
A Protected Block Device for Persistent Memory

Feng Chen Michael P. Mesnier Scott Hahn

Louisiana State University Intel Labs Intel Labs

fchen@csc.lsu.edu michael.mesnier@intel.com scott.hahn@intel.com

Abstract—Persistent Memory (PM) technologies, such as Phase
Change Memory, STT-RAM, and memristors, are receiving
increasingly high interest in academia and industry. PM provides
many attractive features, such as DRAM-like speed and storage-
like persistence. Yet, because it draws a blurry line between mem-
ory and storage, neither a memory- or storage-based model is a
natural fit. Best integrating PM into existing systems has become
challenging and is now a top priority for many. In this paper
we share our initial approach to integrating PM into computer
systems, with minimal impact to the core operating system. By
adopting a hybrid storage model, all of our changes are confined
to a block storage driver, called PMBD, which directly accesses
PM attached to the memory bus and exposes a logical block I/O
interface to users. We explore the design space by examining
a variety of options to achieve performance, protection from
stray writes, ordered persistence, and compatibility for legacy
file systems and applications. All told, we find that by using
a combination of existing OS mechanisms (per-core page table
mappings, non-temporal store instructions, memory fences, and
I/O barriers), we are able to achieve each of these goals with
small performance overhead for both micro-benchmarks and real
world applications (e.g., file server and database workloads). Our
experience suggests that determining the right combination of
existing platform and OS mechanisms is a non-trivial exercise.
In this paper, we share both our failed and successful attempts.
The final solution that we propose represents an evolution of
our initial approach. We have also open-sourced our software
prototype with all attempted design options to encourage further
research in this area.

Index Terms—Memory, Storage, Persistent memory, Operating
system, Device driver

I. INTRODUCTION

Over the years researchers in academia and industry have

expended tremendous effort in the long battle with slowly

improving storage performance. Countless innovations have

been made in almost every corner of computer systems to

mitigate the so-called “performance gap” between volatile

memory and persistent storage. Although these innovations

have greatly improved storage and I/O performance, the per-

formance gap between delivering data and processing data

never stops widening, because it essentially stems from the

mechanical nature of hard drives and cannot be completely

removed.

A. Persistent Memory

Semiconductor storage (e.g., NAND flash) has begun to

change this situation. Beyond flash memory, recent technology

breakthroughs may offer us even more relief in this multi-

decade struggle. Persistent Memories (PM), such as Phase

Change Memory (PCM) [22], STT-RAM [10], and memristors

[14], promise many desirable features – access speeds com-

parable to DRAM, storage-like persistence, reasonably high

data endurance and retention, low power consumption, and

byte addressability. Table I shows details on the performance

and endurance characteristics of PM.

These revolutionary technologies exhibit radically different

characteristics, compared to any prior memory and storage

technology, and thus raise many critical challenges to com-

puter system designers. A fundamental question must be first

answered – what is the appropriate usage model for PM?

Read Write Endurance

PCM 50-85ns 150ns-1µs 108-1012

Memristor 100ns 100ns 108

STT-RAM 6ns 13ns 1015

DRAM 60ns 60ns > 1016

NAND flash 25 µs 200-500µs 104
− 105

TABLE I
CHARACTERISTICS OF PM TECHNOLOGIES

As a new technology, PM draws a blurry line between

volatile memory and persistent storage. It cannot be viewed

and used simply as non-volatile memory or fast storage. A

naive integration of PM into computer systems would intro-

duce either protection or performance problems. In particular,

using PM as a byte-addressable memory device opens it up

to a wide variety of corruption, such as stray writes in the

OS. Yet, using PM behind the protection of an I/O controller

leaves considerable performance on the table.

Of course, one approach is to completely redesign the entire

system, such as merging memory and storage systems together

in the OS. For example, the application programming model

can be changed to be aware of volatile and persistent memory

and differentiate persistent objects from volatile ones [7], [26].

Also, new file systems could be created for PM to leverage

its byte addressability [8], [11], [27].

Unfortunately, such changes are non-trivial in practice. The

existing system hierarchy is built on many long-standing

assumptions, which have existed explicitly or implicitly for

decades – memory is fast, volatile, byte addressable, while

storage is slow, persistent, and block addressable. This com-

monsense understanding forms the foundation of today’s com-

puter system architecture but does not readily apply to PM.

Directly integrating PM into the computer system requires that

we develop a new understanding of the roles of memory and

storage. At the same time, we must be mindful of the large

amount of intellectual property associated with legacy systems,

and the fact that any radical (business-disruptive) changes will

978-1-4799-5671-5/14/$31.00 © 2014 IEEE Published by the IEEE Computer Society

receive strong resistance in industry. Further, convincing users,

especially commercial users, to change their heavily tuned

systems or rewrite complex applications (e.g., database) is very

difficult in practice.

For these reasons, we believe a complete system redesign

would be, at least initially, difficult to gain significant traction

in practice — and not always necessary, as shown later.

From the perspective of cost efficiency, especially for general-

purpose systems, our goal is to strike an appropriate balance

between system redesign and exploiting the unique features of

PM. That is, our design philosophy is to apply an evolution-

ary approach to this revolutionary technology and minimize

disruptive changes.

In the rest of this paper, we share our experiences in building

a fast, protected, and persistent block storage based on PM.

We study a variety of design options and identify the most

suitable ones to effectively achieve these goals. We hope the

results presented in this paper encourage discussions about

other PM usage models.

B. Our Contributions

Several contributions are made in this paper: (1) We present

a hybrid model to combine the advantages of a memory-

based model and a storage-based model, while making no

changes to the core OS and its applications. (2) We implement

a prototype of the hybrid model as a kernel module in Linux

2.6.34 and explore a variety of designs to realize performance,

protection, persistence, and compatibility goals; we present the

advantages and disadvantages of each approach. (3) We show

that with existing platform mechanisms (private page table

mappings, non-temporal store instructions, memory fences,

and OS I/O barriers), both protection and ordered persistence

can be effectively achieved with relatively small performance

overhead. We also show that, even when compared to the

highly efficient RAM-based file systems (tmpfs, ramfs), our

solution can provide good performance. (4) We have open-

sourced our prototype. Under the GPLv2 license, the source

code is available for public downloading [2]. We encourage

researchers and developers to take advantage of this software

for further research on PM.

A primary contribution of this paper is demonstrating how

existing OS mechanisms can be used in bringing memory-bus-

attached PM as block devices to the market. Though obvious in

hindsight, determining the right combination (e.g., uncachable

vs. non-temporal stores, private-mappings vs. page-based pro-

tection, etc.) proved to be a non-trivial exercise. To this end,

we also share our less successful attempts in integrating PM

into the platform, as they each helped lead to the final solution.

The rest of this paper is organized as follows. Section II

covers the background of PM and our storage driver model.

Section III describes our experimental platform. Section IV

investigates various block driver design options, based on the

hybrid model approach. Section V presents our performance

evaluation. Section VI introduces the related work. Section VII

gives additional discussions and introduces the future work.

II. PM USAGE MODELS

Although the usage model of PM has only indirectly been

discussed in prior research, many studies [6], [7], [11], [25],

[26], [27] have implicitly assumed at least two basic models:

• Memory-based Model – PM is integrated as part of the

memory system to displace DRAM memory entirely or

partially. A memory controller manages PM and connects

CPU to PM via a high-speed memory bus [16], [21], [28].

