
Understanding Storage I/O Behaviors of Mobile Applications

Jace Courville Feng Chen

Louisiana State University Louisiana State University

jcourv@csc.lsu.edu fchen@csc.lsu.edu

Abstract—In the past few years, mobile devices quickly gained
high popularity in our daily life. Designed for ultra-mobility,
these small yet powerful devices are fundamentally distinct from
traditional computer systems (e.g., PCs and servers) – from the
internal hardware architecture and software stack, to application
behaviors. Storage, the slowest component in the I/O stack, plays
an important role in mobile systems and can greatly affect user
experience. In this paper, we present a set of comprehensive
experimental studies on mobile storage and attempt to gain
insight on the unique behaviors of mobile applications and
characterize the performance properties of underlying mobile
storage. In our experiments, we carefully selected 13 represen-
tative mobile workloads from 5 different categories. Our studies
reveal several unexpected observations on mobile storage. Based
on these findings, we further discuss the associated implications to
mobile systems and application designers. We hope this work can
inspire system architects, application designers, and practitioners
to pay specific attention to the high-latency I/O operations, rather
than completely relying on the default APIs. We also suggest
a further look to new opportunities, such as adopting a faster
medium in the mobile system architecture, for future research.

Index Terms—Mobile systems; Storage performance; Flash
memory; Measurement.

I. INTRODUCTION

Within the last decade, we have experienced the rise of

modern mobile devices. Apple recently sold its 500 millionth

iPhone [2], and sales of Android devices exceeded one billion

units in 2014 [3]. While mobile devices provide high levels

of convenience and enable ubiquitous computing to typical

users, these small devices, compared to their traditional com-

puter system counterparts (e.g., PCs and servers), carry a set

of fundamentally distinct characteristics, from the hardware

architecture and software system stack, to application behav-

iors. These distinctions demand a careful reconsideration of

optimizations for system and application design in various

aspects.

Storage, the slowest component in the I/O stack, plays a

critical role in overall system performance. Interestingly, stor-

age in mobile devices differentiates itself from conventional

platforms in several unique properties. (1) Mobile devices use

a flash-based storage medium. Unlike PC or server systems,

which often adopt large-capacity magnetic disks as storage,

mobile devices are almost all reliant on NAND flash memory.

As a type of semiconductor device, NAND flash memory

delivers high-speed read accesses but is highly sensitive to ran-

dom writes and may suffer from low performance when such

writes are encountered [5]. (2) Mobile devices require latency-

oriented optimization. For mobile devices, it is of high priority

to ensure an optimal user experience. This user experience

may be severely impacted by storage performance, or more

precisely: latencies. A high I/O latency may render the device

unresponsive. Even worse, such slight slowness may be easily

noticed by users and negatively affect user experience. In con-

trast, throughput, another performance metric widely used in

traditional storage benchmarking, is not as important in mobile

systems. (3)Mobile devices have both a distinct software stack

and distinct application behaviors. Mobile device applications

(i.e., mobile apps) typically run in a protected environment,

or sandbox. For example, Android apps normally run in a

Java virtual machine. Privileged operations are encapsulated

in a small set of strictly defined API interfaces. As a result,

popular APIs such as the SQLite library are heavily used in

nearly all mobile apps. Such a development practice results

in certain patterns which can be commonly found across

various mobile apps. On conventional PC and server systems,

this is unlikely to happen. In short, because of its unique

physical nature, optimization goal, and software stack, mobile

storage, compared to traditional computer systems, inevitably

exhibits radically different properties. A more important im-

plication to us is that our prior wisdom about storage and the

understanding about its influence to system and application

performance may not continue to be applicable to mobile

devices. Therefore, a demand of a detailed and thorough study

to properly understand the critical issues of mobile storage

affecting user experience is necessary. In particular, we desire

to answer the following important questions:

• Do there exist any consistent trends in application perfor-

mance and behaviors over several different categories of

applications? The presence of those trends may suggest

that such behavior is not application specific and may

exist across an even more broad spectrum of applications.

• How much of an impact, if any, do storage I/Os con-

tribute to application performance? Given the diversity

of mobile apps, not all applications may be affected by

storage I/Os in the same way. It is necessary to understand

how much latency applications experience as a result of

these I/Os to ensure that each application can perform as

efficiently as possible.

• Which type of storage I/Os contribute most to latency,

and what is the root cause behind such impact? Only

by identifying the critical storage I/Os which affect the

performance the most, can we effectively identify the

most appropriate solutions to address these issues.

978-1-4673-9055-2/16/$31.00 © 2016 IEEE



• Does there exist any room for a system level solution to

resolve storage I/O latency? By answering these funda-

mental questions, we can identify a potential room for

optimization of overall mobile app performance through

minimizing the total amount of latency contributed by

storage I/Os.

In this paper, we present a comprehensive experimental

study to explore several important aspects of mobile storage.

We carefully select a set of 13 representative mobile workloads

from 5 different categories: ranging from games, multimedia,

productivity, network, and device utilities. We run these work-

loads on a Google Nexus 5 mobile phone with a recompiled

Linux kernel. By using blktrace and blkparse tools, we

trace the storage I/O activities for each application and perform

an offline analysis on the collected experimental data. It is

worth noting that our main purpose is not to benchmark these

mobile apps or the device itself. Instead, we attempt to observe

the I/O activities from the perspective of the lowest storage

layer, characterize and understand the storage I/O behaviors of

typical mobile apps, and identify the critical issues of mobile

storage with a goal of finding the key aspects for potential

optimizations in the future. Based on these observations and

analysis, we further discuss important implications to mobile

system and application designs. We hope this work can inspire

the research community, especially mobile OS architects and

mobile app designers, to carefully consider the use of many

storage I/O related operations and enhance user experience

successfully.

This paper is organized as follows. Section II introduces the

background about mobile systems and the storage I/O stack.

Section III gives the experimental methodology. Section IV

and V discuss the experimental results and their system

implications. Related work is presented in Section VI, and

the last section concludes this paper.

II. BACKGROUND

Android is a mobile OS developed by Google for mobile

devices. Initially released in 2008, Android currently powers a

majority of the mobile devices on the market. Our experiments

were performed with the stable Android version 5, “Lollipop”.

