
When NVMe over Fabrics Meets Arm:
Performance and Implications

Yichen Jia
Louisiana State University

yjia@csc.lsu.edu

Eric Anger
Arm Inc.

eric.anger@arm.com

Feng Chen
Louisiana State University

fchen@csc.lsu.edu

Abstract—A growing technology trend in the industry is to
deploy highly capable and power-efficient storage servers based
on the Arm architecture. An important driving force behind this
is storage disaggregation, which separates compute and storage
to different servers, enabling independent resource allocation and
optimized hardware utilization. The recently released remote
storage protocol specification, NVMe-over-Fabrics (NVMeoF),
makes flash disaggregation possible by reducing the remote access
overhead to the minimum. It is highly appealing to integrate the
two promising technologies together to build an efficient Arm
based storage server with NVMeoF.

In this work, we have conducted a set of comprehensive ex-
periments to understand the performance behaviors of NVMeoF
on Arm-based Data Center SoC and to gain insight into the
implications of their design and deployment in data centers.
Our experiments show that NVMeoF delivers the promised ultra-
low latency. With appropriate optimizations on both hardware
and software, NVMeoF can achieve even better performance
than direct attached storage. Specifically, with appropriate NIC
optimizations, we have observed a throughput increase by up to
42.5% and a decrease of the 95th percentile tail latency by up
to 14.6%. Based on our measurement results, we also discuss
several system implications for integrating NVMeoF on Arm
based platforms. Our studies show that this system solution can
well balance the computation, network, and storage resources for
data-center storage services. Our findings have also been reported
to Arm and Broadcom for future optimizations.

Index Terms—NVMe; NVMe over Fabrics; Arm; Flash Mem-
ory.

I. INTRODUCTION

Arm processors have been regarded as the platform for
mobile and embedded systems for their well-known strength
in customizability, cost, and power efficiency [1]. With the
recent release of the 64-bit Arm architecture, ARMv8 [2] has
significantly improved the computing capability, making it also
highly competitive in traditional server environments.

An important application of Arm servers is to host high-
speed data stores, such as MongoDB [15] and RocksDB [18],
to provide high-speed data services. Such data store systems
typically adopt Non-volatile Memory Express (NVMe) based
flash SSDs as the storage media for high-throughput and
low-latency I/Os. However, the high I/O speed also pushes
a significant computing burden on the data store servers.

Storage disaggregation can well address the above-said
challenge by separating compute and storage to different
servers. NVMe over Fabrics (NVMeoF) [17], the recently
released protocol standard for accessing NVMe devices over

high-speed networks, is particularly attractive. With fast inter-
connect technologies, such as Remote Direct Memory Access
(RDMA), NVMeoF offers an ultra-low remote access latency,
enabling very fast network-based storage I/Os.

It is highly appealing to integrate the two promising tech-
nologies together and build an efficient Arm-based storage
server with NVMeoF. However, we currently have very lim-
ited understanding on the field performance of NVMeoF on
Arm-based platforms. Although it is known that substantial
differences exist between Arm and x86 architectures, it still
remains unclear whether such architectural differences have a
real impact on the end-to-end performance of disaggregated
storage with NVMeoF. Without extensive experimental stud-
ies, hardware and software architects are difficult to develop
efficient Arm-based storage solutions to meet their infrastruc-
tural needs, and it also constrains the industry to obtain first-
hand data on the potential performance benefit of deploying
Arm-based storage services in real-world scenarios.

In this paper, we present an in-depth study of NVMe and
NVMeoF performance on an Arm-based multi-core storage
server. In this paper, we use the term NVMeoF, or interchange-
ably remote flash, to refer to the NVMe flash SSD that is
accessed over network fabric, as opposed to the flash SSD
accessed locally over a PCIe link, which is denoted simply
as NVMe or local flash. We benchmark NVMeoF with a
set of carefully designed synthetic workloads generated by
FIO [7] and run the workloads on both local and remote
NVMe devices to characterize their performance behaviors
on the Arm platform. We find that NVMeoF is capable of
saturating the storage device on the Arm-based server with
only moderate CPU utilization. To the best of our knowledge,
this work is the first in-depth study of NVMe and NVMeoF
performance on Arm-based multi-core server hardware.