The OS sees PM as memory, which may be marked as

non-volatile by BIOS [27]. Aside from persistence, PM is

regarded similarly to DRAM and provides byte address-

ability to the OS and its applications. Data stored in PM is

accessible through load and store instructions.
• Storage-based model – PM is simply used as a faster

medium to displace NAND flash and encapsulated in the

same form as flash SSDs. An I/O controller manages PM

and connects to the host. I/O commands and data are

transferred via the I/O bus (e.g., SATA or PCI-E) between

the device and the host. Data stored in PM is accessible

in units of sectors (512 bytes) via the block I/O interface

(read and write commands).

A. Memory-based Model vs. Storage-based Model

Both usage models have their advantages and disadvantages:

• Performance – The memory-based model can provide

higher performance than the storage-based model. Even

compared with high-speed PCI-E bus, main memory bus

throughput and latency both are noticeably better. Further

considering the internal overhead of I/O controllers, such

as interface command decoding and ECC, the storage-based

model cannot provide sufficient headroom for PM, whose

speed is close to DRAM.
• Protection – The memory-based model has much greater

risk of data corruption than the storage model. If we directly

map PM, which is attached to the memory bus, into an

address space (user or kernel), it will be subjected to the

types of data corruption typically caused by stray writes

(bad memory pointers). Leaving PM exposed to bugs in

the kernel code (e.g., device drivers [5]) can easily corrupt

a large amount of persistent data, which often leads to

catastrophic results.
• Ordered persistence – An issue related with the memory-

based model is that data written to PM is subject to CPU

caching effects, as applications usually store data in volatile

CPU caches for performance. As such, a power failure could

cause data loss. In contrast, the storage model provides a

mechanism (write barriers) to safely persist data.
• Compatibility – The storage-based model provides the best

compatibility to existing systems and can be used as a ‘drop-

in’ solution. POSIX I/O can be used as it is today, atop a

legacy block-based interface. In contrast, the memory-based

model requires non-trivial system and application changes

in order to exploit the byte addressability of PM.

B. A Hybrid Model

We propose a hybrid model. In this model, we separate

the physical and logical architectural designs, as shown in

Figure 1: (1) Physical architecture – similar to the memory

model, PM DIMMs are physically attached to the high-

speed memory bus and managed by a memory controller. (2)

Logical architecture – PM is exposed as a block device

in the OS. However, relative to the conventional storage-

based model, there is no hardware storage controller (e.g.,

SAS, SATA, or PCI-E). Data accesses are performed through

a read/write block I/O interface and then converted to

memory load/store instructions by a driver in the OS.

Fig. 1. A hybrid usage model of PM

Such a hybrid design provides several benefits: (1) High

performance – PM is directly attached to the memory bus,

which provides high bandwidth and low latency. (2) Protec-

tion – We only allow accesses to PM via the read/write in-

terface. Any unauthorized direct access to PM can be detected

and prevented (to be described later). As such, the potential

data corruption risk caused by stray writes in the kernel code is

minimized. (3) Ordered persistence – Since accesses to PM

are contained in a single entity (an OS driver), we can enforce

ordered persistence through conventional OS write barriers.

(4) Backwards compatibility – PM is exposed to the rest of

the OS kernel in the form of a regular block device, thereby

supporting existing OSes and applications. A limitation of the

hybrid model is the loss of byte addressability. However, con-

sidering that byte addressability demands fundamental code

changes to applications, we choose backward compatibility as

our top design priority.

In our design, this block device is implemented as a stan-

dalone kernel module, called PMBD, which requires no change

to any other system components. A device driver is loaded

and responsible for converting read/write commands into

load/store instructions. One may note that this design

shares the same principle as the RamDisk [24]. However, un-

like a RamDisk, our block driver separates page cache and PM

and is designed particularly for using PM as persistent storage,

rather than volatile memory. Special considerations, especially

protection and ordered persistence, must be carefully explored

in the design.

III. EXPERIMENTAL ENVIRONMENT

We first introduce our experimental system and the work-

loads used in this study. Unless otherwise noted, all the

experiments are conducted on the following system setup.

A. System Setup

Our experimental system is a storage server running Fedora

Core 14 with Linux kernel 2.6.34 and the Ext4 file system.

It has two Intel Xeon X5680 3.3GHz processors, each with 6

cores. In our experiments, we use a 1TB 7,200RPM Seagate

hard drive and another 64GB Intel X25-E SLC SSD as the

target devices to compare with PM. Another 1TB Seagate hard

drive is used as the system disk. All the storage devices are

connected through the on-board SAS connectors.

B. PM emulation

As PM devices are unavailable yet, we use DRAM for

experiments. We assume that in future systems BIOS will

expose PM DIMMs as contiguous physical memory, labeled as

non-volatile to the host OS. We also assume hardware handles

wear-leveling. We emulate such an architecture by changing

the e820 table to reserve the high 16GB of memory space as

PM, and the rest as DRAM. Similar to prior work [8], [27],

we study the design options with raw DRAM. In Section V-C,

we emulate various PM speeds by inserting extra operations

to poll the timestamp register (tsc), which is similar to [26],

and study its end-to-end impact to application performance. To

reduce variance, we disable NUMA, HyperThreading, Speed-

Step, and lock the memory bus operation speed at 1600MHz.

C. Workloads

We use two sets of workloads. Each workload runs for three

iterations, and we show both average values and error ranges.

• Micro-benchmark – We use the Intel Open Storage Toolkit

[1] to generate various types of micro-benchmark work-

loads. It can produce I/O workloads with different config-

urations, such as read/write ratio, random/sequential ratio,

request size, and queue depth (the number of concurrent

requests). It reports bandwidth, IOPS, and latency.
• Macro-benchmarks – We use 8 different workloads as

listed in Table II. Five workloads are read intensive, includ-

ing sfs, tpch, glimpseindex, and clamav. TPC-C (tpcc) is

a database online transaction processing (OLTP) workload

and the most write-intensive (63.7%) one. The other two

workloads, tar and untar, have roughly the same amount

of reads and writes. We use execution time as the main

performance metric. For tpcc, which reports the throughput

(new order transactions per minute), we convert it to the

number of seconds to complete 1 million transactions.

IV. PM STORAGE DESIGN

Fig. 2. PM block device architecture

Name Write Dataset (MBs) Amount (MBs) Description

sfs 7.4% 11,210 146,674 SPECsfs 2008: 10K files, 500K trans., 1K dir.
tpch 9.7% 10,869 78,126 TPC-H (OLAP DB): Scale Factor 4, PostgreSQL 9
tpcc 63.7% 11,298 98-419K TPC-C (OLTP DB): 80 WH, 20 conn., 60 sec.
tar 46.9% 11,949 11,493 compressing a kernel code tar ball

untar 52.2% 11,970 11,413 uncompressing a kernel code tar ball
devel 38% 2,033 3,470 software development: untar, patch, tar, diff.

glimpseindex 5.5% 12,504 6,019 text index engine: index 12GB Linux kernel code
clamav 0.3% 14,495 5,270 virus scanning: 14GB files generated by sfs

TABLE II
MACRO-BENCHMARK WORKLOAD DESCRIPTION

In our design (Figure 2), the OS views PM as contiguous

memory. The PM block driver performs the following tasks:

(1) managing the PM space and providing a block device

interface for the upper-level components, such as file systems

and applications, to access PM via the standard block I/O inter-

face (read/write), (2) translating incoming read/write

requests into load/store instructions to access data in PM,

(3) providing write protection to prevent PM from being

accessed by stray writes (i.e., attempts to modify PM data

without going through the PM block device interface), and

(4) enforcing ordered persistence through non-temporal store

instructions and write barriers.