In this section, we give a brief overview of the Android

architecture, especially the I/O stack. Figure 1 illustrates the

basic architecture of Android OS.

At the top level of the Android architecture is the applica-

tion layer. Unlike traditional desktop systems, an application

in the Android OS can be considered a different “user”.

Each mobile app is assigned a user ID and has respective

permissions unique to this ID. These applications are written

in Java and run in their own virtual machine, meaning that each

application runs independently of another – a quality that is not

seen on traditional systems [4]. The framework layer consists

of the various managers which these applications interact with.

For example, an application which uses location based services

(e.g., Google Maps) interacts with the location manager to get

the geographic location of the device.

Fig. 1. The Android Architecture

The library/runtime layer is responsible for interacting with

the OS kernel. These libraries allow application developers to

quickly access core system services in a protected manner. For

example, SQLite (a journaling based light-weight database)

enables application developers to keep data (e.g., user settings)

persistent in the form of key/value pairs. Another key compo-

nent is the Android runtime. Since Android apps are written

in Java, the virtual machine runtime, Dalvik (OS versions 4.4

and earlier) or ART, is responsible for application isolation

and memory management. The bottom layer is the Linux-

based OS kernel. The Android OS kernel is a variation of

the open-source Linux kernel and contains a set of low-level

drivers to control hardware devices, such as the eMMC device

and display. The primary file system in Android is the Ext4

file system, which replaced the older YAFFS2 [1]. The CFQ

I/O scheduler is responsible for dispatching the I/O requests

to the actual eMMC flash block device [4], which completes

the whole I/O path.

III. EXPERIMENTAL METHODOLOGY

Our experiments were conducted on a Google Nexus 5

device – an Android-powered smartphone. This device is

equipped with 32GB of internal eMMC NAND flash based

storage and runs an Android Open Source Project (AOSP)

version of Android 5. We recompiled the Linux kernel 3.4.0

and ported it to the device to support the capability of block

level I/O tracing. We use blktrace in Linux to collect the

I/O traces of various workloads. The blktrace tool monitors the

time stamped events in the I/O path, such as a dispatch of an

I/O request and a completion of an I/O request. The traces are

first reserved in ramfs and later dumped to persistent storage.

We use blkparse and our post-processing scripts to process

the I/O traces and analyze the traces offline.

For our experiments, we carefully selected 10 mobile apps

from both first party and third party sources in order to obtain

a true representation of an environment that a typical user

may have. When selecting these applications, we chose to

prioritize a more real-world set of workloads over choosing

workloads that would generate an unrealistically high volume



Workload Application Type Read/Write Ratio Description

Angry Birds Game 2.03/1 Loading the Angry Birds application
App Removal Device Utilities 1.35/1 Uninstalling an application from the device
Batch Uninstall Device Utilities 1/2.79 Using ADB to uninstall several applications at once

Burst Mode Camera Multimedia 1/204.1 Uses Burst Mode Camera to take a sequence of 100 pictures as a burst
Camera Multimedia 1/9.12 Uses default camera to take three pictures in quick sequence
Contacts Productivity 1/2.07 Adding a new contact to the device

Dropbox Sync Network 1/5.63 Linking an existing Dropbox account to the device and performing an initial sync
E-mail Sync Network 1/4.25 Linking an existing e-mail account to the device and performing an initial sync
Web Request Network 1/1.47 Loading the Facebook web site
Route Plotting Network 1/2.54 Plotting a GPS route using the Google Maps application
MP3 Streaming Network 1/41.8 Streaming 15 seconds of audio using the Spotify application
Video Playback Multimedia 1.81/1 Playing back a 5 second recorded video
Video Recording Multimedia 1/4.25 Recording a 5 second video using the default camera application

TABLE I
WORKLOAD DESCRIPTIONS

of I/Os, at the trade off of code availability in several of

the closed-source apps. As one of our goals is to determine

the true impact of storage I/Os on users, we felt that data

from these apps would better indicate this impact. Using these

mobile apps, 13 different use cases from 5 categories (games,

multimedia, productivity, network, and device functions) were

then designed to create workloads that would best represent

a situation that may generate various kinds of I/Os. In order

to remove unexpected variance, each test case was completed

by first restarting the device. Once booted, we start blktrace

and perform the test. Upon completion, we stop blktrace and

dump the trace into persistent storage for offline analysis. As

overhead resulting from the blktrace operation was of concern,

we purposefully stored the output of blktrace within a small

amount of DRAM memory to ensure that I/Os directly related

to running blktrace would not pollute the collected trace. Each

test was run 5 times to ensure that the data was consistent.
All workloads were carefully selected to capture the antici-

pated largest number of I/Os in critical parts of run time. It is

worth noting that our main purpose is to study the impact of

storage to user-perceivable performance in practice. As so, we

avoid using artificial benchmarks to generate extremely high

I/O traffic, which exercises the storage but does not reflect

the real-world usage patterns. Also, in our experiments, all

workloads were designed to show cases which both involve

storage I/Os and practically affect user experience in a typical

real-life environment. For example, we were more interested

in the process of loading Angry Birds, as the user will be idly

waiting for their game to start, over a workload including the

user playing Angry Birds, as they will no longer be idling

due to storage I/Os. In order to minimize the possibility of

latency caused by human interaction, all workloads start at

the moment human interaction ends. In all workloads, default

configurations were used to get representative results. Table 1

details the type and description of each selected workload.

IV. EXPERIMENTAL RESULTS

This section presents our experimental results. We first study

the two key factors that describe the basic I/O patterns of

a workload, namely request sizes and latencies. Then, we

focus on the flush operations, which directly impact the I/O

speed on an NAND flash based storage. Next, we consider the

data access locality, which has a strong implication to cache

efficiencies. Finally, we discuss the relative influence of I/O

operations to the end-to-end application performance.

A. Request Size and Latency Distribution

Request size and latency are two key factors describing the

I/O patterns of a workload. The former determines how large

each I/O request is, while the latter measures how long each

I/O request takes to the point of completion. These two metrics

have a direct but non-linear relationship – a small request is not

necessarily equal to a smaller latency, and vice versa. Figure 2

shows the distributions of request sizes and latencies of the 13

workloads. In the following, we examine the workloads based

on their categories.

