
Understanding Energy Efficiency of Databases on
Single Board Computers for Edge Computing

Jian Liu
Computer Science & Engineering

Louisiana State University
jliu@csc.lsu.edu

Kefei Wang
Computer Science & Engineering

Louisiana State University
kwang@csc.lsu.edu

Feng Chen
Computer Science & Engineering

Louisiana State University
fchen@csc.lsu.edu

Abstract—With the rapid advancement in edge computing, a
recent trend is to migrate data processing from data centers to
the edge to avoid long data transmission latencies. Databases, as
an indispensable component, play a crucial role in efficient data
management on edge devices. However, a critical limitation of
edge devices is the highly constrained energy resource. Databases
often incur a heavy load of CPU and storage I/O activities, which
raises a particular concern on power-constrained platforms. In
this paper, we have conducted an experimental study on the
energy consumption of three representative databases, namely
SQLite, LevelDB, and MongoDB, on single board computers
for edge computing. We find that by deploying an appropriate
database according to specific scenarios, the energy consumption
can be reduced by a factor of 58.3, and the bandwidth can be
improved by a factor of 54.4. Based on our experimental results,
we also present several important system implications associated
with our findings. We hope our first-hand data and the obtained
insight can provide useful guidance for database and edge system
designers and practitioners to develop and deploy energy-efficient
databases for edge computing.

Index Terms—Energy efficiency; Single board computer;
Database; Edge computing.

I. INTRODUCTION

With the rapid advancement of edge computing technology,
a recent trend is to migrate data processing from data centers to
the edge of the Internet [1]–[7]. Such a practice brings several
benefits. For example, excessively long-latency accesses to the
remote data center can be avoided, the traffic over the network
can be significantly reduced, and the risk of leaking user data
can also be minimized for improved data privacy.

Databases, as a key component in data management, play
a crucial role in data processing on the edge for various
applications, such as image recognition, augmented reality,
virtual reality, autonomous vehicles, and many others [8]–
[11]. Traditionally, the design of database systems focuses
on performance optimizations, such as increasing throughput
and reducing latency. On edge systems, a unique and must-
have consideration is energy efficiency. Edge devices are often
deployed in environments with unstable or limited power
sources. Some systems are powered solely by battery or by
a reproducible but constrained energy source, such as solar
power. In such environments, energy is an extremely scarce
resource but crucial to the normal operations of devices in
the wild. A critical challenge of deploying databases on edge
systems is the associated energy constraint.

Databases on edge systems have several unique issues. First,
most edge systems adopt an ARM-based architecture, which
has distinct power properties compared to traditional x86-
based architectures. Second, due to space constraint, edge
systems typically rely on flash storage, such as Secure Digital
(SD) and eMMC cards, while conventional servers normally
adopt hard disk drives as storage. The two different storage
technologies carry very distinct characteristics in terms of both
performance and energy efficiency. Finally, edge systems have
limited resources in almost all aspects, such as computing
power, memory capacity, and I/O bandwidth, etc. All these
distinctions demand a systematic study on the power implica-
tions of deploying databases on edge devices.

Unfortunately, it still remains unclear how databases could
affect energy consumption on a typical edge device, not to
mention a thorough understanding on the associated system
implications. In this paper, we select SQLite [12], Lev-
elDB [13], and MongoDB [14], three representative relational
and non-relational databases for our studies. We deploy these
database systems on three popular low-power and compact-
size Single Board Computers (SBCs), namely Raspberry Pi
(RPi) 3 and 4 [15], and ODROID C2 [16] boards. In order
to benchmark the devices coupled with databases, we create a
set of representative workloads using Yahoo! Cloud Serving
Benchmark (YCSB) [17] with different workload patterns.
Through extensive experimental studies, we have obtained
the first-hand results by deploying three typical databases on
various edge platforms with distinct capabilities. Our purpose
is to study the impact of workloads, device hardware, and
databases on the energy consumption of edge systems. In
particular, we desire to answer the following three important
questions through our experimental studies.

• Question #1: Workload patterns (e.g., object size distribu-
tion, read and write ratio, etc.) can have different effects
on database activities. What is the impact of workload
patterns on energy consumption of databases?

• Question #2: Edge systems have different capabilities in
terms of computing, memory, and storage, and the energy
consumption characteristics are inherently distinct. What
is the impact of edge platforms on energy consumption?

• Question #3: Database performance may not always be
linearly consistent with energy consumption. What is the

relationship between performance and energy consump-
tion when handling different database workloads?

Addressing the above questions can provide us important
insight on energy consumption of deploying databases on
edge devices. To the best of our knowledge, this paper is
the first work focusing on energy consumption of modern
databases on edge systems. We hope that the findings and
insight presented in this paper can provide valuable guidance
for system designers and practitioners to develop and deploy
energy-efficient databases for edge computing.

The rest of the paper is organized as follows. Section II
introduces the background of this work. Section III describes
the methodology and experimental setup for the evaluation.
Section IV presents the experimental results. Section V dis-
cusses the future work. Section VI gives the related work. The
final section concludes this paper.