A. Device Driver Overview

We have implemented the PM block driver (PMBD) as an

OS kernel module in Linux 2.6.34. It consists of about 5,000

lines of code with comments. After being loaded into the OS,

the driver creates a virtual block device, which provides a

standard block I/O interface. From the perspective of other

system components and applications, the PM device is no

different than any physical block device. Users can create

partitions and file systems on it, providing compatibility for

legacy applications.

PM is exposed to the OS as a contiguous range of physical

memory marked as non-volatile. The PMBD driver is respon-

sible for mapping the PM physical pages (4KB each) into the

kernel virtual address space to make it accessible. Upon receiv-

ing a request, the driver first computes the physical address of

the demanded PM page and then translates read/write into

load/store instructions. All I/Os are handled synchronously

(i.e., no context switch or queuing).

Besides managing PM pages and providing a block I/O

interface, the PMBD driver also provides protection from

stray writes and ordered persistence. In the following, we will

explore a variety of design options to achieve the protection

goals without sacrificing performance.

B. Protection from Stray Writes

A fundamental distinction between volatile memory and PM

is the requirement for the protection of data. Once written

into PM, data is assumed to be persistent, as we assume for

a hard drive. The challenge is that since PM is physically

managed like DRAM and exposed to the OS as memory,

reading or writing data requires PM to be mapped into the

kernel virtual memory address space, which is shared among

all kernel processes. A wild pointer in kernel-level code (e.g.,

a buggy device driver) can quickly corrupt a large amount

of PM data. An example is the famous hardware-destroying

bug in Linux 2.6.27-rc8, which overwrites the non-volatile

memory on e1000e network adapters [9]. Although it is

possible that data could also be corrupted in memory and

eventually materialized into storage, it is notably more difficult

to pass the sanity checks in multiple layers – page cache, file

systems, generic block layer, device I/O, etc. We believe that

the same level of protection as a block device must be provided

for PM. Also note that our focus is not to prevent malicious

attacks but kernel bugs. We have examined several options to

provide strong and low-overhead protection as follows.

1) Page Table based Protection: In modern operating

systems, paging is used to separate the address spaces of

processes and share limited physical memory. With paging,

physical memory is segmented into multiple fixed-sized frames

(4KB, typically). Each process is associated with a page

table (PT), which is a multi-level tree-like structure trans-

lating process-viewable virtual memory addresses to physical

memory addresses. The OS is responsible for constructing the

page table, allocating and managing physical page frames. The

hardware is responsible for automatically translating virtual

addresses to physical addresses via the page table or a trans-

lation lookaside buffer (TLB) in CPU. The page table is also

used for access control. In the last level of the page table, the

page table entry (PTE) contains a set of flags. The R/W flag

controls whether the page is read-only or writable. If the R/W

flag is 0, the page is read-only, and writing to such a page

would be blocked and trigger a page fault.

Based on this page table mechanism, protection from stray

writes can be implemented as follows. (1) When the driver is

loaded, PM pages are mapped into the kernel virtual address

space using ioremap() and initialized as read-only by

disabling the R/W bit. (2) Upon a read, no additional operation

is needed. (3) Upon a write, the R/W bit is enabled to set the

page as writable and perform the write operation, and then

disabled to set it back to read-only. (4) When the driver is

unloaded, the PM pages are unmapped.

This solution is simple. However, it incurs high performance

overhead. To demonstrate, we use the Intel Open Storage

Toolkit [1] to generate eight write-only workloads. All work-

loads use direct I/O to access the PM device (i.e., no page

cache) and run for 30 seconds. Figure 3 compares the write

bandwidths of running the micro-benchmarks with and without

this protection mechanism, which are denoted as PT-Naive and

Baseline respectively. In the figure, RD and WR denote reads

and writes, SEQ and RND denote access patterns (sequential

or random), sz4 and sz256 denote the request size (4KB and

256KB), and Q1 and Q32 denote the queue depth (1 or 32

outstanding requests). We can see that write bandwidth is

severely reduced by a factor of 18, from 14.8GB/sec to only

808MB/sec.

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

W
R
−SEQ

−sz256−Q
1

W
R
−SEQ

−sz256−Q
32

W
R
−SEQ

−sz4−Q
1

W
R
−SEQ

−sz4−Q
32

W
R
−R

N
D
−sz256−Q

1

W
R
−R

N
D
−sz256−Q

32

W
R
−R

N
D
−sz4−Q

1

W
R
−R

N
D
−sz4−Q

32

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

All Microbenchmarks − Bandwidth (MB/sec)

PT−Naive

Baseline

Fig. 3. Performance of page-table based protection

The performance degradation is due to two factors. (1)

When writing a page, we need to perform two PTE bit

changes (from read-only to writable, and then flip it back).

Unfortunately, each PTE attribute change incurs a costly ‘TLB

shootdown.’ Because there is no coherence protocol between

TLBs, after a page table entry changes, a high-cost Inter-

processor Interrupt (IPI) is needed to flush the TLB entries

in all processors. (2) The OS treats changing page table

attributes as an infrequent operation, and it is less optimized.

For example, the TLB flush happens inside a system-level

lock to prevent other processors with stale TLB entries from

changing page attributes in parallel, which further lowers the

performance.

This protection mechanism, though it can prevent stray

writes, violates our performance goal. Although the achievable

peak bandwidth is still much higher than most SSDs and

HDDs, it only exploits a tiny fraction (5.4%) of its perfor-

mance potential.

Optimization 1: Protection with Buffer/Batching – Buffering

and batching can reduce the cost of manipulating the PTE

flags and improve performance, for two reasons. Firstly, a

small DRAM space can be used as a temporary buffer to

absorb a burst of writes, which acts as an on-device buffer in a

hard drive. Secondly, and more importantly, the DRAM buffer

can be a staging ground to reorganize pages before updating

the page table. Since only one TLB shootdown is needed for

updating the R/W flags of a sequence of contiguous pages, we

can effectively batch up the PTE flag changes and amortize

the related overhead.

Buffering – As shown in Figure 4, a circular buffer is used

by the PMBD driver to temporarily buffer dirty pages. Upon

a write, the dirty page is placed in the buffer. Two pointers,

pstart and pend, track the first and the last dirty page in the

buffer, which segments the buffer into the allocated space and

Fig. 4. An illustration of buffering and batching

the free space. We keep track of the number of dirty pages in

the buffer. If it exceeds a high watermark, a syncer daemon

thread (nsync) is woken up to flush the buffer.

Batching – A syncer daemon in the driver can flush the

dirty pages in a batch: (1) sort the dirty pages in the order

of their virtual memory addresses of the corresponding PM

pages; (2) pack contiguous pages into one batch; (3) switch

the R/W flag of pages in the sequence to be writable; (4) write

pages to PM; and (5) switch the PTE flag back to read-only.