Angry Birds: As a typical mobile game, the Angry Birds

workload sees mostly smaller request sizes - 67.8% of all

requests are less than 64 KB. Comparatively, however, these

write sizes are more variable than the other tests. For instance,

in Figure 3(a), we can see two vertical bands of writes at the

36 KB and 88 KB ranges. Write latency for Angry Birds is

noticeably longer than reads, as 80% of reads are completed

in less than 1.87 ms, while it takes up to 7.50 ms for 80% of

the total number of writes to be completed. Of these writes,

synchronous writes contribute most to the latency incurred

from write I/Os. We also find that reads are more predictable

than writes. In Figure 3, we see a nearly linear pattern of reads

between latency and request size – smaller reads generally

take shorter times to complete while larger reads take longer.

In contrast, writes show a much larger variance. There exist

distinct patterns of a wide range of latency for a similar

request size. For example, latency for a request size of 88

KB ranges from 7-10 ms. Such write latency is surprisingly

high, especially considering the eMMC flash device has no

mechanical components. This is mostly because writes in flash

memory may trigger some high-overhead internal operations,

such as block cleaning, which make the I/O latencies more

variant [5]. Also, large reads tend to have a relatively higher

variance in latencies than small ones, as a large read would

take longer to complete and is more likely to affected.



 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF

ALL
READ

WRITE

(a) Angry Birds

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for Adding a Contact

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for Adding a Contact

ALL
READ

WRITE

(b) Contact Add

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300  350

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for Application Uninstall

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for Application Uninstall

ALL
READ

WRITE

(c) App Removal

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300  350  400

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for Batch App Uninstall

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for Batch App Uninstall

ALL
READ

WRITE

(d) Batch Uninstall

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for Camera (Picture Taking)

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for Camera (Picture Taking)

ALL
READ

WRITE

(e) Camera

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140  160  180
P

e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for Burstmode Camera

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for Burstmode Camera

ALL
READ

WRITE

(f) Burst Mode Camera

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for Recording a Video

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for Recording a Video

ALL
READ

WRITE

(g) Video Recording

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for Playing Back a Video

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for Playing Back a Video

ALL
READ

WRITE

(h) Video Playback

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for FaceBook Web Request

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for FaceBook Web Request

ALL
READ

WRITE

(i) Web Request

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for Streaming a MP3 in Spotify

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for Streaming a MP3 in Spotify

ALL
READ

WRITE

(j) MP3 Stream

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300  350

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for Generating a Route in Maps

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for Generating a Route in Maps

ALL
READ

WRITE

(k) Route Plotting

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for Email Initial Sync

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for Email Initial Sync

ALL
READ

WRITE

(l) E-Mail Sync

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250

P
e
rc

e
n
ta

g
e

Request Size (Sectors)

Request Size CDF for DropBox Initial Sync

ALL
READ

WRITE
 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9

P
e
rc

e
n
ta

g
e

Latency (ms)

Latency CDF for DropBox Initial Sync

ALL
READ

WRITE

(m) Dropbox Sync

Fig. 2. Request Size and Latency Data by Type for all Workloads (All, Read, Write)



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  100  200  300  400  500  600

L
a
te

n
c
y
 (

m
s
)

Request Size (Sectors)

Request Size vs. Latency

READ
WRITE

(a) Angry Birds

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  50  100  150  200  250  300  350  400  450

L
a
te

n
c
y
 (

m
s
)

Request Size (Sectors)

Request Size vs. Latency

READ
WRITE

(b) Batch Uninstall

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  100  200  300  400  500  600

L
a
te

n
c
y
 (

m
s
)

Request Size (Sectors)

Request Size vs. Latency

READ
WRITE

(c) Video Recording

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  50  100  150  200  250  300

L
a
te

n
c
y
 (

m
s
)

Request Size (Sectors)

Request Size vs. Latency

READ
WRITE

(d) DropBox Sync

Fig. 3. Selected Request Size vs. Latency Data

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8  9  10

O
ff
s
e
t 
(m

ill
io

n
s
 o

f 
s
e
c
to

rs
)

Time (seconds)

Time vs. Offset for Playing Back a Video

READ
WRITE

(a) Video Playback

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5  6

O
ff
s
e
t 
(m

ill
io

n
s
 o

f 
s
e
c
to

rs
)

Time (seconds)

Time vs Offset for Camera (Picture Taking) 

READ
WRITE

(b) Camera

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  2  4  6  8  10  12  14  16  18

O
ff
s
e
t 
(m

ill
io

n
s
 o

f 
s
e
c
to

rs
)

Time (seconds)

Time vs. Offset for Streaming a MP3 in Spotify 

READ
WRITE

(c) MP3 Streaming

Fig. 4. Spatial Access Patterns vs. Time. Offset is in units of Sectors.

Uninstall Apps: Removing both a single application and

several applications in a batch job often causes noticeable

delay. In Figure 2(c) and 2(d), we see similar patterns in both

request sizes and latencies. For request size, we find that 82.4%

of writes in a single application uninstall and 80.1% of writes

in a batch application uninstall are less than 16 KB in size.

This is because the two workloads involve intensive file system

metadata operations, most of which are rather small (e.g.,

updating inodes). We also find that writes are slightly slower

than reads with 80% of I/Os taking under 2.39 ms for writes

and 1.77 ms for reads in a single uninstall and under 3.04 ms

for writes and 1.89 ms for reads in a batch uninstall. When

comparing latency and request size, we find a similar trend of

slow writes of very small size and reads in a linear pattern, as

seen in Figure 3(b). The only apparent difference between the

single- and batch- uninstall workloads is the quantity of reads

and writes being appropriately larger in scale. This indicates

that, for such a batch of metadata-intensive workloads, storage

I/Os happen mostly in a sequence, and no buffering effect has

been observed.

Contact: The Contact Addition experienced several very

small writes - about 73.7% of all writes were only 4 KB.