II. BACKGROUND

A. Databases

SQLite [12] is a light-weight but full-featured embedded
SQL database engine, which has been widely deployed in mo-
bile devices such as smartphone, tablet, etc. SQLite manages
data in the form of tables based on the rigid relational data
model, and it supports complex query statements within one
table or across multiple tables. In addition, a complete SQLite
database is contained in a single database file, which provides
the desirable cross-platform flexibility.

LevelDB [13] is a high-performance NoSQL database de-
veloped by Google, which can be used for serving different
edge applications. LevelDB is a light-weight database system
with only 350-KB library size, favoring resource-scarce edge
devices. Meanwhile, it is an embedded database with no client-
server model support, making it a better fit in the small-form-
factor devices. LevelDB has also been selected as one of the
best databases for the edge by AZ Big Media [19].

MongoDB [14] is a light-weight, document-oriented
NoSQL database. It is also becoming an important platform
for intelligent edge [20]. Unlike LevelDB and SQLite, it uses
JavaScript Object Notation (JSON) [21] API for data exchange
and Binary JSON (BSON) [22] for data storage. The flexible
data structure enables developers to use the same data model
and syntax from the edge to the data center for fast application
development.

B. Single Board Computers

With the increasing popularity of edge computing, the low-
power ARM architecture has been widely adopted in a variety
of edge devices (e.g., ODROID, RPi, smartphone, tablet).
Compared with x86-based architectures, which are widely
used in conventional server systems, the ARM architecture
can significantly improve power efficiency, though at the cost
of performance to some extent.

Single board computers, such as RPi and ODROID boards,
are being widely used in various areas, such as education,
home automation, industrial automation, etc. With customized
Linux systems (e.g., Ubuntu, Raspbian), it is friendly to Linux

practitioners without a steep learning curve. More recently, in
order to enhance the usability and computing power of the
edge devices, 64-bit devices (e.g., RPi 3 B+, RPi 4, ODROID
C2) have been developed to replace the original 32-bit devices
(e.g., RPi 2, ODROID C1). The computing power is increased
significantly (e.g., the 64-bit ARMv8 Cortex-A72 adopted in
RPi 4). More details about the SBCs used in this study are
shown in Table I.

III. METHODOLOGY AND EXPERIMENTAL SETUP

A. Single Board Computers

In order to understand energy consumption with different
hardware platforms and edge devices, we perform our ex-
perimental studies on a diverse selection of representative
Single Board Computers (SBCs) and storage devices. We
select three SBC platforms, namely ODROID C2 (OC2), RPi
3 model B+, and RPi 4 model B, covering hardware from
different vendors and various generations of products of the
same product family. All SBCs are equipped with the identical
64-GB SanDisk Ultra microSDXC card. A high-speed 64-
GB eMMC v5.0 flash module is used in OC2 through the
on-board eMMC module socket. A 256-GB Samsung 850
PRO SSD is connected to RPi 4 through the USB interface.
Since RPi 4 provides two types of USB interfaces (USB 2.0
and 3.0), which have very different data transfer speeds, we
also compare energy consumption of SSDs based on the two
USB interfaces. In this way, we can make a comprehensive
comparison on energy consumption between different plat-
forms and storage devices under the same condition.

In our experiments, we install Ubuntu 18.04 Linux on the
three SBCs. Although it only supports up to 1-GB memory
on RPi4 [23], it enables us to compare the three devices
consistently with the same operating system. All the SD cards,
eMMC module, and SSD use Ext4 file system. Unless other-
wise specified, we use default setting for the other parameters.
We deploy three database systems on each SBC, namely
SQLite 3.22.0, LevelDB 1.1, and MongoDB 3.6.6. In order to
minimize the interference from other components, we discon-
nect all the peripheral devices (e.g., monitor, keyboard, mouse)
from the main board. The wireless communications (e.g., Wi-
Fi, Bluetooth) are also disabled during the experiments.

B. Benchmark Tools

In order to make the performance comparison between dif-
ferent databases with various workloads, we use Yahoo! Cloud
Serving Benchmark (YCSB) [17] to generate three workload
distributions, Zipfian, Latest, and Uniform. The Zipfian work-
loads access items according to the Zipfian distribution, where
some items are frequently accessed while the others are not;
the Latest workloads are similar to Zipfian workloads except
that the most recently inserted items are more popular; the
Uniform workloads access items randomly.

Since YCSB works on JAVA virtual machine, its data load-
ing process demands a large capacity of memory. However,
some edge devices are equipped with very limited memory
(e.g., 1 GB), which can cause the data loading phase to be

TABLE I: Device hardware specifications of the single board computers.