Our experimental results show that NVMeoF introduces
minimal performance overhead in most cases. We also show
that the Network Interface Card (NIC) plays an important
role when stress-testing NVMeoF. In contrast to the com-
mon expectation, the NIC optimization, such as interrupt
moderation, can substantially reduce the 95th percentile tail
latency by up to 14.6% while improving the throughput by
up to 42.5%. Other factors, such as I/O request size, queue
depth, parallelism settings, etc., also play a non-trivial role
in the overall performance. We have also observed that with
NVMeoF, in some cases, the CPU utilization increases on the



host side, mainly due to the involved kernel level overhead;
in the meantime, the CPU utilization decreases on the target
side, due to the reduced application-level computation. To
improve NVMeoF performance and reduce CPU burdens, we
also discuss the potential beneficial changes that can be made
to Arm-based servers. Our findings have also been reported to
Arm and Broadcom for future optimizations. It is our hope that
this work can lay out a foundation for system architects and
practitioners to build an NVMeoF based high-speed storage
on the Arm architecture.

The rest of paper is organized as follows. Section II
gives the background. Section III introduces the methodology.
Section IV and V give the experimental results and discuss
the related system implications. Related work is presented in
Section VI. The final section concludes this paper.

II. BACKGROUND

A. Arm Servers

As a family of Reduced Instruction Set Computer (RISC)
architectures, the Arm architecture [1] has evolved quickly
since its first introduction to the market. For their high
flexibility, high efficiency, low power consumption, and low
price, over the past years, Arm processors have become the
dominant platform in mobile and embedded systems, such as
smartphones, tablets, and single-board computers, etc. More
recently, the 64-bit ARMv8 processors [2], which are designed
with significantly enhanced computing capability and opti-
mized for servers, promise to deliver both high performance
and low power consumption [4], making it a particularly
suitable platform for data center and cloud applications.

B. Non-Volatile Memory Express

Non-Volatile Memory Express (NVMe) [16] is a highly
optimized host controller interface for accessing Non-volatile
Memory (NVM) devices over PCIe links. NVMe is designed
to provide scalable and efficient access for high-speed storage
devices, such as NAND flash and the next-generation NVM
SSDs. A large number of deep, paired command queues is
maintained in the host memory, as the interface between the
NVMe driver and the controller. NVMe enables users to fully
exploit the performance potential of flash and other high-speed
storage by efficiently supporting more processor cores, lanes
per device, I/O threads, and I/O queues. The lockless command
submission and completion also help keep the latency at a low
level. For its high performance and efficiency, NVMe becomes
a de facto technology for PCIe based SSD devices.

C. NVMe-over-Fabrics

As an extension to the NVMe standard, NVMe over Fabrics
(NVMeoF) [17] enables fast access to remote NVMe devices
over various high-speed network fabrics. NVMeoF eliminates
unnecessary protocol translations that are originally needed on
the I/O path from the host to the remote device, minimizing
the overhead involved in remote access. Two main types of
transport technologies supported by NVMeoF are Remote
Direct Memory Access (RDMA) and Fibre Channel (FC).

Our test system uses the RDMA based NVMeoF. RDMA is
widely available in both traditional high-performance comput-
ing domain and modern data centers. Specifically, NVMeoF
uses RDMA to move data from one memory address space
to another without intervention of operating system (OS) or
processor, resulting in lower overhead and faster response
time, with latencies usually within microseconds.

III. METHODOLOGY

Our experiments run on a two-node system, including a host
machine (initiator) and a storage server (target). The target
storage server is a Broadcom 5880X Stingray machine, which
features an 8-core 3GHz ARMv8 Cortex-A72 CPU, 3 DDR
memory channels (48GB Memory capacity) and 100Gbps full
featured NetXtreme NIC. The storage device is a 400GB Intel
Data Center P3600 SSD, which is a high-end enterprise flash
SSD supporting 2,100 MB/sec and 550 MB/sec bandwidths
for sequential read and write operations, respectively. The
host machine features an Intel(R) Core(TM) 4-core i7-6700
3.40GHz CPU, 16GB memory and a 50Gbps Broadcom NIC.
The host and the target are directly connected through an Leoni
100Gbps ParaLink@23 cable.

We configure the network speed on both host and target
sides to be 50Gbps for all the tests, which guarantees that
network is not the bottleneck in the experiments. RDMA
over Converged Ethernet (RoCEv2) over IPv4 is set up as
an NVMeoF transport type, and the port is enabled for the
initiator to discover. We benchmark the system using FIO [7].