Reads, however, were larger than writes - only 64.6% of reads

were less than 64 KB. Other data continued to follow typical

trends – writes were slightly slower than reads. Compared

to other workloads, this workload does not have to load or

store data of any significant size, and subsequently it does not

present any surprising information.

Multimedia: As shown in Figure 2(e-h), we find several

key themes in the four multimedia workloads, Camera, Burst

Mode Camera, Video Recording, and Video Playback. First,

writes tend to be small. Write sizes of less than 16 KB

make up 86.9% of the Camera workload, 81.2% of the Burst

Mode Camera workload, and 88.0% of the Video Recording

workload. This is because the three workloads involve inten-

sive writes, and frequent flushes create a sequence of small

writes. Video Playback is unique. It sees a wider spectrum

of write request sizes; however, we still find that most of

these writes are small. Second, latency distributions are also

similar between the write-intensive multimedia applications.

In the Burst Mode Camera, Camera, and Video Recording

workloads, 80% of the I/Os are completed in less than 2.20

ms, 3.02 ms, and 2.21 ms respectively. Video Playback shows

different patterns - I/Os tended to experience higher latency,

with 58.2% of I/Os taking over 3 ms to complete. Third,

the latency-vs-request-size trends in multimedia workloads are

similar to other workloads – a heavily variable concentration

of small writes with a relatively more linear pattern of reads,

shown in Figure 3(c). We also find that Burst Mode Camera,

Camera, and Video Recording are all quite variable as there

are a significant number of writes between 1 and 10 ms of

latency. Finally, Video Playback shows a unique pattern. This

workload has only 75 total writes, and of these writes, only 5

were larger than 4.5 ms. Unlike other multimedia workloads,

Video Playback is read intensive. A large portion of this

workload involves retrieving the video from storage to play

it back. We see a larger number of slower reads than in other

workloads. Also, this workload has the second fewest number

of I/Os of any other workload, as it retrieves the video from

storage in large (128 KB) chunks. Figure 4(a) illustrates this

behavior. We can see a distinct band of I/O reads at the

same offset for a large duration of the process of playing

back the video. Comparatively, we see the other multimedia

applications which save data to storage (e.g., Camera) writing

data in small chunks, as shown in Figure 4(b). This process

also proves to be extremely costly. Our Camera workload had



the largest percentage of I/O latency than any other workload

at nearly 70% of the run time.

Network Apps: The storage I/O behaviors of network-

intensive apps follow patterns unique to this category. Of the 5

network applications, shown in Figure 2(i-m), each workload

had a majority of small writes. For each network workload,

most writes were smaller than 16 KB. For example, the MP3

streaming workload had 92.6% writes smaller than 16 KB,

and the Web Request workload had 76.5% writes being less

than 16 KB. Reads had some slight variation between each

workload and were larger than writes. The MP3 Streaming

workload is unique. It has significantly smaller I/O reads,

with 76.5% of reads being less than 16 KB, compared to

the other Network workloads which, as in the Route Plotting

workload which had only 41.0% reads less than 16 KB. This

is likely due to the streaming effect, where most reads can

be directly satisfied in memory. In this category, we also

found that unlike other workloads, I/O request latencies had

slower asynchronous writes than synchronous writes. This

difference can be most drastically noted in MP3 Streaming,

where asynchronous writes are greater than 4 ms in over

74.1% of requests. We continue to see patterns of small slow

writes and linear reads when comparing latency and request

size. In summary, network workloads are unique in that they

experience I/O behavior somewhat similar to other workloads,

which is an unexpected finding. An example of this may be

seen in the spatial write pattern of MP3 Streaming shown in

Figure 3(d) – there are constant I/O writes with very few reads.

The reasoning for this may be due to the device having to

download and store the data from the network.

B. Flushes

In Android systems, the SQLite library provides a light-

weight database for mobile apps to store small pieces of

data persistently (e.g., user settings). In order to ensure data

consistency, the dirty data in the OS page cache needs to

be synchronized to the persistent storage. As a result, the

Android operating system frequently uses a flush operation

(e.g. FUA and FLUSH) to send buffered data to storage to

ensure the persistence. While this is a necessary function

to preserve data, too much flushing can result in increased

latency, thus degrading application and device performance.

We find such a trend of excessive flushing in our analysis of

our workloads, characterized by flushes at short intervals, with

a only small number of small sized I/O writes between each

flush operation. We will examine specific workload categories

in greater depth. Figure 5 depicts an average case of flushing in

three metrics: the number of I/O requests which occur between

flushes, the size of I/O requests between each flush, and the

time between successive calls to flush. Table II lists the number

of I/O requests, the total I/O request size, and the time interval

between two consecutive flushes.

We find in Figure 5 that there are very few I/O requests that

take place between successive flushing operations. In 90% of

cases, the largest number of I/O requests between two flushes

is 74 in the Web Request workload, with all other workloads

Workload Requests Data Size Time

Angry Birds 26 2028 KB 0.398 sec
App Removal 29 808 KB 0.289 sec
Batch Uninstall 16 332 KB 0.252 sec

Contacts 40 240 KB 1.41 sec
Burst Mode Camera 16 80 KB 0.116 sec

Camera 22 124 KB 0.060 sec
Video Recording 23 204 KB 0.099 sec
Video Playback 49 4196 KB 3.30 sec
Dropbox Sync 14 116 KB 0.216 sec
E-mail Sync 18 180 KB 1.10 sec
Web Request 74 4412 KB 3.13 sec

MP3 Streaming 10 60 KB 0.512 sec
Route Plotting 10 64 KB 0.147 sec

TABLE II
I/OS BETWEEN FLUSHES (90TH PERCENTILE OF CDF)

having less than 49 I/O requests. Workloads such as Angry

Birds and Application Remove saw less than 26 requests and

29 requests respectively, and Dropbox Sync had fewer than

14 requests in 90% of cases. We see a varying number of

I/O requests between workload categories as well. Network

workloads saw as few as less than 10 requests at the 90th

percentile (MP3 Streaming, Route Plotting) and as many as

less than 74 requests at the 90th percentile (Web Request).

The amount of data of I/O requests between successive

flushes is also small but varies between the workloads. Several

workloads had total data sizes of less than 128 KB between

flushes in 90% of cases, while three outliers are the Angry

Birds (2028 KB), Video Playback (4196 KB), and Web

Request (4412 KB) workloads.