This process repeats for multiple iterations until all the pages

are written to PM.

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

W
R
−SEQ

−sz256−Q
1

W
R
−SEQ

−sz256−Q
32

W
R
−SEQ

−sz4−Q
1

W
R
−SEQ

−sz4−Q
32

W
R
−R

N
D
−sz256−Q

1

W
R
−R

N
D
−sz256−Q

32

W
R
−R

N
D
−sz4−Q

1

W
R
−R

N
D
−sz4−Q

32

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

All Microbenchmarks − Bandwidth (MB/sec)

PT−Naive

PT−Buffer−Only

PT−Buffer−Batch

Baseline

Fig. 5. Performance of buffering and batching

Figure 5 shows the performance comparison between the

naive page table based write protection (PT-Naive), the pro-

tection with a 16MB buffer (PT-Buffer-Only), the page table

protection with buffering and batching (PT-Buffer-Batch), and

no protection (Baseline). We have three observations. (1)

With buffering only, write performance cannot be improved,

sometimes it even gets worse, especially with many concurrent

I/O requests. For example, the performance of sequential

writes of 4KB with 32 jobs drops from 789 MB/sec to 315

MB/sec. This is because these workloads have no locality

and thus benefit little from the buffer, and in the meantime,

buffer allocation and flushing become a bottleneck limiting the

scalability of handling parallel writes. Without batching, the

benefits received from buffering cannot offset this negative

impact. (2) With both buffering and batching, sequential

write performance can be significantly improved due to the

effectively amortized TLB shootdown cost. For example, the

performance of sequential writes of 4KB with 32 jobs is

improved by 2.5 times to 2028 MB/sec. (3) Random writes

receive little performance benefit, as expected, since there is no

opportunity for amortizing the cost at all. In fact, with a high

queue depth, buffering and batching degrade random write

performance. For example, random writes of 4KB with 32

jobs degrade by 2.1 times, from 786 MB/sec to 374 MB/sec.

This case shows that buffering amortizes the cost of page

table manipulation but also creates an unexpected new per-

formance bottleneck – For sequential writes, buffering highly

benefits from effectively amortized PTE flag change overhead.

For random writes, however, the negative impact of losing

parallelism dominates and causes substantial performance

degradation (2.1 times).

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

W
R
−SEQ

−sz256−Q
1

W
R
−SEQ

−sz256−Q
32

W
R
−SEQ

−sz4−Q
1

W
R
−SEQ

−sz4−Q
32

W
R
−R

N
D
−sz256−Q

1

W
R
−R

N
D
−sz256−Q

32

W
R
−R

N
D
−sz4−Q

1

W
R
−R

N
D
−sz4−Q

32

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

All Microbenchmarks − Bandwidth (MB/sec)

PT−Naive

PT−Buffer−Only

PT−Buffer−Batch

PT−Multi−Buffer

Baseline

Fig. 6. Performance of multi-buffering

Optimization 2: Protection with Multiple Buffers – In order

to improve scalability, multiple buffers can be used, each

managed by an individual syncer daemon. Incoming writes

are distributed across the buffers in a round-robin manner.

Figure 6 shows the performance improvement of using multi-

buffering (16 buffers). We see that using multiple buffers

can effectively improve system performance. For example,

the bandwidth of sequential writes of 4KB with 32 jobs

improves from 2028 MB/sec to 3074 MB/sec. For random

writes of 4KB with 32 jobs, the worst case for single buffer

protection, its performance is improved by 1.9 times, from

374 MB/sec to 724 MB/sec. In these workloads, there is no

data access locality, which means adding more buffers cannot

bring any caching benefits. However, using multiple buffers

enables concurrent buffer accesses in parallel. For workloads

with a high queue depth, this optimization removes the buffer

bottleneck and substantially improves performance.

In summary, page table based protection incurs a high

performance overhead. In the above, we have studied a variety

of solutions to address the performance overhead problem. We

have improved write performance by nearly 5 times (up to

4,000 MB/sec). Other optimizations, such as disabling write

protection bit in CR0 register, are also possible. Besides the

performance problem caused by the TLB shootdown, the page

table based protection also introduces several other issues.

For example, we found that building a page table for a large

amount of PM is intolerably slow during the module loading

time. Also, for a large capacity of PM, the page table size

would become huge and consumes a large amount of memory

space. The TLB pollution problems would also emerge [27].

A fundamental reason behind these issues is that the existing

page protection mechanism is originally designed for DRAM

and not a natural fit to managing hundreds of GBs or even

TBs of PM as persistent storage. We need a low-overhead

protection for PM.

2) Private Mapping based Protection: We find that pri-

vate mapping can effectively address all the aforesaid issues.

Private mappings provide write protection by dynamically

mapping PM pages into the kernel space only when needed,

rather than by controlling the accessibility of each page.

When the PM device driver is loaded, the PM pages are not

immediately mapped into the kernel virtual address space.

Instead, each page is mapped only when the page needs to

be accessed (upon a read, or a write). As so, of most

time, the PM space is ‘invisible’ to the OS kernel code, which

prevents the potential damage caused by stray writes.

Fig. 7. An illustration of private mapping

For private mappings, we directly manipulate the page table.

As shown in Figure 7, assuming a K-core system, we first

allocate an array of virtual memory pages, pmap[K], each
entry of which is indexed by the CPU ID and private to the

process running on it. When a process running on CPU n

requests access to PM page p, the physical PM page p is

temporarily mapped to the virtual page pmap[n]. Then we

perform the memcpy operation to write data into the specified

PM page. After the memory copy is done, we clear the

pmap[n] mapping entry. The interrupt is disabled to prevent

any context switch. Since no concurrent requests running on

other cores will use the same mapping entry, there is no

need to shootdown the TLBs on the other cores, and we can

completely avoid the related overhead.

Private mappings can provide sufficient write protection.

Since we do not enforce the TLB shootdown, if a virtual page

happens to be accessed by other cores during the short time

window of performing the memcpy (typically thousands of

cycles), the TLB translation would be loaded into the local

TLB. In the worst case, at most K − 1 TLB entries that are

not supposed to be accessible could appear in a TLB, and in

total, at most K × (K − 1) entries may be affected at any

time. Even so, this is a very small number, compared to the

PM storage size, and system events, such as context switches,

also flush TLB entries frequently, which further lowers the

risk.

Figure 8 shows the performance of using private mappings.

We have two key observations. (1) Private mapping can sig-

nificantly improve write performance close to that of doing no

protection (Baseline). For example, random writes of 256KB

with 32 jobs can reach 13,389 MB/sec, which is 90% of the

optimal case (no protection). (2) For reads, private mappings

perform well too. For example, sequential reads of 256KB

with 32 jobs reach a bandwidth of 16,076 MB/sec, which is

around 85% of the optimal case performance (18,761 MB/sec).