Application

File System

NVMe PCIe 
Driver

NVMe Fabrics
Initiator

PCI Express
NIC + RDMA

Block Layer 

NVMe PCIe 
Driver

Host Side Target Side

Block LayerKernel

NVMe SSD
HW

PCI Express
NIC + RDMA

NVMe SSD

NVMe Fabrics 
Target

Ethernet

RDMA Driver RDMA Driver

Fig. 1: An Illustration of the System Architecture.

Figure 1 shows the architecture of our experimental system.
The applications, such as FIO, run on the host side. There are
two storage setups, either directly attached on the host node
(x86) or remotely accessed via the network to the target node
(Arm). In our setting, the Arm machine serves as the storage
node to provide high performance NVMeoF storage service.

Server/Client Arm/x86 x86/Arm
Bandwidth (Gb/s) 45.42 45.40

Latency (µs) 3.26 3.17

TABLE I: RoCEv2 Performance Evaluation.



Table I shows that the RoCEv2 solution on our experimental
system delivers very low latency and high bandwidth over the
network. Arm or x86 in the first row represents the machine at
the server side, while the other one behaves as the client. We
can see that Arm and x86 can provide comparable network
performance, as a server or a client. The bandwidth can be as
high as 45.42Gb/s and the latency can be as low as 3.17µs,
which ensures the network overhead to be minimal during the
measurement with NVMeoF.

IV. EXPERIMENTAL RESULTS AND INSIGHT

A. Effect of Request Size

According to prior studies [3], [5], [8], request size has a
significant impact on the performance of network and storage
I/O. We benchmark the NVMeoF storage by varying the
sequential read request size from 4 KB to 128 KB with the
number of concurrent jobs and IODepth being set to 8 and 1,
respectively.

Finding #1 In Figure 2, we can see that for both local
access (NVMe) and the remote access (NVMeoF), the latency
increases as the request size increases, which is as expected.
Compared to NVMe, NVMeoF shows almost identical latency
distribution, indicating that it incurs minimal overhead. For
example, for the 128 KB requests, the 95th percentile latency
is 1,155µs for local access and 1,139µs for remote access,
which is 1.39% faster. As shown in Figure 3, the bandwidth
increases from 314 MB/sec to 1,361 MB/sec when the request
side increases from 4 KB to 128 KB for NVMeoF. NVMeoF
causes at most 20% bandwidth penalty, compared to the local
access with NVMe.

Figure 4 shows the CPU utilization on the host and the
target servers. We can see that as the request size increases
from 4 KB to 128 KB, the CPU utilization on the target
server decreases to below 2% with NVMeoF. The low CPU
utilization indicates that the Arm processor on the target
server is powerful enough to handle I/Os of high-speed SSD
devices. This is because the storage server with NVMeoF is
dedicated for processing storage I/Os only, without involving
the application-level computation. Thus, the larger the request
size is, the fewer I/O operations are involved and the lower
CPU utilization is on the target server.

On the host side, the CPU utilization remains below 8% in
all the cases. It reaches the lowest (2.11%) when the request
size is 64 KB. However, it jumps to 7.57% when the request
size is 128 KB. By looking further at the CPU usage, we
can find that the increase is mainly because the kernel level
overhead (the SYS time reported by mpstat) significantly
increases from 1.27% (64KB) to 5.96% (128KB).

Discussion #1 In order to increase the overall bandwidth,
developers may increase the request size using techniques such
as batching, since NVMeoF is more friendly to large sequential
requests. But an excessively large request size could also incur
extra overhead to the host CPU. A proper request size should
be measured by users to achieve both high performance and
low CPU utilization.

B. Effect of Parallelism

Flash SSDs have rich internal parallelism resources [6],
but fully exploiting the performance potential still depends
on the interface. Different from Serial-Attached SCSI (SAS),
where each connection from the CPU core to the flash SSD is
limited by the SAS Host Bus Adapter (HBA) and synchronized
locking, NVMe enables massive parallelism with up to 65,535
queues and lockless connections, which can provide each CPU
core with dedicated queue access to each SSD. As a result,
I/O parallelism is expected to have a significant effect on the
performance of NVMeoF. We benchmark the NVMeoF storage
with different parallelism settings by varying the sequential
read job number from 1 to 16 with request size and IODepth
being set to 4KB and 128, respectively.