ODROID C2 [18] Raspberry Pi 3 Model B+ [15] Raspberry Pi 4 Model B [15]
Chipset Amlogic S905 Broadcom BCM2837B0 Broadcom BCM2711

CPU Quad Core 1.5GHz Quad Core 1.4GHz Quad Core 1.5GHz
64-bit ARMv8 Cortex-A53 64-bit ARMv8 Cortex-A53 64-bit ARMv8 Cortex-A72

Memory 2GB DDR3 1GB LPDDR2 2GB LPDDR4
Flash Storage MicroSD, eMMC5.0 MicroSD MicroSD
Release Year 2016 2018 2019

Price $40 $35 $35

TABLE II: Performance characteristics of storage devices.

Storage Devices Write (MB/s) Read (MB/s)

SD card 14.1 41.3
eMMC 128 140

SSD with USB 2.0 33.3 35.7
SSD with USB 3.0 153 224
Note: Data is measured using Linux dd command with 4-KB blocks.

interrupted in the middle. In order to deal with this issue,
we have developed a simple data-loading tool (around 600
lines of C++ code in Linux) to directly load the data into the
databases via the database interfaces. In particular, we first
generate workloads using YCSB, and then use our tool to load
data into the target database, which ensures that the memory
demand would not exceed the available capacity on board.
After data loading is completed, we start benchmarking the
database by running the workloads as usual.

C. Testbed Setup

Fig. 1: The Monsoon power monitor and ODROID C2 board.

We use Monsoon Mobile Device Power Monitor [24]
coupled with PowerTool 4.0.5.2 to measure the power and
energy consumption of the SBC boards. Specifically, the SBC
under test is connected to the USB-Out channel on the power
monitor, which provides power for the normal run of the SBC.
Another USB-In channel of the power monitor is connected to
a DC power supply. The USB-In and USB-Out form a closed
circuit, so that the power monitor can intercept and monitor
the current variations, thereby providing the real-time power
consumption data based on the current and voltage.

D. Measurement Metrics and Settings

Our measurement focuses on energy consumption, which
is the amount of energy consumed to complete a task (in
units of Joules), and power consumption, which is the en-
ergy consumption per unit time (in units of Watts). We also
measure bandwidth and latency, two key performance metrics

for databases, and study the relationship between energy
consumption and database performance.

Our main experimental studies use the following settings
for workloads, hardware platforms, and databases.
• Workloads: The Zipfian workload is chosen as a represen-
tative workload for the experiments. The total dataset size is
around 4 GB. Item size is set to 1 KB. The total number of
requests issued to the database reaches 2 millions, and the
total amount of accessed data is about 2 GB. In addition,
we run both read-intensive and write-intensive workloads
respectively in each experiment for evaluating the database.
For fair comparison, we flush the operating system page cache
before each run. In our studies on the impact of workloads,
we also include Latest and Uniform as additional workloads
for studies. Specific settings can be found in Section IV-B.
• Hardware platforms: OC2 and RPi4 are selected as two
representative edge devices. They are both equipped with
64-GB SanDisk SD cards. To fully exercise the quad-core
processors on the devices, we use 4 threads to run most
workloads. In the experiment of running the write-intensive
workload on SQLite, we find that concurrent writes to SQLite
can incur errors (e.g., an error signal SQLITE_BUSY is raised
due to integrity issues), thus we use only one thread in this
test. In our studies on the impact of hardware platform, we also
include RPi3 as additional hardware for comparison. Specific
settings are available in Section IV-C.
• Databases: In our experiments, the three databases, SQLite,
LevelDB, and MongoDB run on the Ext4 file system. For
all the three databases, we use the asynchronous I/O mode
for better performance. Unless otherwise specified, the other
parameters of databases use the default settings.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental results and give
a comprehensive analysis. We desire to seek answers in depth
to the three key questions as mentioned previously. We will
first give an overall comparison between the three database
systems, and then present detailed experimental analysis from
aspects of workloads, platforms, storage devices to obtain
more insight on the effect of each individual component.

A. Overall Comparison

Figure 2 shows that SQLite achieves the best performance
among the three databases for both read- and write-intensive
workloads across the two platforms, OC2 and RPi4. For
example, SQLite improves the bandwidth by a factor of 2.5
and 10.4 and reduces the latency by 60% and 90.4%, compared

 0

 1

 2

 3

 4

 5

MDB-R MDB-W SQL-R SQL-W LDB-R LDB-W

B
a
n
d
w

id
th

 (
M

B
/S

e
c
)

ODROID-C2
Raspberry-Pi4

(a) Bandwidth

 0

 5

 10

 15

 20

 25

MDB-R MDB-W SQL-R SQL-W LDB-R LDB-W

L
a
te

n
c
y
 (

m
s
)

ODROID-C2
Raspberry-Pi4

(b) Latency

 0

 2

 4

 6

 8

MDB-R MDB-W SQL-R SQL-W LDB-R LDB-W

P
o
w

e
r

(W
)

ODROID-C2
Raspberry-Pi4

(c) Power

 0

 10

 20

 30

 40

MDB-R MDB-W SQL-R SQL-W LDB-R LDB-W

E
n
e
rg

y
 (

K
J
)

ODROID-C2
Raspberry-Pi4

(d) Energy

 0

 20

 40

 60

 80

 100

MDB-R MDB-W SQL-R SQL-W LDB-R LDB-W

C
P

U
 U

s
a
g
e
 (

%
)