The read overhead is mostly due to the fact that when a page

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

 18,000

 20,000

R
D
−SEQ

−sz256−Q
1

R
D
−SEQ

−sz256−Q
32

R
D
−SEQ

−sz4−Q
1

R
D
−SEQ

−sz4−Q
32

R
D
−R

N
D
−sz256−Q

1

R
D
−R

N
D
−sz256−Q

32

R
D
−R

N
D
−sz4−Q

1

R
D
−R

N
D
−sz4−Q

32

W
R
−SEQ

−sz256−Q
1

W
R
−SEQ

−sz256−Q
32

W
R
−SEQ

−sz4−Q
1

W
R
−SEQ

−sz4−Q
32

W
R
−R

N
D
−sz256−Q

1

W
R
−R

N
D
−sz256−Q

32

W
R
−R

N
D
−sz4−Q

1

W
R
−R

N
D
−sz4−Q

32

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

All Microbenchmarks − Bandwidth (MB/sec)

PT−Naive

PT−Multi−Buffer

PMAP

Baseline

Fig. 8. Performance of private mappings

is to be accessed, it needs to be mapped into the kernel and

then the mapping needs to be cleared and invalidated. Such

a mapping/unmapping operation would incur additional TLB

misses and affect performance, which explains why private

mapping slightly underperforms than the others for intensive

large reads. However, relative to the huge performance benefit

for writes, such a subtle performance loss is acceptable.

Besides performance, private mapping also provides other

benefits: (1) Minimized vulnerable window – With private

mappings, only when an PM page needs to be accessed, is

it mapped into the kernel, which minimizes the chance of

corruption. The vulnerable window is typically thousands of

cycles (while the page is being mapped). (2) Protection for

both reads and writes – Any attempt to directly access PM

data, not only writes but also reads, without going through the

driver interface would be immediately blocked. (3) Scalability

with parallel accesses – With no need for a buffer, the

bottleneck for parallel I/O accesses can be removed. It also

reduces design complexities and removes the risk of data loss

due to the volatile buffer. (4) Reduced page table size –

Since only one page mapping is needed when being accessed,

there is no need to consume a large amount of memory space

for building a huge page table for the entire PM storage,

which could be as large as multiple Terabytes in the future. (5)

Reduced TLB pollution – Since we only map the on-access

pages, at most one TLB entry is needed on each core at any

moment, which removes the risk of TLB pollution [27]. (6)

Fast loading/unloading time – Since we do not have to build

up the page table for all the PM pages, the time of loading

and unloading the device driver can significantly be reduced.

For all of these reasons, we choose the private mapping as our

write protection mechanism.

C. Ordered Persistence

Ensuring ordered data persistence is important for the OS

and applications. Storage devices usually provide an on-device

buffer and interface (“flush”) to write data in two phases – Data

is first written into the buffer, and upon an OS write barrier

(or the buffer is filled up), data is flushed from the buffer to

the medium.

With PM, it is similar but more complicated. Since PM

is physically managed by a memory controller and accessed

by the load/store interface, the written data may reside in

CPU caches. In other words, the CPU cache acts as a volatile

buffer for the PM. Applications, if not changed, may lose

data that is supposed to be persistent upon power failures.

In our hybrid model, the PMBD driver is the single entity

enforcing persistent and ordered writes, which removes the

need to change applications. In this section, we first discuss

several uncached write schemes for persistence and then how

to ensure the write ordering.

1) Uncached Write Schemes: In the existing CPU architec-

ture, we can explicitly make data persistent in several ways:

(1) Specifying PM pages as uncachable or write through. In

both modes, writes completely bypass the CPU cache and thus

are extremely slow. We do not further consider them in this

paper. (2) In write-back mode, use a non-temporal store (e.g.,

movntq), which bypasses the CPU cache and uses the write-

combining buffer, and use sfence to flush the buffered data

to PM. (3) In write-back mode, use regular store instructions

(e.g., mov) and clflush to flush the specified data from the

cache, and then use mfence to ensure the data is written to

PM. (4) In write-back mode, use regular store and wbinvd

to flush the entire cache. This option is slow and can only be

applied during a write barrier, which will be discussed later.

Figure 9 shows the performance of different write schemes:

using private mapping in write-back mode, using private

mapping with clflush/mfence or movntq/sfence, and

using no protection in write-back mode (Baseline). When the

request size is small (4KB) and the queue depth is high (32 re-

quests), clflush/mfence outperforms movntq/sfence.

The reason is that clflush/mfence loads data into the

CPU cache, which is much bigger than the buffer used by a

non-temporal store, and then flushes the cachelines. This cre-

ates more opportunities to pipeline the operations when han-

dling multiple requests in parallel, while movntq/sfence

would be congested in the buffer. However, in all the other

cases, movntq/sfence performs significantly better than

clflush/mfence.

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

W
R
−SEQ

−sz256−Q
1

W
R
−SEQ

−sz256−Q
32

W
R
−SEQ

−sz4−Q
1

W
R
−SEQ

−sz4−Q
32

W
R
−R

N
D
−sz256−Q

1

W
R
−R

N
D
−sz256−Q

32

W
R
−R

N
D
−sz4−Q

1

W
R
−R

N
D
−sz4−Q

32

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

All Microbenchmarks − Bandwidth (MB/sec)

PMAP−clflush/mfence

PMAP−movntq/sfence

PMAP−writeback

Baseline

Fig. 9. Micro-benchmark performance of write schemes

We have also examined the write schemes for macro-

benchmarks. Figure 10 shows execution times normalized to

the baseline case (no protection) of various write schemes

without write barriers. As we see, using regular stores with

clflush/mfence performs the worst in most cases, how-

ever, the performance difference is smaller than that we see

in the micro-benchmarks. Due to the effect of the page cache,

most writes are performed asynchronously in the background,

which reduces the impact of write latency. Using a non-

temporal store with sfence can achieve performance com-

parable to using private mapping without any persistence

guarantees. This conclusion is consistent with that we see in

the micro-benchmarks.

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

 1.4x

sfs−14g

tpch
tpcc

tar
untar

devel

clam
av

glim
pseindex

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e
 (

X
)

All Workloads − Execution Time (normalized) EXT4

PMAP−clflush/mfence

PMAP−movntq/sfence

PMAP−writeback

Baseline

Fig. 10. Macro-benchmark performance results of various write schemes.
Normalized to the baseline case.

2) Ordering Writes: Write ordering is needed for appli-

cations and systems to safely store data. For example, file

system journaling must ensure all the transaction content be

materialized to the persistent storage before completing the

transaction. Database logging is also similar. With the write

schemes described previously, data can be pushed to the

memory bus and eventually persistent in PM. However, write

ordering is still needed, because multiple parallel writes may

exist, and the order of writes being processed may be random.

Write Scheme Operations in Write Barrier

movntq/sfence N/A
mov/clflush/mfence N/A

mov wbinvd

TABLE III
WRITE BARRIER OPERATIONS

Operating systems use write barriers to provide such a

facility for the system (e.g., file system) and applications (e.g.,

database) to enforce write ordering and data persistence at a

specific time. Upon receiving a write barrier, the OS instructs

the storage device to flush its cache before processing any

additional incoming writes. We need a similar write ordering

mechanism for PM.

In the PM device, the flush command can be imple-

mented as described in Table III. (1) If the non-temporal

store (movntq/sfence) or (2) the ordered temporal store

(mov/clflush/mfence) is used, data persistence is pro-

vided, and we only need to block the incoming requests (via

a spinlock) until all in-progress requests complete for write

ordering. (3) If we do not apply clflush after each store,

we need to flush the entire CPU cache using wbinvd during

the write barrier.