Finding #2 In Figure 5, we can see that the latency
increases when the number of concurrent jobs (i.e., parallelism
degree) increases. The latency is almost identical between
local access and remote access with 1 to 8 jobs. However,
when the number of jobs increases to 16, the 20th percentile
latency of remote access increases to 3.2ms, compared to
1.6ms for local access, but for the 95th percentile latency,
remote access is 6.9ms, which is even 20.7% lower than
local access (8.7ms). This is mostly because disaggregating
storage from the host effectively removes the I/O-related
CPU overhead from the application. The average latencies are
identical locally and remotely, being around 4.5ms.

Figure 6 shows that the bandwidth increases to the peak
when the number of jobs increases from 1 to 4, and stays at
the peak when we continue to increase from 4 jobs to 16 jobs.
Compared to local access, the bandwidth penalty introduced
by remote access is up to 2.22%. Figure 7 shows the CPU
utilization. At the target server side, the CPU utilization
increases slightly from 2.82% to 4.35%, as the number of jobs
increases from 1 to 16. The CPU utilization at the host side
increases from 5.39% to 8.34% accordingly. For local access
with NVMe, the CPU utilization reaches the peak, 7.32%, with
8 jobs, which is 0.64 percentage points (p.p.) lower than that
on the host but 3.08 p.p. higher than that on the target.

Discussion #2 For remote access with NVMeoF, increas-
ing parallelism improves the bandwidth significantly, when
the parallelism degree is low (less than 4). However, over-
parallelization does not bring additional benefits in terms
of bandwidth. As for the latency, both average latency and
tail latency increase as parallelism increases. However, tail
latency (e.g., the 95th percentile latency) of remote access
with NVMeoF is observed to be even lower than local access
when parallelism degree is high. For application users and de-
velopers, it would be beneficial to find an optimal parallelism
degree (4 jobs in our case) to achieve both high bandwidth
and low latency, according to their Quality of Services (QoS)
requirements.

C. Computational Cost

In this section, we analyze the CPU utilization by varying
the random write request size from 4 KB to 128 KB with 8
concurrent jobs and IODepth being set to 128.



Fig. 2: Latency v.s. Request Size Fig. 3: Bandwidth v.s. Request Size Fig. 4: CPU Utilization v.s. Request Size

Fig. 5: Latency v.s. Num. of Jobs Fig. 6: Bandwidth v.s. Num. of Jobs Fig. 7: CPU Utilization v.s. Num. of Jobs

Fig. 8: Latency v.s. RandWrite Size Fig. 9: Bandwidth v.s. RandWrite Size Fig. 10: CPU v.s. RandWrite Size

Fig. 11: CPU Utilization Breakdown Fig. 12: Latency v.s. IODepth Fig. 13: Latency v.s. IODepth

Finding #3 Figure 9 shows that the bandwidths of local and
remote accesses remain stable and comparable at around 500
MB/sec, indicating that with parallel I/Os, the bandwidth can
be fully exploited even remotely with NVMeoF. As expected,
the latency increases as the request size increases for random

writes (see Figure 8). In all the cases, remote access shows
a longer tail latency than local access. For example, when
request size is 128 KB, the 95th percentile latency for remote
accesses is 380ms, in contrast to 343ms for local access. The
relatively longer tail latency with NVMeoF can be explained



Fig. 14: Throughput v.s. IODepth Fig. 15: CPU Utilization v.s. IODepth Fig. 16: Interrupts v.s. IODepth

by the observed heavy CPU utilization burden on the host side.
For example, as Figure 10 shows, the CPU utilization on the
host side is 50.7% compared to 19.2% for the local access
when request size is 4 KB.

In order to understand the percentage of CPU utilization
while executing different tasks, we use mpstat to break
down the CPU utilization into four categories, namely USR,
SYS, IOWAIT, and SOFT. As we can see in Figure 11, when
request size is 4 KB, the SYS (kernel) time is dominant, which
is about 26.9%. The IOWAIT time accounts for about 15%.
When request size increases, the percentage of IOWAIT time
slowly increases, while the percentage of SYS time quickly
decreases. This is mostly because processing I/O requests
incurs significant kernel level overhead, which causes heavy
CPU burdens, and the overhead can be amortized over a large
amount of data transfer with a large request size.

Discussion #3 Since small (4KB) random writes incur a
high CPU utilization on the NVMeoF host side, organizing
large requests can effectively reduce the undesirable CPU
burdens. Another possible consideration is to offload the CPU
overhead. Right now, both the control plane and the data plane
of the NVMeoF driver are running on the CPU, which results
in a heavy use of CPU resources. The data plane can be moved
to the NIC to offload the CPU burden, while the control plane
still runs on the CPU, as discussed in prior talk [10].