ODROID-C2
Raspberry-Pi4

(e) CPU Usage

 1

 10

 100

 1000

MDB-R MDB-W SQL-R SQL-W LDB-R LDB-W

T
o
ta

l
I/
O

 A
m

o
u
n
t
(G

B
)

ODROID-C2
Raspberry-Pi4

(f) I/O Amount

Fig. 2: Overall comparison of performance, energy, and resource usage of three databases under Zipfian workload.

with MongoDB and LevelDB under read-intensive workloads
on OC2. To explain the results, we have examined the CPU
and disk usage to identify the bottleneck. We find that the
CPU usage of MongoDB is about 43.9%. Although its is
38 percentage point (p.p) higher than that of SQLite, it is
far from overloading the CPU. The main bottleneck is the
limited storage I/O bandwidth on the SBCs (only dozens of
megabytes per second). Unfortunately, both MongoDB and
LevelDB generate more storage I/Os in terms of data amount
than SQLite by a factor of 7.6 and 32.3, respectively.

We can also see that performance dominates the total energy
consumption when the difference of power consumption is
insignificant. Since SQLite achieves the highest bandwidth
across different platforms, it takes the least time to complete
the same workload. As such, the comparatively less execution
time enables SQLite to consume the least energy. For example,
although the power consumption of SQLite is 4.9% higher
than that of LevelDB under read-intensive workloads on OC2,
the significantly lower bandwidth of LevelDB makes it take
longer time to complete the same task, which in turn causes
it to consume more energy than SQLite by a factor of 9.9.

Observation #1: Generally, SQLite is the best choice if the
specific information about the platform, storage medium,
workload, etc. is unknown, due to its notably higher per-
formance. Improving database performance is an effective
method to reduce the energy consumption.

B. Effect of Workloads

Workloads can have a significant impact on energy con-
sumption and performance of the databases. In this section,
we benchmark the databases by adjusting the access patterns,
read and write ratios, and key-value sizes to study the effect of
workloads on databases. In the figures shown in this section,

the bars represent the data for the left axis, and the points
represent the data for the right axis.

1) Access pattern: We run three workload distributions in
this test. As shown in Figure 3, the three databases in general
achieve higher bandwidth and lower latency under Latest
workload than the other two workloads on both OC2 and
RPi4. For example, under read-intensive workloads on OC2,
compared with Zipfian and Uniform workloads, the Latest
workload with SQLite database achieves a higher bandwidth
by a factor of 2.2 and 4.1, respectively. Meanwhile the latency
is 54.1% and 75.6% lower, respectively. It is mainly because
the Latest workload shows a stronger locality and more
data accesses can be absorbed in memory. In the other two
workloads, more storage I/Os are incurred due to the weaker
locality. In fact, the total I/O amounts of SQLite under Zipfian
and Uniform workloads are 2.2 times and 3.9 times of that
running under Latest read-intensive workload on OC2.

2) Read and write ratio: Workloads with different amounts
of read and write requests can impact the database behaviors,
and consequently the performance and energy consumption.
We configure YCSB to generate three representative workloads
with different read and write ratios as read-intensive (R/W:
100/0), moderate (R/W: 50/50), and write-intensive (R/W:
0/100) using Zipfian distribution.

As shown in Figure 4, we find that SQLite and MongoDB
achieve better performance under read-intensive workload on
both OC2 and RPi4. For example, on OC2, SQLite and Mon-
goDB achieve higher bandwidths with read-intensive workload
than with write-intensive workloads by a factor of 2.6 and
2.1, respectively. Unlike the other two databases, LevelDB
adopts the LSM-tree based data structure, which makes its
write bandwidth 22.2% higher than its read bandwidth, and
the total I/O amount under the write-intensive workload is only
23.8% of that under the read-intensive workload on OC2.

 0

 2

 4

 6

 8

Latest Zipfian Uniform
 0

 5

 10

 15

 20

 25

B
a
n
d
w

id
th

 (
M

B
/S

e
c
)

L
a
te

n
c
y
 (

m
s
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(a) OC2

 0

 2

 4

 6

 8

Latest Zipfian Uniform
 0

 10

 20

 30

 40

 50

P
o
w

e
r

(W
)

E
n
e
rg

y
 (

K
J
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(b) OC2

 0

 20

 40

 60

 80

 100

Latest Zipfian Uniform
 1

 10

 100

C
P

U
 U

s
a
g
e
 (

%
)

T
o
ta

l
I/
O

 A
m

o
u
n
t
(G

B
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(c) OC2

 0

 2

 4

 6

 8

Latest Zipfian Uniform
 0

 5

 10

 15

 20

 25

B
a
n
d
w

id
th

 (
M

B
/S

e
c
)

L
a
te

n
c
y
 (

m
s
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(d) RPi4

 0

 2

 4

 6

 8

Latest Zipfian Uniform
 0

 10

 20

 30

 40

 50

P
o
w

e
r

(W
)

E
n
e
rg

y
 (

K
J
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(e) RPi4

 0

 20

 40

 60

 80

 100

Latest Zipfian Uniform
 1

 10

 100

C
P

U
 U

s
a
g
e
 (

%
)

T
o
ta

l
I/
O

 A
m

o
u
n
t
(G

B
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(f) RPi4

Fig. 3: Performance, energy, and resource usage of three databases under Latest, Zipfian, and Uniform workloads.