The abovesaid three schemes have different performance

implications. The first two uncached write schemes invalidate

the data in the CPU cache immediately after writes, which

potentially affects performance due to the lack of cache usage.

The third one, using regular store (mov) and flushing the

entire CPU cache (wbinvd) on a write barrier, may provide a

potential cache benefit for reads whose data has been written

and still in the cache. However, since writebacks performed by

the CPU are invisible to the PMBD driver, we cannot exactly

track which data (cacheline) is resident in the cache or not.

Although a bookkeeping mechanism could be developed to

track every updated cacheline, it needs to simulate the CPU

cache replacement accurately and is thus infeasible in practice.

As so, wbinvd has to be used to flush the CPU cache during

write barriers. Unfortunately, this could affect performance

adversely.

 0x

 0.5x

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x

 4x

 4.5x

sfs−14g

tpch
tpcc

tar
untar

devel

clam
av

glim
pseindex

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

 (
X

)

All Workloads − Execution Time (normalized) EXT4

PMAP−clflush/mfence

PMAP−movntq/sfence

PMAP−clflush/mfence−WB

PMAP−movntq/sfence−WB

PMAP−mov/wbinvd−WB

PMAP

Baseline

Fig. 12. Performance impact of write barriers

We run 8 macro-benchmarks on the PM device with the

Ext4 file system to study the effect of write barriers. Figure

12 shows the performance of using write barriers combined

with various write schemes. First, we find that using write

barriers for clflush/mfence and movntq/sfence does

not increase the performance overhead, since both write

schemes only need to wait for in-progress accesses to finish,

if there are any. Secondly, the expected benefit from using

the CPU cache is negligible. This is mostly because the CPU

cache is too small to effectively hold the working set for

typical storage I/Os. In contrast, when handling workloads that

generate a large number of write barriers, such as tpcc, which

is a database workload, the negative impact of frequently

flushing CPU cache is significant (a 4.1x slowdown). In almost

all workloads, using non-temporal stores (movntq/sfence)

provides the best performance.

D. Summary

Through the above studies, we have two key conclusions:

(1) For write protection, we find that the private mappings are

very effective and efficient. Although page table protection

can be improved significantly with buffering and batching,

it still incurs high performance overhead. (2) For ordered

persistence, we find that using a non-temporal store (movntq)

and sfence with write barriers performs the best. Using

clflush/mfence would result in a performance loss in

many cases. Using writeback and flushing the CPU cache with

wbinvd for write barriers does not improve performance,

and in some workloads, it degrades performance significantly.

Figure 11 provides a performance overview of our PMBD

driver using private mappings, non-temporal stores, and write

barriers. With these techniques, reads and writes can achieve

bandwidths of about 16GB/sec and 11GB/sec, respectively,

which are about 75-85% of the peak (write-back mode with

no protection).

V. MACRO-BENCHMARKS

In the above sections, we have investigated the design

options to achieve performance, protection from stray writes

and ordered persistence. In this section, we focus on the

end-to-end performance of applications. We are interested in

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30 35

B
a

n
d

w
id

th
 (

M
B

/S
e

c
)

Queue Depth (Parallel I/O Jobs)

PMBD - Sequential Read

4KB
8KB

16KB
32KB
64KB

128KB
256KB

(a) Sequential Read

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30 35

B
a

n
d

w
id

th
 (

M
B

/S
e

c
)

Queue Depth (Parallel I/O Jobs)

PMBD - Random Read

4KB
8KB

16KB
32KB
64KB

128KB
256KB

(b) Random Read

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35

B
a

n
d

w
id

th
 (

M
B

/S
e

c
)

Queue Depth (Parallel I/O Jobs)

PMBD - Sequential Write

4KB
8KB

16KB
32KB
64KB

128KB
256KB

(c) Sequential Write

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35

B
a

n
d

w
id

th
 (

M
B

/S
e

c
)

Queue Depth (Parallel I/O Jobs)

PMBD - Random Write

4KB
8KB

16KB
32KB
64KB

128KB
256KB

(d) Random Write

Fig. 11. PM performance with various queue depths, request sizes, and patterns

several issues: (1) The impact of file systems running on

the PM block device, (2) the performance difference between

memory-based file systems and legacy file systems running

atop PM, (3) the performance benefit of the PM block device,

compared to other block devices (e.g., flash SSDs), and (4)

the end-to-end application performance impact of different PM

characteristics (read/write speeds).

A. PM Devices vs. Alternatives

 0x

 0.5x

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x

sfs−14g

tpch
tpcc

tar
untar

devel

clam
av

glim
pseindex

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e
 (

X
)

All Macrobenchmarks − Execution Time (normalized)

tmpfs

ramfs

ext2

ext3

ext4

xfs

Fig. 13. Performance of tmpfs, ramfs, and PM devices (Ext2/3/4, XFS)

One interesting question is if we adopt the memory based

model and design a completely new file system for PM (e.g.,

BPFS [8]), how much performance difference we would see

compared to running a legacy disk-based file system (e.g.,

Ext4) on PM, which provides necessary protection and ordered

persistence transparently. Since BPFS is implemented with

FUSE as a user-level file system, its performance is incom-

parable to a native file system. Thus, we use the two RAM-

based file systems in Linux, tmpfs and ramfs, to estimate the

maximum performance difference. Both tmpfs and ramfs are

directly integrated with the page cache and have no protection,

so their performance can be regarded as the optimal case for

memory-based file systems.

Figure 13 shows the experimental results. We can see that

the two RAM-based file systems show higher performance

than any stock disk-based file system running on PM. This is

not surprising for several reasons. (1) Designed for DRAM,

tmpfs and ramfs do not provide special mechanisms (e.g., write

ordering and private mappings) for protection and persistence,

which means less overhead. (2) Since tmpfs and ramfs are

directly integrated with the page cache, there is no extra

memory copy between the page cache and the storage, not to

mention additional overhead for file system metadata accesses.

(3) Since tmpfs and ramfs would not be filled up immediately,

the applications have more available memory space for use

during execution. In contrast, the PMBD driver would reserve

all the memory space at the beginning. However, we should

note that, even so, the performance difference between using a

stock disk-based file system running on PM and a simple mem-

ory based file system (the optimal case) is workload dependent

and not as significant as expected in some cases. In workloads,

such as tpch (19%), clamav (16%), and glimpseindex (10%),

the performance difference is rather small. In the worst case

(untar), which is completely dominated by I/Os, the difference

is about 3 times. This indicates that for most workloads,

which are mixed with both computation and I/Os, adopting

the block-level solution can deliver reasonable performance

without sacrificing compatibility. For extremely I/O intensive

workloads, such as untar, a customized file system for PM

can bring additional performance benefits.

In the figure, we also can see that different file systems show

different performance. Ext2 on PM performs the fastest for

all workloads, while XFS and Ext3 perform the worst in most

cases, since both are journaling file systems, which perform

extra I/Os. This indicates that simplifying file systems can

bring performance benefits. We also note that Ext4 performs

better than Ext3, especially when a large number of small files

are involved, such as tar and untar.