D. Effect of CPU Capacity

In order to study the effect of CPU capacity, we only use
one core of the Arm server by disabling the rest in this set of
experiments. We benchmark the NVMeoF storage by setting
the sequential read IODepth from 1 to 128 with 8 concurrent
jobs and request size being set to 4 KB.

Finding #4 As shown in Figure 12, when the IODepth
increases from 1 to 8, the latency increases and the remote
access is slower than the local access in general. For example,
when the IODepth is 1, the 95th percentile latency is 178µs for
both local and remote access. When the IODepth is 8, for the
50th percentile latency, it is 171µs for local access and 370µs
for remote access, which represents about 116.4% overhead.
However, the 95th percentile latency is 586µs and 565µs for
local and remote access respectively, meaning that NVMeoF
reduces the latency by about 3.58%.

When we continue to increase the IODepth from 16 to 128,
the latency distribution becomes very different, as shown in
Figure 13. When IODepth is 16, the 95th percentile tail latency
is 983µs for remote access, which is 6.16% longer than local
access (926µs). When IODepth is 32, the latencies of local
and remote access get close. When IODepth is 64, the latency
of remote access becomes lower than that of local access. For
example, the 95th percentile latency when the IODepth is 64 is
2.61ms for local access and is 2.23ms for remote access, which
is an improvement of 14.6%. When IODepth equals 128, the
95th percentile latency is 4.71ms for local access and 4.19ms
for remote access, meaning that NVMeoF actually reduces the
latency by 11.04%.

For local access, the throughput generally increases with
the IODepth, despite a slight decrease after reaching the peak
at the IODepth of 16. For remote access, the throughput
increases when IODepth increases from 1 to 4, and then
decreases (about 10%) when IODepth continues to increase
to 16. This is because the CPU, instead of the SSD, becomes
the bottleneck of the system, since we only use one Arm
core in this case (see Figure 15). As we continue to increase
IODepth, the throughput increases again and reaches the peak
when IODepth is 64 and 128. Compared with local access
(292 kop/s), the throughput of remote access with NVMeoF
is 416 kop/s when IODepth is 128, which is a substantial
improvement of 42.5%.

This performance improvement is mainly due to the in-
terrupt moderation feature on the NIC. Figure 16 shows
the number of interrupts generated per second on NVMeoF
host side and target side, together with interrupts collected
during the test with local flash. As shown in Figure 14 and
Figure 16, the system triggers an interrupt for every request
to the local SSD. However, when accessing the remote SSD,
interrupt moderation on the NIC is enabled. Multiple packets
are handled for each interrupt so that the overall interrupt-
processing efficiency is improved and the CPU utilization is
decreased. As shown in Figure 14 and Figure 15, compared
to using a low (32) IODepth, when IODepth is 128, the
improved efficiency with interrupt moderation leads to a higher
throughput and a lower CPU utilization.

In contrast to the common belief that interrupt moderation
would incur an increase of latency, Figure 12 and Figure 13



show that when the IODepth is small (1-8), there is small
latency overhead for remote access, but when the IODepth is
large (64-128), both the bandwidth and latency will benefit
from this feature. Even though interrupt moderation is usually
believed to involve performance trade-off between latency and
throughput, it is evidently beneficial for both latency and
throughput when the requests are intensive with NVMeoF.

Discussion #4 The CPU capacity on the target side and
IODepth have a significant impact on the performance. The
NIC adapter plays an important role in the NVMeoF perfor-
mance. Our observations show the effectiveness of enabling
interrupt moderation for both low latency and high throughput.
We need to identify an optimal NIC adapter configuration
based on the workload characteristics and the Quality of
Service (QoS) requirements.