The time interval between successive flushes is also small.

We found a range of typically short intervals. In 8 of the 13

workloads, these intervals were between 0.1 and 0.4 seconds,

which means 2-10 flushes happen every second. Workload

categories seem to have some influence: three of the five

longest intervals occur in the network category, while the

three shortest intervals occur in the multimedia category. Since

the multimedia apps, such as Camera, involve heavy writes,

this suggests that the number of storage I/O writes affects

flushing behavior; as more data is written, flushing becomes

more frequent.

In all, we see very aggressive flushing for the mobile

applications. Most have very few requests of small sizes

at short intervals between flushes. Application category has

influence on the flushing behavior of workloads. Write I/O

intensive categories have high frequency, low request numbers,

and small request sizes between each flush operation. Less I/O

write intensive workloads show less frequent flushes with more

requests and larger request sizes between flushes. The biggest

reason for variation occurring in flushing between different

workloads is the importance of ensuring that the data generated

by the respective workload is written to storage. This flushing

scheme, however, is problematic because it contributes heavily

to the overall latency of storage I/Os.



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140  160  180

P
e

rc
e

n
ta

g
e

Number of Requests Between Flushes

Requests Between Flushes

ALL
READ

WRITE

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

P
e

rc
e

n
ta

g
e

Size (Sectors)

Size Between Flushes

ALL
READ

WRITE

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

P
e

rc
e

n
ta

g
e

Time (seconds)

Time Between Flushes

TIME

(a) Application Removal

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
e

rc
e

n
ta

g
e

Number of Requests Between Flushes

Requests Between Flushes

ALL
READ

WRITE

 0

 20

 40

 60

 80

 100

 0  500  1000  1500  2000

P
e

rc
e

n
ta

g
e

Size (Sectors)

Size Between Flushes

ALL
READ

WRITE

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

P
e

rc
e

n
ta

g
e

Time (seconds)

Time Between Flushes

TIME

(b) Burst Mode Camera

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90

P
e

rc
e

n
ta

g
e

Number of Requests Between Flushes

Requests Between Flushes

ALL
READ

WRITE

 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000  10000 12000 14000

P
e

rc
e

n
ta

g
e

Size (Sectors)

Size Between Flushes

ALL
READ

WRITE

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

P
e

rc
e

n
ta

g
e

Time (seconds)

Time Between Flushes

TIME

(c) Video Playback

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
e

rc
e

n
ta

g
e

Number of Requests Between Flushes

Requests Between Flushes

ALL
READ

WRITE

 0

 20

 40

 60

 80

 100

 0  1000  2000  3000  4000  5000  6000  7000

P
e

rc
e

n
ta

g
e

Size (Sectors)

Size Between Flushes

ALL
READ

WRITE

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
e

rc
e

n
ta

g
e

Time (seconds)

Time Between Flushes

TIME

(d) E-mail Sync

Fig. 5. Data Gathered Between Two Flushes

 0

 50

 100

 150

 200

 250

 300

 350

 0  50  100  150  200  250  300

N
u
m

b
e
r 

o
f 
R

e
q
u
e
s
ts

Access Rank (Greatest to Least)

Number of Requests per Blocks

WRITE

(a) Burst Mode Camera

 0

 10

 20

 30

 40

 50

 60

 70

 0  50  100  150  200  250  300

N
u
m

b
e
r 

o
f 
R

e
q
u
e
s
ts

Access Rank (Greatest to Least)

Number of Requests per Blocks

WRITE

(b) MP3 Streaming

 0

 50

 100

 150

 200

 250

 300

 350

 0  50  100  150  200  250  300

N
u
m

b
e
r 

o
f 
R

e
q
u
e
s
ts

Access Rank (Greatest to Least)

Number of Requests per Blocks

WRITE

(c) Camera

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  50  100  150  200  250  300

N
u
m

b
e
r 

o
f 
R

e
q
u
e
s
ts

Access Rank (Greatest to Least)

Number of Requests per Blocks

WRITE

(d) Batch Uninstall

Fig. 6. Selected Locality Behavior. All access ranks after 300 have been ignored.



C. Locality

In this section, we briefly analyze spatial locality trends

among the workloads in this study. This analysis will refer

exclusively to the spatial locality of storage writes, as in each

workload, blocks being accessed from read operations were

accessed only one time. This is due to the memory being able

to fully contain the working set. To confirm this, we repeated

the workload under the conditions of reduced available RAM

(1 GB) and found that blocks were being accessed twice due

to page cache replacement. In general, we have found some

localities to be good, while others are heavily skewed.

Workloads with good localities include Burst Mode Camera,

Figure 6(a), with 153 blocks covering nearly all of the I/O

write requests to 880 total unique blocks, with the 10 most

accessed blocks accounting for 25.6% of all accesses. Dropbox

Sync also had 187 blocks being re-written. Other workloads

with multiple blocks being re-written include Contact Add,

MP3 Streaming, and Web Request. Most workloads, however,

had heavily skewed localities, where one or very few blocks

were re-written in some cases hundreds of times. In an extreme

case, Camera saw one block out of 3,293 unique blocks

being re-accessed 305 times, as shown in Figure 6(c). Other

workloads also saw very few blocks being accessed in a range

between about 10 to 150 accesses.

D. End-to-end Impact of Storage I/Os

Although storage I/Os are generally slow, the end-to-end

impact of storage I/Os to mobile application performance

is complex and depends on various factors, such as relative

computing and network speed. In this section, we show the

aggregate storage I/O time in the overall workload completion

time. Figure 7 and Table III provide the details.

Based on the percentage of I/O latency throughout the

duration of the workload, we can distinctly identify 3 major

groupings of applications. (1) Light-I/O Applications: Four of

the five network workloads were found to be lightly affected

by I/O latency, with the exception of Dropbox Sync, which

stores a lot of data to the device in its initial sync. All

other network workloads were found to have less than 9%

of I/O latency. This suggests that the network may have a

larger contribution in the run time of certain applications.