 0

 2

 4

 6

 8

Read-intensive Moderate Write-intensive
 0

 5

 10

 15

 20

 25

 30

B
a
n
d
w

id
th

 (
M

B
/S

e
c
)

L
a
te

n
c
y
 (

m
s
)

MongoDB

SQLite

LevelDB

(a) OC2

 0

 2

 4

 6

 8

Read-intensive Moderate Write-intensive
 0

 10

 20

 30

 40

 50

P
o
w

e
r

(W
)

E
n
e
rg

y
 (

K
J
)

MongoDB

SQLite

LevelDB

(b) OC2

 0

 20

 40

 60

 80

 100

Read-intensive Moderate Write-intensive
 1

 10

 100

C
P

U
 U

s
a
g
e
 (

%
)

T
o
ta

l
I/
O

 A
m

o
u
n
t
(G

B
)

MongoDB

SQLite

LevelDB

(c) OC2

 0

 2

 4

 6

 8

Read-intensive Moderate Write-intensive
 0

 5

 10

 15

 20

 25

 30

B
a
n
d
w

id
th

 (
M

B
/S

e
c
)

L
a
te

n
c
y
 (

m
s
)

MongoDB

SQLite

LevelDB

(d) RPi4

 0

 2

 4

 6

 8

Read-intensive Moderate Write-intensive
 0

 10

 20

 30

 40

 50

P
o
w

e
r

(W
)

E
n
e
rg

y
 (

K
J
)

MongoDB

SQLite

LevelDB

(e) RPi4

 0

 20

 40

 60

 80

 100

Read-intensive Moderate Write-intensive
 1

 10

 100

C
P

U
 U

s
a
g
e
 (

%
)

T
o
ta

l
I/
O

 A
m

o
u
n
t
(G

B
)

MongoDB

SQLite

LevelDB

(f) RPi4

Fig. 4: Performance, energy, and resource usage of three databases under Zipfian workload with different read-write ratios.

3) Key-value size: Key-value size also has a critical impact
on databases. We select three representative key-value sizes,
namely 64 B, 1 KB, and 16 KB to make comparison in
Figure 5. In order to compare the incurred data amount of
I/Os, we ensure the workloads with different key-value sizes
access the same amount of data. We can see that the bandwidth
increases significantly with the growing item size, because the
I/O bandwidth can be better utilized with a larger key-value
size. Latency is affected by I/O amplification, especially for
small key-values. For example, the latency of SQLite with
64-B key-value size under read-intensive workloads on OC2
is 91.3% larger than that with 1-KB key-value size. This result

can be explained by the much higher I/O amount involved with
64-B key-value size, which is 30.1 times of that with 1-KB
key-value size. Further increasing the key-value size reduces
I/O amplification, but the latency increases due to the larger
amount of data that needs to be transferred for each request.

Compared to the other two databases, LevelDB benefits
from the write-friendly LSM-tree data structure and per-
forms well at handling small items under the write-intensive
workload. For example, LevelDB outperforms SQLite and
MongoDB in bandwidth under the write-intensive workload
with 64-B key-value by a factor of 31.5 and 54.4 on OC2, and
the corresponding I/O amount of LevelDB is much smaller,

 0

 5

 10

 15

 20

 25

 30

64B 1KB 16KB
 0.1

 1

 10

 100

 1000

B
a
n
d
w

id
th

 (
M

B
/S

e
c
)

L
a
te

n
c
y
 (

m
s
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(a) OC2

 0

 2

 4

 6

 8

64B 1KB 16KB
 0.1

 1

 10

 100

 1000

P
o
w

e
r

(W
)

E
n
e
rg

y
 (

K
J
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(b) OC2

 0

 20

 40

 60

 80

 100

64B 1KB 16KB
 1

 10

 100

 1000

C
P

U
 U

s
a
g
e
 (

%
)

T
o
ta

l
I/
O

 A
m

o
u
n
t
(G

B
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(c) OC2

 0

 5

 10

 15

 20

 25

 30

64B 1KB 16KB
 0.1

 1

 10

 100

 1000

B
a
n
d
w

id
th

 (
M

B
/S

e
c
)

L
a
te

n
c
y
 (

m
s
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(d) RPi4

 0

 2

 4

 6

 8

64B 1KB 16KB
 0.1

 1

 10

 100

 1000

P
o
w

e
r

(W
)

E
n
e
rg

y
 (

K
J
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(e) RPi4

 0

 20

 40

 60

 80

 100

64B 1KB 16KB
 1

 10

 100

 1000

C
P

U
 U

s
a
g
e
 (

%
)

T
o
ta

l
I/
O

 A
m

o
u
n
t
(G

B
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

(f) RPi4

Fig. 5: Performance, energy, and resource usage of three databases under Zipfian workload with different key-value sizes.

which is only 20.3% and 3.5% of that caused by the other
two databases respectively. MongoDB fits better for handling
large-size key-value items under read-intensive workload, in
terms of both bandwidth and latency, mainly due to the much
less incurred I/O amount. For example, compared with SQLite
and LevelDB under read-intensive workloads with 16-KB key-
value based on OC2, MongoDB improves the bandwidth by
a factor of 2.4 and 23.1, respectively, meanwhile reducing the
latency by 59% and 95.6%.