V. SYSTEM IMPLICATIONS

In this section, we discuss several important implications
for system designers and practitioners to effectively deploy
NVMeoF on Arm-based machines.
(1) Simplifying the IO stack. Our experimental results clearly
show that the kernel-level execution time generally dominates
the CPU usage, especially for small random write operations,
which demand a large amount of processing time. Simplifying
the kernel-level IO stack, such as replacing kernel-level drivers
with user-level drivers [19], we expect to have reduced CPU
overhead due to the bypassing of multiple intermediate layers.
(2) Clustering I/Os. Handling each single I/O incurs non-
trivial processing overhead, especially for high-speed NVMe
devices. Application and system designers may consider to
merge or convert many small I/Os to a few large ones.
Techniques, such as aggressive prefetching and clustering,
can help combine small I/Os together, effectively amortizing
the processing overhead. Storage and file systems may also
reorganize the data layout, such as grouping the related data
close together, to create more opportunities for large I/Os.
(3) Offloading the CPU tasks. As discussed in prior talk [10],
offloading the data plane of NVMeoF to NIC, while only
keeping the control plane on CPU, can effectively reduce
the high CPU utilization. Although such an approach may
incur additional hardware cost, considering the substantially
increased efficiency of CPU usage, it is a reasonable in-
vestment in a long term for enhancing the overall system
performance.
(4) Enabling interrupt moderation. Interrupt moderation
allows users to manage the rate of interrupts to the CPU during
packet transmission and reception. Without interrupt moder-
ation, the system triggers an interrupt for every transmitted
and received packet. Although the latency on each packet is
minimized with NVMeoF, a large amount of CPU resources
is still spent for the interrupt-processing overhead, which
is particularly heavy for handling intensive I/O traffic with
high-speed storage devices. We have observed that enabling
interrupt moderation can effectively reduce the CPU burden
and improve both latency and throughput for intensive storage
I/O traffic.

(5) Replacing interrupts with polling. Prior work [21] has
discussed polling and interrupting with NVM devices. Our
experiments also show that NVMeoF generates a large amount
of interrupts, which incur heavy CPU burden and non-trivial
processing overhead. By replacing interrupts with polling, as
SPDK [19] does, the CPU usage for interrupt handling is
expected to decrease but the polling cost is to be involved.
It still needs careful consideration on which manner is most
appropriate and efficient. As the storage speed continues to
increase (e.g., the 3D XPoint based Intel Optane devices [9]),
addressing this question is becoming an imminent need.

VI. RELATED WORK

NVMe over Fabrics (NVMeoF) is a relatively new topic.
Limited literature and analysis are available. The design and
architecture of NVMeoF can be found in prior talks [11], [13],
[14]. Klimovic et al. have proposed a system, called ReFlex,
to provide remote flash with nearly identical performance to
local flash [12]. Xu et al. have studied the performance of
containerized applications on local and remote storage [20].
Guz et al. have compared different storage disaggregation
methods, including NVMeoF and iSCSI, on Intel x86 plat-
form [8]. Different from prior work, we have studied the inter-
actions between NVMeoF and the Arm architecture, focusing
on the utilization of CPU, storage, and network resources
and their performance impact. To the best of our knowledge,
this work is the first in-depth study of NVMe and NVMeoF
performance on Arm-based multi-core server hardware.

VII. CONCLUSION

In this paper, we present a comprehensive experimental
study of NVMe and NVMeoF on Arm-based server hardware.
We find that in most cases, NVMeoF incurs minimal overhead
compared to the local NVMe. By setting parallelism properly,
NVMeoF can reduce the 95th percentile tail latency by 20.7%,
while retaining nearly identical bandwidth. We have also
observed that NVMeoF may cause increased CPU utilization
on the host side in some cases, but decreases the CPU
utilization on the target side due to the reduced application-
level computation. By setting the configuration for the NIC
properly, NVMeoF can improve the throughput by up to
42.5%, and reduce the 95th percentile tail latency by up to
14.6%, because of optimizations such as interrupt moderation.
Our results also show that the current Arm-based storage
server is able to deliver sufficient CPU capacity for handling
intensive storage I/Os, making it a highly efficient platform
for storage disaggregation.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive
feedback and insightful comments. We also thank Haresh
Sakariya from Broadcom Inc. for his technical support. This
paper was partially supported by National Science Foundation
under Grants CCF-1453705 and CCF-1629291.



REFERENCES

[1] ARM. ARM Processor. https://www.arm.com/products/processors.
[2] ARM. ARMv8. https://www.arm.com/files/downloads/ARMv8 white

paper v5.pdf.
[3] P. Balaji. Sockets vs RDMA Interface over 10-Gigabit Networks: An

In-depth Analysis of the Memory Traffic Bottleneck. In RAIT Workshop
04, 2004.

[4] Cavium. ThunderX2. https://www.cavium.com/product-thunderx2-arm-
processors.html.

