination of optimal number of aggregators

for MPI I/O [28]. Some prior work takes into account the

network topology for deciding aggregators and introduces an

optimized buffering system to reduce the aggregation cost [27].

Another study performs collective I/O while retaining access

patterns of MPI processes before collective I/O to enable better

cache management [29]. Our work is different from the prior

studies by considering the impact of NVM on MPI I/O.

VI. CONCLUSIONS

We study the impact of upcoming NVM on HPC I/O.

Given distinct performance characteristics of NVM, the exist-

ing I/O stack must be re-examined to optimize performance.

Through our comprehensive performance study and modeling,

we reveal the diminishing benefits of page cache, ignorable

overhead of MPI individual I/O, and inappropriate perfor-

mance optimization of MPI collective I/O. Our work lays some

foundation for the deployment of NVM in the future HPC.
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