The significant performance difference is also reflected in
energy consumption. For example, for the small-size (64 B)
write-intensive workload, LevelDB outperforms MongoDB in
terms of bandwidth by a factor of 54.4, and MongoDB’s
energy consumption is 58.3 times of that with LevelDB.

Observation #2: LevelDB is more preferable to handle
small-size write-intensive workloads, while MongoDB is
more appropriate for working with large-size read-intensive
workloads. The difference in power consumption caused
by workloads has weak impact on the energy consumption
compared to the significant performance gap.

C. SBC Platforms and Storage Devices

To reflect the effect of different platforms and storage
devices, we select three representative SBCs, namely ODROID
C2, Raspberry Pi3 B+, and Raspberry Pi4 B, which cover the
SBCs from different vendors as well as different generations
of devices from the same vendor. We also use different
flash storage devices, namely SD Card, eMMC, and SSD, to
understand the effect of storage devices on databases. We use
Zipfian workloads with 1-KB key-value size in this test.

1) SBC platforms: Figure 6 shows that OC2 achieves the
best overall performance among the three platforms, while
the performance of RPi3 is the worst. The key differentiating

factor is the memory on device. OC2 is equipped with 2-GB
memory on board, which allows it to serve more data requests
from main memory rather than the slow SD card. For example,
compared to running on RPi3, MongoDB generates 35.9%
less I/O amount on OC2 under the read-intensive workload,
outperforming RPi3 by a factor of 2.1 in bandwidth. Although
the overall performance of RPi4 is relatively lower than OC2,
it also outperforms RPi3 due to the faster memory (LPDDR4
vs. LPDDR2) and the better CPU (1.5GHz Cortex-A72 vs.
1.4GHz Cortex-A53).

2) Storage devices: Storage devices significantly affect the
performance, as well as the power and energy consumption.
We compare different databases running on SD, eMMC, and
SSD. Since SSD with SATA interface cannot be directly
connected to the SBC, we use a SATA/USB converter to
connect the SSD and the SBC via the USB interface. RPi4
provides two different USB interfaces (USB 2.0 and 3.0), we
benchmark the SSD using both interfaces.

By default, journaling of Ext4 is disabled for managing the
system device (i.e., SD card). For fairness, we also evaluate
the other attached devices including eMMC and SSD with
journaling mechanism disabled. To further study the impact
of journaling on energy efficiency of storage devices, we
choose eMMC as an example to make comparison under two
scenarios, with and without journaling. We use tune2fs tool
in Linux to switch between the two journaling modes. We
use the default journaling method (i.e., data=ordered) of Ext4,
which only journals metadata operations [25].

In general, databases on SSD connected via the USB 3.0
interface achieve the highest performance, while databases on
SD card have the lowest performance. For example, SQLite on
SSD with USB 3.0 outperforms that on SD card by a factor of
2.5 in terms of bandwidth under the read-intensive workload.

 0

 2

 4

 6

 8

OC2 RPi3 RPi4
 0

 5

 10

 15

 20

 25

 30

B
a
n
d
w

id
th

 (
M

B
/S

e
c
)

L
a
te

n
c
y
 (

m
s
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

 0

 2

 4

 6

 8

OC2 RPi3 RPi4
 0

 10

 20

 30

 40

P
o
w

e
r

(W
)

E
n
e
rg

y
 (

K
J
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

 0

 20

 40

 60

 80

 100

OC2 RPi3 RPi4
 1

 10

 100

C
P

U
 U

s
a
g
e
 (

%
)

T
o
ta

l
I/
O

 A
m

o
u
n
t
(G

B
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

Fig. 6: Performance, energy, and resource usage of three databases under Zipfian workload on different SBC platforms.

 0

 5

 10

 15

SD eMMC SSD-2.0 SSD-3.0

 0.25

 1

 4

 16

B
a
n
d
w

id
th

 (
M

B
/S

e
c
)

L
a
te

n
c
y
 (

m
s
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

 0

 2

 4

 6

 8

 10

SD eMMC SSD-2.0 SSD-3.0

 0.25

 1

 4

 16

 64

P
o
w

e
r

(W
)

E
n
e
rg

y
 (

K
J
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

 0

 20

 40

 60

 80

 100

SD eMMC SSD-2.0 SSD-3.0
 1

 10

 100

C
P

U
 U

s
a
g
e
 (

%
)

T
o
ta

l
I/
O

 A
m

o
u
n
t
(G

B
)

MongoDB-R

MongoDB-W

SQLite-R

SQLite-W

LevelDB-R

LevelDB-W

Fig. 7: Performance, energy, and resource usage of three databases under Zipfian workload with different storage devices.