Video Playback was also only lightly affected by storage

I/Os, as a large number of sequential reads can be quickly

loaded to memory by the OS prefetching. (2) Moderate-

I/O applications: The two uninstall workloads, Burst Mode

Camera, and Dropbox Sync are moderately affected by storage

I/Os. This implies that in some cases, even a network based

application may be affected in part by storage I/O latency if it

is storing a large amount of data. (3) Heavy-I/O applications:

Three applications are heavily affected by storage I/O latency.

The Video Recording application is understandably affected,

as it stores a high quantity of data to the storage when the

video is completed and saved. Angry Birds was the second

worst affected workload. This may be in part due to the

complexity of the game itself, as the features of the game

may both read the game files and write back progress data to

allow for settings or game saving. The Camera workload was

the most affected by I/O latency, which accounts for nearly

70% of the run time, as high resolution pictures are written.

In general, our findings indicate that the significance of

storage I/Os to the end-to-end performance of mobile apps

varies across workloads.

V. SYSTEM IMPLICATIONS

With these key observations, we are now in a position to

present several important system implications. Additionally,

this section also provides an executive summary of our an-

swers to the questions we raised at the beginning of this paper.

I/O writes are very small and of varying I/O latency. In

all of our mobile applications, we see excessive small write

I/Os. The write I/Os exhibit strong locality; some blocks are

heavily rewritten while most are only written once. These

I/O writes can be of a highly variable latency. Regardless

of how large or small the write, we saw a range between

1 ms and 10 ms in nearly every workload. This suggests

that write performance, overall, is quite poor. This is mostly

because NAND flash does not handle random and small writes

well. Consequently, applications which write a lot of data to

storage will be the biggest culprits of I/O latency. Because of

these small and latent writes, the camera workload saw a near

70% I/O overhead. Even with the Dropbox sync workload’s

heavy reliance on a network connection to download data,

small writes contributed to this workload being the 5th most

affected workload from I/O latency. This implies that mobile

app designers should pay specific attention to write operations,

especially frequent small writes. Buffering and clustering

small writes into large ones can effectively reduce the effect.

Aggressive flushing is a common practice in all applica-

tions. In nearly every case, a pattern of very short page cache

flushes occur (e.g., fsync()). These flushes contain typically

less than 40 I/Os of small size and happen very frequently.

This is caused by applications which are constantly triggering

a flush operation in order to ensure data safety and persistence

in the event of some failure. This, in turn, requires the system

to stop and wait for the data to be written to the storage.

Such a blocking effect further magnifies the effect of slow

writes on NAND flash. This aggressive flushing has a large

impact to overall system performance: because each interval

between flushes is so short, little data is being written per

operation, implying that more time is spent waiting than may

be necessary. As a result, the user is left waiting for all of

the I/Os to complete before they can proceed further. Because

these flushes trigger sequences of short and random writes,

they inadvertently contribute to the overall problem of storage

latency and reduce the possibility of organizing more favorable

large writes as well. A potential solution to reducing latency

would be to use these flush operations conservatively, thus

reducing the frequency of data being written to storage. Also,

mobile app developers should understand the impact of such

flushes to ensure I/O operations are not issued arbitrarily and

should also avoid abusing the SQLite library for randomly



  0

  10

  20

  30

  40

  50

  60

  70

A
n

g
ry

B
ir
d

s

A
p

p
R

M

B
a

tc
h

U
n

in
s
ta

ll

B
u

rs
tP

ic

C
a

m
e

ra

C
o

n
ta

c
ts

D
ro

p
b

o
x

E
m

a
il

W
e

b
R

e
q

u
e

s
t

R
o

u
te

P
la

n

M
P

3
S

tr
e

a
m

V
id

R
e

c

V
id

P
la

y

P
e

rc
e

n
ta

g
e

Ratio of Latency over Test Duration

Read−Meta

Read

Write−Async

Write−Sync

Fig. 7. Ratio of Latency over Test Duration for a given workload

Application Name Number of I/Os Number of Reads Number of Writes Test Duration (ms) Percentage of I/O Latency

Angry Birds 846 567 279 7414.26 19.8508
App Removal 511 294 217 5667.04 11.5023
Batch Uninstall 1238 326 912 13346.3 11.5861

Burst Mode Camera 2257 11 2246 17880.6 13.3792
Camera 2319 229 2090 5429.02 69.8771
Contacts 348 113 235 18736.6 2.97313

Dropbox Sync 1983 299 1684 18313.9 12.2474
E-mail Sync 2177 414 1763 61163.4 4.69179
Web Request 173 70 103 4484.59 7.51333
Route Plotting 1950 550 1400 27424.3 8.16327
MP3 Streaming 728 17 711 17606.3 4.33635
Video Playback 256 165 91 7961.2 7.01778
Video Recording 1304 248 1056 10301.7 16.7913

TABLE III
I/OS BY WORKLOAD

storing small data items - the main source of frequent, small

synchronized writes.

I/O reads are mostly one-time access and of relatively

predictable latencies. In our experiments, reads exhibit a

rather linear behavior between latency and request size in

nearly every workload. This finding is consistent with our

understanding about reads in NAND flash, in that they are

fast and predictable. In addition, these reads are, almost in

all cases, one-time access. This is directly a result of the

memory being capable of fully containing the workload with

a fairly small working-set size. As long as the memory is

capable of containing the working-set, the system will not

see a significant amount of latency from read I/Os, as it only

needs to read storage blocks once. Accordingly, reads do not

contribute as much of an impact to I/O related latency. This

also is in part due to the read benefits that come from using

NAND based flash storage, as these reads will be able to be

completed efficiently. This, again, implies that mobile system

and app developers need to focus more on optimizing writes.

Synchronous Writes make up a majority of the I/O la-

tency. Of the four different specific types of reads and writes,

we see primarily read-aheads and synchronous writes by

quantity. By percentage of latency over test duration, however,

we find that synchronous writes contribute an overwhelming

amount of the total latency from storage I/Os. This latency is

compounded by the aggressive flushing experienced in each

workload. Because applications are constantly flushing at short

intervals (e.g., 200 ms), the device has to spend a large amount

of time writing back the data to storage and the applications

remain in a state of being blocked. This finding implies that

we need to either reduce the amount of synchronous writes

or speed them up. The former can be achieved through less

use of flushes, while the latter could be realized by adopting

a faster storage medium, such as persistent memory [6].