B. PMBD vs. HDD and SSD

 1

 10

 100

 1,000

sfs−14g

tpch
tpcc

tar
untar

devel

clam
av

glim
pseindex

E
x
e
c
u
ti
o
n
 S

p
e
e
d
u
p
 R

a
ti
o
 (

X
)

All Macrobenchmarks − Execution Time (normalized) EXT4

HDD
SSD
PMBD

Fig. 14. Performance comparisons of PM, SSD, HDD

One may also ask how much benefit we would see in terms

of end-to-end application performance by using PM, compared

to a hard drive or an SSD. Figure 14 shows experimental

results of running the eight workloads with HDD, SSD,

and PMBD. As expected, PMBD clearly shows performance

advantages in all cases. The relative performance improvement

depends on the I/O intensity of workloads. For example, devel

involves much computation, and the speedup by using PMBD

is relative smaller (1.8 times faster than HDD). In tpcc, the best

case, PMBD is 110 times faster than HDD and 5.7 times faster

than SSD. This is because tpcc generates a large number of

small writes with syncs and write barriers, which is the worst

case for magnetic disk drives, while PMBD shows superior

performance for such workloads. This result also indicates that

for databases, PM is a natural fit and can significantly improve

system performance.

C. End-to-end Performance Impact of PM Speeds

As a technology in development, there is little device-level

specification reported in public literature. Most specification

numbers are based on cell-level speed, which cannot reflect

the true device-level access speed. Rather than using the

absolute time, as used in prior work, we specify the PM device

performance by using relative speeds to DRAM. In particular,

in our PMBD driver, the user can specify two slowdown

parameters, rdsx and wrsx. Accordingly, we track the cycles

spent on each memory copy operation and proportionally

inject a delay by polling the tsc (timestamp counter) register

to slowdown DRAM speeds. Using DRAM as a baseline, we

can study how the performance would be affected without

knowing the exact device specifications.

Figure 15 shows the performance impact of PM speed

(slowdown factor: 1-10x for reads, 1-50x for writes). We

show two representative workloads, tpch and tpcc. We have

several observations: (1) The performance degradation is not

proportional to the PM speed. For example, although the

read latency of PM has been increased by 10 times, tpch

performance is only reduced by 36%. (2) The impact to

performance varies across applications. For example, the tpcc

performance degrades by over 3.6 times in the worst case,

while tpch performance degrades only by 1.4 times. (3) Ap-

plications show different sensitivities to read and write speeds.

In particular, tpch is more sensitive to read performance, while

tpcc is more sensitive to write performance.

VI. RELATED WORK

Persistent memory has received increasingly high interest

in academia and industry. Some suggest using PM to dis-

place DRAM [16], [20], [21], [28]. Some propose to use

a storage-based model, such as Onyx [3] and Moneta [6].

Some consider applications of PM, such as providing whole

system persistence [18] and unioning the buffer cache and

journaling layers [17]. Compared to the impact of flash

memory to file and database systems [12], [23], PM is a

more disruptive technology and also more deeply changing

existing computing practices, from programming models to

system designs. For example, Mnemosyne [26] provides a

simple interface for programming with persistent memory,

such as declaring persistent data with the keyword pstatic.

CDDS [25] emphasizes more on providing a consistent and

durable data structure for programmers to safely exploit the

performance and persistence of PM. NV-Heaps [7] provides

transactional semantics in an easy-to-use model. SoftPM [13]

provides a new memory abstraction to allow malloc style

allocations. Pâris et al. proposes to use storage-class memory

for enhancing reliability of RAID [19]. Kang et al. proposes an

object-based model for storage-class memory [15]. Prior work

also considers designing new file systems for PM, where PM is

directly attached to the memory bus. BPFS [8] is a file system

designed specifically for PM. It uses shadow paging techniques

to provide fast updates to critical file system structures, and

hardware change is needed to provide epoch barrier for

write ordering. In contrast, we use PM as a storage device.

SCMFS [27] uses the page table based solution to manage

PM files. In their results, they also found that TLB pollution

can become a problem when handling a large amount of PM.

In this paper, we show that using private mapping is efficient

to address the TLB cost issue [4]. PMFS [11] provides a file

system interface and allows user programs to use memory

mapping (mmap) for directly accessing persistent memory.

Such an approach can potentially deliver better performance

by reducing extra memory copies, however it requires users

to migrate to a new file system, and application modification

is needed to fully take advantage of memory mapped I/Os. In

contrast, we strive to avoid such changes. For write protection,

PMFS manipulates the write protection bit in CR0 to avoid the

TLB shootdown cost. We uses private mapping to address the

same problem. A unique benefit enabled by private mapping

is that it also solves the TLB pollution and page table size

problems, since it does not require a page table for the entire

PM storage. Our work and these prior studies represent distinct

but consistent efforts in exploring the potential design space.

The final design choices, though different, are simply the

results of carefully balancing various factors on how to utilize

this new technology with different emphasis.

VII. DISCUSSIONS AND FUTURE WORK

Integrating PM into today’s computing systems is challeng-

ing. It demands a careful consideration of various factors, such

as performance, cost, compatibility, etc. In contrast to many

prior studies, we strive to reach a balance between exploiting

the potential of PM and minimizing system changes. As an

important goal of this work, we attempt to minimize disruptive

changes to the existing eco-system. By creating a block-

addressable device interface atop byte-addressable memory,

certain optimization opportunities, such as byte addressability,

could be lost. However, such a tradeoff is often worthwhile and

necessary in practice. In fact we find that in many cases we

can get most of potential performance benefits of PM without

any disruptive changes. For example, many workloads running

on a memory file system is only 10% to 20% faster than on

a legacy disk file system on PM. This is for several reasons.

First of all, many workloads access persistent storage in a

reasonably large granularity (4KB or larger), and the cost of

small I/Os (e.g., file system metadata accesses) are hidden

by prefetching and caching effects. As so, enabling sub-page

I/Os to PM may bring extra performance gains, but very

likely at a limited scale. Also, since many real-life workloads

(e.g., devel) are fixed with both computation and I/Os, the

 0
 2

 4
 6

 8
 10

 0
 10

 20
 30

 40
 50 600

 650

 700

 750

 800

 850

Execution Time (Seconds)

Read Slowdown (X)
Write Slowdown (X)

 600

 650

 700

 750

 800

 850

(a) TPCH

 0
 2

 4
 6

 8
 10

 0
 10

 20
 30

 40
 50 1000

 2000

 3000

 4000

 5000

 6000

 7000

Execution Time (Seconds)

Read Slowdown (X)
Write Slowdown (X)

 1000

 2000

 3000

 4000

 5000

 6000

 7000

(b) TPCC

Fig. 15. Application performance with various PM specifications (read: 1-10x, write: 1-50x)

overall application performance is not purely dominated by

I/O speed. Thus, further speeding up PM accesses may not

lead to an extraordinary performance boost as we expect. On

the other hand, we also note and confirm that for certain

workloads with highly intensive I/Os, especially small I/Os

and frequent storage syncs (e.g., tpcc), a PM-specific design

is beneficial. Leveraging the byte addressability of PM and

removing extra memory copies for such workloads can result

in noticeable performance benefits. This also inspires us to

further improve our solution in the future. For example, we

can provide mmap support to allow programmers to directly

access PM storage at a sub-page granularity. We may also

develop other new interfaces to optimize certain applications

as well. In short, we believe that as PM technology continues

to develop, researchers need to invest more efforts to identify

an suitable usage model to adopt this revolutionary technology.