The database performance on eMMC and SSD with USB 2.0
falls in the middle of the above-mentioned two. The overall
performance is better on eMMC compared to that on SSD.
For example, SQLite on eMMC improves the bandwidth by
31.6% compared with that on SSD with USB 2.0 under the
read-intensive workload.

In addition, we also find that the default journaling method
(i.e., data=ordered) has negligible impact on the performance
and energy consumption, since it only journals the metadata.
For example, SQLite based on eMMC without journaling
improves the bandwidth only by 6.5% in contrast to that with
journaling under write-intensive workload. Due to the space
limit, it is not shown in the figure.

Since a relatively higher voltage is required, databases on
SSD have much higher power consumption than running on
eMMC. For example, the power consumption of SQLite on
SSD with USB 3.0 is larger than that on eMMC under read-
intensive workload by a factor of 2. Interestingly, although
the database on SSD with USB 3.0 has a higher bandwidth
and less running time compared to that running on eMMC,
it has a larger energy consumption under the same situation.
For example, SQLite running on SSD with USB 3.0 consumes
83% more energy than running on eMMC under read-intensive
workload. It means that unlike our previous finding that
performance largely determines energy consumption, power
consumption is the deterministic factor in this experiment.

Observation #3: The hardware resources on device, espe-
cially memory and storage, have a notable impact on the
database performance due to the critical I/O bottleneck.
Although SSD with USB 3.0 provides higher performance,
the eMMC flash storage is more energy efficient due to the
lower power consumption.

V. DISCUSSIONS

Our experimental studies have provided a set of valuable
findings and system implications. In the meantime, we also
note that due to the resource constraints, several aspects are
worth further studies in the future. (1) Our current studies do
not further differentiate energy consumption by different com-
ponents of the database. An interesting question is, which part
of the database design (e.g., logging, DB engine, compaction,
etc.) contributes the most to the energy consumption, and how
to optimize it by tuning or redesigning the database. In this
work, we mainly treat the database as a whole. Disassembling
the database for analysis could gain more insight. (2) In this
work, our experiments are performed on SBC boards. Such
compact computing devices are highly versatile and can be
adopted to handle various kinds of edge workloads. In some
application environments, however, such general-purpose SBC
boards may not be suitable for the target workloads, such
as machine learning, pattern recognition on the edge, which
demand more computational power and storage capacity. In
our future work, we plan to expand the device selection to
cover a broader scope of application scenarios.

VI. RELATED WORK

The limited energy resource is critical to edge devices. Prior
research works have studied power and energy consumption
on edge devices [26]–[33]. Khan et al. focus on the energy
consumption of different data structures in edge computing.
They find that the concurrent and locality-aware Delta tree
outperforms B-link tree significantly in terms of energy ef-
ficiency and performance [28]. Chandra et al. propose three
offloading energy-efficient approaches to improve the battery
life of mobile devices, which includes using low-power CPU
coexisting with the main CPU, using battery-backed RAM to
reduce the flash I/Os, and offloading the computation-intensive

tasks to the nearby cloud [29]. Kaup et al. measure the
relationship between power consumption and system resource
utilization including CPU, Ethernet, Wi-Fi on Raspberry Pi
(RPi), and further build a power model to improve the energy
efficiency [27]. Bekaroo et al. measure the power consumption
of the predefined key functionalities (e.g., device start-up,
downloading a file, etc.) across five different devices including
RPi, smartphone, etc. [30] Ardito et al. use sysbench and iperf
to measure the power consumption of CPU as well as the
network adapter based on RPi, and use linear regression to
model the power consumption [31].

Recently, energy consumption on storage component of
edge devices attracts interests in the community. Prior works
find that energy consumption on storage components is a
significant contributor that should not be neglected [8]–[11],
[34]. Mohan et al. measure the energy consumption using
different workloads on the SQLite database deployed on an
Android smartphone, and they also analyze the impacts of
various SQLite operations on the energy consumption [8]. Kim
et al. develop an energy consumption model for I/O subsystem
of wearable devices, thereby reducing energy consumption on
I/O activities of SQLite database significantly [11]. Li et al.
find that the energy consumption on storage software stack
is 200 times more than the hardware through experiments
on mobile platforms, and they also build a storage energy
consumption model to better optimize energy utilization [10].

VII. CONCLUSION

In this paper, we present a comprehensive experimental
study to understand the energy efficiency of databases on
single board computers for edge computing. We have made
several important findings on the performance, power, and
energy consumption of three representative databases on edge
devices and also discussed the related system implications. We
hope that this work can provide valuable guidance for system
designers and practitioners to design and deploy databases in
an energy-efficient way in edge computing environments.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
feedback and comments. This work was supported in part by
U.S. National Science Foundation under Grant CCF-1910958.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scal-
able IoT architecture based on transparent computing,” IEEE Network,
vol. 31, no. 5, pp. 96–105, 2017.