The impact of storage I/Os to the end-to-end application

performance is workload dependent. In total, storage I/O

based performance degradation appears to be reliant on the

type of application being used. The typical percentage of

latency due to storage I/Os falls between 7 and 20 percent.

We found that network-heavy applications, such as the E-mail

application or the MP3 Streaming application, had much less

latency due to storage I/Os at just over 4% each. Conversely,

multimedia based apps saw typically more latency attributed

to storage I/Os, such as the camera workload with nearly 70%

latency. These trends are not necessarily strict, as the Dropbox

workload indicated that an application may be both heavily

reliant on a network and affected by storage I/Os. Comparing

Camera and its burst mode version, we can find that leveraging



local buffering can effectively reduce the impact of storage

I/O. It also implies that other mobile apps with intensive

writes should consider such a simple technique to optimize

performance.

Compared to desktop applications, mobile apps show

several unique and distinct characteristics. In our experi-

ments, we have observed several interesting properties of mo-

bile apps. First, we see a large volume of synchronous writes

and frequent use of flushes in mobile apps. This is related to

the mobile apps’ heavy reliance on the SQLite library, and

we rarely see such patterns in desktop applications. Second,

most mobile apps have a more relatively small working set

than typical desktop applications. On one hand, it allows most

reads to be comfortably accommodated in memory. On the

other hand, it makes mobile apps more write I/O intensive

and the write performance issues even more obvious. Desktop

applications, in contrast, are typically more read intensive and

most writes are asynchronous. Thus, the optimization goals

for mobile and desktop applications are very different.

In general, through our experimental studies, the implica-

tions of the answers show that there is a definite space for

optimization with respect to storage I/Os. A solution that could

overcome the need to constantly commit data to storage at

a short interval, thus only writing small amounts of data,

would in turn reduce the overall latency which the user must

experience. By reducing the amount of flushing, much of the

storage I/O latency can be negated which will consequently

optimize application performance on a much larger scale. In

the meantime, we should also note that storage I/Os account

for a moderate portion of the overall mobile app performance,

which indicates that when optimizing mobile app performance,

we must consider all system components in a whole package.

VI. RELATED WORK

In recent years, inefficiencies of mobile device optimization

have received interests in academia. These prior studies cover

various aspects of mobile systems, from power management

(e.g., [7], [9], [19], [21]), privacy and security (e.g., [8],

[10], [12]), applications (e.g., [11], [22], [24], [25]), and many

others. In this section, we will focus on the prior work that is

most related to this paper.

Storage I/Os are important to mobile system performance

and user experience. Kim et al. have presented benchmarks

of Android performance, showing that storage may contribute

more of an effect on system performance than previously

thought [14]. In contrast to this early work, which focused

primarily on SD-card based external storage, our studies are

based on the internal eMMC flash storage and show that the

impact of storage to the overall user-perceivable performance

is moderate for most mobile apps. Lee and Won first noticed

several inefficiencies within the various layers of the Android

stack [18]. They found that although these layers have been

well designed, several issues with journaling still existed and

were causing issues with device performance. This anomaly,

later known as Journaling of Journal, was determined as the

result of the innate competition of the journaling actions of

the SQLite database which unexpectedly triggered the high-

cost journaling in the Ext4 file system [13]. Due to these

unexpected interactions between SQLite and Ext4, solutions

to address these problems have been proposed, though at this

time have not been adopted into Android, as our results suggest

that small sync write issues still remain a problem within

Android. Jeong et al. investigated the results of changing var-

ious features of the Android operating system and discovered

that by making changes to the file system and changing the

operating mode of the SQLite database, they were able to

remove this journaling of journal effect and achieve a 300%

performance upgrade from SQLite [13]. Recently, Kim et al.

developed an algorithm known as LS-MVBT (multi-version

B-tree with lazy split) to reduce the number of fsync calls

which trigger the journaling in Ext4 [16]. By maintaining

the recovery information within the database instead of a

journal log, they were able to achieve a 1,220% performance

improvement over the default SQLite logging modes. Shen,

Park, and Zhu have also identified several implementation lim-

itations of the Android operating system and through applying

a custom journaling mode they were able to improve overall

database performance by 7% [23]. Additional work in storage

areas contributes to the understanding of the uniqueness of

mobile storage to traditional desktop systems. Chen et al.

performed several tests on flash based SSDs and identified

several performance issues that can appear with writes with

regards to flash storage, indicating a need to study flash storage

uniquely of traditional storage understandings of HDDs [5].

To overcome these innate problems, and those caused by the

Journaling of Journal anomaly, Lee et al. show that F2FS,

a file system designed to perform for devices using flash

storage, outperforms the existing EXT4, effectively removing

Journaling of Journal by using append only logging [17].

Recognizing the impact of writes to reads, Nguyen et al.

proposed a scheduling scheme to reduce application delay by

prioritizing read over write I/Os and grouping them based on

priorities [20]. Kim et al. developed a buffer cache replacement

scheme to influence the I/O performance on flash [15]. In

this paper, our main focus is to characterize the I/O behavior

of mobile apps and its interaction with the underlying flash

memory. Besides observing frequent flushes, we have also

found that the end-to-end impact of these I/O latencies varies

depending on applications, which deserves further research.

VII. CONCLUSIONS

Mobile devices have become increasingly important in our

daily computing. In this paper, we present a comprehensive

study on the storage I/O behavior of mobile applications and

their interaction with the underlying flash-based storage. By

carefully selecting 13 workloads from 5 categories, we per-

form extensive experimental studies in an attempt to discover

the trends that would allow for overall device performance

optimization. Our analysis shows that although the number of

storage based I/Os comprises a smaller number of the overall

I/Os for a running application, the mobile apps exhibit unique

I/O patterns. I/O writes, especially those from synchronous



writes and fast flushing, contribute most to latency in these

storage I/Os. As a result, a large window of optimization

exists at the system level for Android OS design. On the

other hand, we have also acknowledged that the end-to-end

impact of I/O latencies to application performance depends on

workloads, meaning that optimizations must be customized to

applications.