[5] F. Chen, D. A. Koufaty, and X. Zhang. Understanding Intrinsic Char-
acteristics and System Implications of Flash Memory based Solid State
Drives. In Proceedings of the Eleventh International Joint Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS
’09, June 15-19 2009.

[6] F. Chen, R. Lee, and X. Zhang. Essential Roles of Exploiting Internal
Parallelism of Flash Memory based Solid State Drives in High-Speed
Data Processing. In Proceedings of the 17th International Symposium on
High Performance Computer Architecture, HPCA ’11, Feb 12-16 2011.

[7] FIO. Fio. https://github.com/axboe/fio.
[8] Z. Guz, H. H. Li, A. Shayesteh, and V. Balakrishnan. NVMe-over-

Fabrics Performance Characterization and the Path to Low-overhead
Flash Disaggregation. In Proceedings of the 10th ACM International
Systems and Storage Conference, SYSTOR ’17, May 22-24 2017.

[9] Intel. Intel Optane Memory. https://www.intel.com/OptaneMemory.
[10] Kalray. IOProcessor. https://www.flashmemorysummit.com/English/

Collaterals/Proceedings/2016/20160811 S304D Couvert.pdf.
[11] J. Kim and D. Fair. How Ethernet RDMA Protocols iWARP and RoCE

Support NVMe over Fabrics. https://www.snia.org/sites/default/files/
ESF/How Ethernet RDMA Protocols Support NVMe over Fabrics
Final.pdf.

[12] A. Klimovic, H. Litz, and C. Kozyrakis. ReFlex: Remote Flash ≈
Local Flash. In Proceedings of the 22nd ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’17, April 8-12 2017.

[13] J. Metz. Let’s Talk Fabrics. https://www.snia.org/sites/default/files/ESF/
Lets-Talk-Fabrics-NVMe-Over-Fabrics.pdf.

[14] D. Minturn and J. Metz. Under the Hood with NVMe over Fab-
rics. https://www.snia.org/sites/default/files/ESF/NVMe Under Hood
12 15 Final2.pdf.

[15] MongoDB. MongoDB. https://www.mongodb.com/.
[16] NVMe. NVM Express. https://nvmexpress.org/.
[17] NVMeoF. NVMe Over Fabrics. https://www.nvmexpress.org/wp-

content/uploads/NVMe Over Fabrics.pdf.
[18] RocksDB. RocksDB. https://rocksdb.org/.
[19] SPDK. SPDK. http://www.spdk.io/.
[20] Q. Xu, M. Awasthi, K. T. Malladi, J. Bhimani, J. Yang, and M. An-

navaram. Performance Analysis of Containerized Applications on
Local and Remote Storage. In Proceedings of the 33rd International
Conference on Massive Storage Systems and Technology, MSST ’17,
May 15-19 2017.

[21] J. Yang, D. B. Minturn, and F. Hady. When Poll is Better Than Interrupt.
In Proceedings of the 10th USENIX Conference on File and Storage
Technologies, FAST ’12, Feb 14-17 2012.

https://www.arm.com/products/processors
https://www.arm.com/files/downloads/ARMv8_white_paper_v5.pdf
https://www.arm.com/files/downloads/ARMv8_white_paper_v5.pdf
https://www.cavium.com/product-thunderx2-arm-processors.html
https://www.cavium.com/product-thunderx2-arm-processors.html
https://github.com/axboe/fio
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160811_S304D_Couvert.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160811_S304D_Couvert.pdf
https://www.snia.org/sites/default/files/ESF/How_Ethernet_RDMA_Protocols_Support_NVMe_over_Fabrics_Final.pdf
https://www.snia.org/sites/default/files/ESF/How_Ethernet_RDMA_Protocols_Support_NVMe_over_Fabrics_Final.pdf
https://www.snia.org/sites/default/files/ESF/How_Ethernet_RDMA_Protocols_Support_NVMe_over_Fabrics_Final.pdf
https://www.snia.org/sites/default/files/ESF/Lets-Talk-Fabrics-NVMe-Over-Fabrics.pdf
https://www.snia.org/sites/default/files/ESF/Lets-Talk-Fabrics-NVMe-Over-Fabrics.pdf
https://www.snia.org/sites/default/files/ESF/NVMe_Under_Hood_12_15_Final2.pdf
https://www.snia.org/sites/default/files/ESF/NVMe_Under_Hood_12_15_Final2.pdf
https://www.mongodb.com/
https://rocksdb.org/
http://www.spdk.io/