VIII. CONCLUSION

Persistent memory technologies draw a blurry line between

memory and storage. As a result, neither a memory-based

model or a storage-based model is a best fit to achieve the

goals of performance, protection from stray writes, and or-

dered persistence. In this paper, we present a hybrid model. We

find that with private mappings, non-temporal store, memory

fences, and write barriers, we can effectively achieve these

goals with little impact to the OS and its applications. With

all the lessons learned during this research, it is shown that

determining the right combination of existing platform and

OS mechanisms for PM is a non-trivial exercise. We have

open-sourced our software prototype for public downloading.

We hope that this work can encourage researchers to further

explore various ways to exploit the benefits of PM.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for

their constructive comments to improve this paper. We also

thank Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,

Jeff Jackson, Paul Brett, Dheeraj Reddy, David Koufaty, and

Ross Zwisler for discussions and support during this work.

REFERENCES

[1] Open Storage Toolkit. http://www.sourceforge.net/projects/intel-iscsi.
[2] Persistent Memory Block Driver. http://www.github.com/linux-pmbd.
[3] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson.

Onyx: A Prototype Phase Change Memory Storage Array. In Proceed-

ings of the 3rd USENIX Workshop on Hot Topics in Storage and File

Systems (HotStorage 2011), Portland, OR, June 14 2011.
[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schupbach, and A. Singhania. The Multikernel: A New
OS Architecture for Scalable Multicore Systems. In Proceedings of the

22nd ACM Symposium on Operating Systems Principles (SOSP 2009),
Big Sky, MT, October 2009.

[5] S. Boyd-Wickizer and N. Zeldovich. Tolerating Malicious Device
Drivers in Linux. In Proceedings of the 2010 USENIX Annual Technical

Conference (USENIX 2010), Boston, MA, June 23-25 2010.
[6] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K. Gupta, and

S. Swanson. Moneta: A High-Performance Storage Array Architecture
for Next-generation, Non-volatile Memories. In Proceedings of the

43rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO 2010), Atlanta, Georgia, Dec 4-8 2010.
[7] J. Coburn, A. M. Caufield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,

and S. Swanson. NV-Heaps: Making Persistent Objects Fast and Safe
with Next-GEneration, Non-Volatile Memory. In Proceedings of the

2011 Architectural Support for Programming Languages and Operating

Systems (ASLPOS 2011), Newport Beach, CA, March 5-11 2011.
[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, D. Burger, B. C. Lee, and

D. Coetzee. Better I/O Through Byte-Addressable, Persistent Memory.
In Proceedings of the 22nd ACM Symposium on Operating Systems

Principles (SOSP 09), Big Sky, MT, October 2009.
[9] J. Corbet. The State of the e1000e Bug. In Linux Weekly News, Oct. 1

2009.
[10] B. Dieny, R. S. G. Prenat, and U. Ebels. Spin-dependent Phenomena

and Their Implementation in Spintronic Devices. In Proceedings of 2008

International Symposium onVLSI Technology, Systems and Applications

(VLSI-TSA 2008), pages 70–71, April 2008.
[11] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, and

R. S. J. Jackson. System Software for Persistent Memory. In Proceedings
of the 2014 European Conference on Computer Systems (EuroSys 2014),
Amsterdam, ST, Netherlands, April 13-16 2014. The ACM.

[12] G. Graefe. The Five-Minute Rule 20 Years Later. In Communications

of ACM. The ACM, July 2009.
[13] J. Guerra, L. Mármol, D. Campello, C. Crespo, R. Rangaswami, and

J. Wei. Software Persistent Memory. In Proceedings of the 2012 USENIX
Annual Technical Conference, Boston, MA, June 13-15 2012.

[14] Y. Ho, G. Huang, , and P. Li. Nonvolatile Memristor Memory:
Device Characteristics and Design Implications. In Proceedings of

2009. IEEE/ACM International Conference on Computer-Aided Design -

Digest of Technical Papers (ICCAD 2009), pages 485–490, Feb 5 2009.
[15] Y. Kang, J. Yang, and E. L. Miller. Object-based SCM: An Efficient

Interface for Storage Class Memories. In Proceedings of the 27th IEEE

Conference on Mass Storage Systems and Technologies: Research Track

(MSST 2011), Denver, CO, May 23-27 2011.

[16] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change
Memory as a Scalable DRAM Alternative. In Proceedings of the 36th

International Symposium on Computer Architecture (ISCA 2009), 2009.
[17] E. Lee, H. Bahn, and S. H. Noh. Unioning of the Buffer Cache and

Journaling Layers with Non-volatile Memory. In Proceedings of the 11th
USENIX Conference on File and Storage Technologoies (FAST 2013),
San Jose, Feb 12-15 2013.

[18] D. Narayanan and O. Hodson. Whole-system Persistence. In Pro-

ceedings of the 17th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS 2012),
March 2012.

[19] J.-F. Pâris, A. Amer, and D. D. E. Long. Using Storage Class Memories
to Increase the Reliability of Two-Dimensional RAID Arrays. In Pro-

ceedings of the 17th International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems (MASCOTS

2009), London, UK, Sept. 2009.
[20] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and

B. Abali. Enhancing Lifetime and Security of PCM-based Main Memory
with Start-gap Wear Leveling. In Proceedings of the 42th International

Symposium on Microarchitecture (MICRO 2009), Dec 2009.
[21] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable High Perfor-

mance Main Memory System using Phase-Change Memory Technology.
In Proceedings of the 36th International Symposium on Computer

Architecture (ISCA 2009), June 2009.
[22] S. Raoux, G. W. Burr, M. J. Breitwisch, C. Rettner, Y.-C. Chen,

r. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. Lam.
Phase-change Random Access Memory: A Scalable technology. In IBM

Journal of Research and Development, volume 52(4), pages 465–479,
2008.

[23] J. Ren and Q. Yang. I-CASH: Intelligently Coupled Array of SSD and
HDD. In Proceedings of the 17th IEEE International Symposium on

High Performance Computer Architecture (HPCA 2011), San Antonio,
TX, Feb 2011.

[24] P. Synder. tmpfs: A Virtual Memory File System. In Proceedings of the

Autumn European UNIX User’s Group Conference, September 1990.
[25] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell. Con-

sistent and Durable Data Structures for Non-volatile Byte-Addressable
Memory. In Proceedings of the 9th USENIX Conference on File and

Storage Technologies (FAST 2011), San Jose, CA, February 15-17 2011.
[26] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Light Weight

Persistent Memory. In Proceedings of the 2011 Architectural Support

for Programming Languages and Operating Systems (ASLPOS 2011),
Newport Beach, CA, March 5-11 2011.

[27] X. Wu and A. L. N. Reddy. SCMFS: A File System for Storage Class
Memory. In Proceedings of Supercomputing (SC 2011), Seattle, WA,
Nov 12-18 2011.

[28] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A Durable and Energy
Efficient Main Memory Using Phase Change Memory Technology.
In Proceedings of the 36th International Symposium on Computer

Architecture (ISCA 2009), June 2009.