ACKNOWLEDGMENT

The authors thank anonymous reviewers for their con-

structive comments to improve this paper. This work was

supported in part by Louisiana Board of Regents under grants

LEQSF(2014-17)-RD-A-01 and LEQSF-EPS(2015)-PFUND-

391, National Science Foundation under grant CCF-1453705,

and generous support from Intel Corporation.

REFERENCES

[1] Yet Another Flash File System. http://www.yaffs.net.
[2] Without Much Fanfare, Apple Has Sold Its 500 Millionth

iPhone. http://www.forbes.com/sites/markrogowsky/2014/03/25/
without-much-fanfare-apple-has-sold-its-500-millionth-iphone/, 2014.

[3] Market Share: Devices, All Countries, 4Q14 Update. http://www.gartner.
com/newsroom/id/2996817, 2015.

[4] Android. https://source.android.com/source/index.html.
[5] F. Chen, D. A. Koufaty, and X. Zhang. Understanding Intrinsic Char-

acteristics and System Implications of Flash Memory Based Solid State
Drives. In Proceedings of the Eleventh International Joint Conference

on Measurement and Modeling of Computer Systems (SIGMETRICS’09),
pages 181–192, New York, NY, USA, 2009. ACM.

[6] F. Chen, M. P. Mesnier, and S. Hahn. A Protected Block Device for
Persistent Memory. In Proceedings of the 30th International Conference

on Massive Storage Systems and Technology (MSST’14), Santa Clara,
CA, June 2-6 2014.

[7] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and R. Vannithamby.
Smartphone Background Activities in the Wild: Origin, Energy Drain,
and Optimization. In Proceedings of the 21st Annual International

Conference on Mobile Computing and Networking (MobiCom’15), Paris,
France, September 7-11 2015. ACM.

[8] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, S. Saroiu,
and A. Wolman. Protecting Data on Smartphones and Tablets from
Memory Attacks. In Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’15), Istanbul, Turkey, March 14-18 2015. ACM.
[9] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu,

R. Chandra, and P. Bahl. MAUI: Making Smartphones Last Longer with
Code Offload. In Proceedings of the 8th Annual International Confer-
ence on Mobile Systems, Applications, and Services (MobiSys’10), San
Francisco, CA, June 15-18 2010. ACM.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implementation

(OSDI’10), Vancouver, Canada, October 4-6 2010. USENIX.
[11] Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu. Reliable, Consistent,

and Efficient Data Sync for Mobile Apps. In Proceedings of the 13th

USENIX Conference on File and Storage Technologies (FAST’15), Santa
Clara, CA, Feburary 16-19 2015. USENIX.

[12] S. Guha, M. Jain, and V. N. Padmanabhan. Koi: A Location-Privacy
Platform for Smartphone Apps. In Proceedings of the 9th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI’12),
San Jose, CA, April 25-27 2012. USENIX.

[13] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. I/O Stack Optimization
for Smartphones. In Proceedings of the 2013 USENIX Annual Technical
Conference (USENIX ATC’13), pages 309–320, San Jose, CA, 2013.
USENIX.

[14] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting Storage for
Smartphones. In Proceedings of the 10th USENIX Conference on File
and Storage Technologies (FAST’12), San Jose, CA, February 14-17
2012.

[15] H. Kim, M. Ryu, and U. Ramachandran. What is a Good Buffer Cache
Replacement Scheme for Mobile Flash Storage? In Proceedings of the

2012 ACM SIGMETRICS Conference (SIGMETRICS’12), London, UK,
June 11-15 2012. ACM.

[16] W.-H. Kim, B. Nam, D. Park, and Y. Won. Resolving Journaling
of Journal Anomaly in Android I/O: Multi-Version B-tree with Lazy
Split. In Proceedings of the 12th USENIX Conference on File and

Storage Technologies (FAST’14), pages 273–285, Santa Clara, CA, 2014.
USENIX.

[17] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A New File System for
Flash Storage. In Proceedings of the 13th USENIX Conference on File

and Storage Technologies (FAST’15), pages 273–286, Santa Clara, CA,
Feb. 2015. USENIX Association.

[18] K. Lee and Y. Won. Smart Layers and Dumb Result: IO Characterization
of an Android-based Smartphone. In Proceedings of the Tenth ACM
International Conference on Embedded Software (EMSOFT’12), pages
23–32, New York, NY, USA, 2012. ACM.

[19] J. Li, A. Badam, R. Chandra, S. Swanson, B. Worthington, and
Q. Zhang. On the Energy Overhead of Mobile Storage Systems. In
Proceedings of the 12th USENIX Conference on File and Storage Tech-

nologies (FAST’14), Santa Clara, CA, Feburary 17-20 2014. USENIX.
[20] D. T. Nguyen, G. Zhou, G. Xing, X. Qi, Z. Hao, G. Peng, and Q. Yang.

Reducing Smartphone Application Delay through Read/Write Isolation.
In Proceedings of the 13th International Conference on Mobile Systems,

Applications, and Services (MobiSys’15), Florence, Italy, May 18-22
2015. ACM.

[21] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-Grained
Power Modeling for Smartphones Using System Call Tracing. In
Proceedings of the 6th Conference on Computer Systems (EuroSys’11),
Salzburg, Austria, April 10-13 2011. ACM.

[22] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller,
and S. Shayandeh. AppInsight: Mobile App Performance Monitoring
in the Wild. In Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’12), Hollywood,
CA, October 8-10 2012. USENIX.

[23] K. Shen, S. Park, and M. Zhu. Journaling of Journal Is (Almost)
Free. In Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST’14), pages 287–293, Santa Clara, CA, 2014.
USENIX.

[24] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. Why are Web Browsers
Slow on Smartphones? In Proceedings of the 12th Workshop on Mobile

Computing Systems and Applications (HotMobile’11), Phoenix, AZ,
March 1-2 2011. ACM.

[25] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang, and Q. Li.
Optimizing Background Email Sync on Smartphones. In Proceedings

of the 11th International Conference on Mobile Systems, Applications,

and Services (MobiSys’13), Taipei, Taiwan, June 25-28 2013. ACM.