[3] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty,
and C.-T. Lin, “Edge of things: The big picture on the integration of
edge, IoT and the cloud in a distributed computing environment,” IEEE
Access, vol. 6, pp. 1706–1717, 2017.

[4] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[5] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[6] R. Sharma, S. Biookaghazadeh, B. Li, and M. Zhao, “Are existing
knowledge transfer techniques effective for deep learning with edge
devices?” in Proceedings of 2018 IEEE International Conference on
Edge Computing (EDGE), 2018, pp. 42–49.

[7] Q. Yang, R. Jin, and M. Zhao, “SmartDedup: Optimizing deduplication
for resource-constrained devices,” in Proceedings of 2019 USENIX
Annual Technical Conference (USENIX ATC), 2019, pp. 633–646.

[8] J. Mohan, D. Purohith, M. Halpern, V. Chidambaram, and V. J. Reddi,
“Storage on your smartphone uses more energy than you think,” in
Proceedings of the 9th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage), 2017.

[9] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: Fine grained energy accounting on smartphones with Eprof,” in
Proceedings of the 7th ACM European Conference on Computer Systems
(EuroSys), 2012, pp. 29–42.

[10] J. Li, A. Badam, R. Chandra, S. Swanson, B. Worthington, and
Q. Zhang, “On the energy overhead of mobile storage systems,” in
Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST), 2014, pp. 105–118.

[11] J. Kim, S. Kim, J. Yun, and Y. Won, “Energy efficient IO stack design for
wearable device,” in Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, 2019, pp. 2152–2159.

[12] “SQLite,” https://www.sqlite.org/index.html, 2021.
[13] “LevelDB,” https://github.com/google/leveldb, 2021.
[14] “MongoDB,” https://www.mongodb.com/, 2021.
[15] “Raspberry Pi,” https://www.raspberrypi.org/, 2021.
[16] “ODROID,” https://www.hardkernel.com/, 2021.
[17] “YCSB,” https://github.com/brianfrankcooper/YCSB, 2021.
[18] “ODROID-C2,” https://odroid.com/dokuwiki/doku.php?id=en:

c2 hardware, 2021.
[19] “The best IoT databases for the edge – an

overview and guide,” https://azbigmedia.com/business/
the-best-iot-databases-for-the-edge-an-overview-and-guide/, 2020.

[20] “The Internet of Things (IoT),” https://www.mongodb.com/use-cases/
internet-of-things, 2021.

[21] “JavaScript Object Notation,” https://www.json.org/, 2021.
[22] “Binary JSON,” https://bsonspec.org/, 2021.
[23] “64 bit Ubuntu 18.04 on Pi4B,” https://www.raspberrypi.org/forums/

viewtopic.php?t=245908,, 2019.
[24] “Monsoon power monitor,” https://www.msoon.com, 2021.
[25] “Ext4 filesystem,” https://www.kernel.org/doc/Documentation/

filesystems/ext4.txt, 2021.
[26] A. Carroll and G. Heiser, “An analysis of power consumption in

a smartphone,” in Proceedings of 2010 USENIX Annual Technical
Conference (USENIX ATC), 2010, pp. 21–21.

[27] F. Kaup, P. Gottschling, and D. Hausheer, “PowerPi: Measuring and
modeling the power consumption of the Raspberry Pi,” in Proceedings
of 39th Annual IEEE Conference on Local Computer Networks, 2014,
pp. 236–243.

[28] A. M. Khan, I. Umar, and P. H. Ha, “Efficient compute at the edge:
Optimizing energy aware data structures for emerging edge hardware,”
in Proceedings of 2018 International Conference on High Performance
Computing and Simulation (HPCS), 2018, pp. 314–321.

[29] R. Chandra, S. Hodges, A. Badam, and J. Huang, “Offloading to improve
the battery life of mobile devices,” IEEE Pervasive Computing, vol. 15,
no. 4, pp. 5–9, 2016.

[30] G. Bekaroo and A. Santokhee, “Power consumption of the Raspberry
Pi: A comparative analysis,” in Proceedings of 2016 IEEE International
Conference on Emerging Technologies and Innovative Business Prac-
tices for the Transformation of Societies, 2016, pp. 361–366.

[31] L. Ardito and M. Torchiano, “Creating and evaluating a software power
model for Linux single board computers,” in Proceedings of the 6th Int’l
Workshop on Green and Sustainable Software, 2018, pp. 1–8.

[32] J. Huang, A. Badam, R. Chandra, and E. B. Nightingale, “WearDrive:
Fast and energy-efficient storage for wearables,” in Proceedings of 2015
USENIX Annual Technical Conference, 2015, pp. 613–625.

[33] P. Olivier, J. Boukhobza, E. Senn, and H. Ouarnoughi, “A methodology
for estimating performance and power consumption of embedded flash
file systems,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 15, no. 4, pp. 1–25, 2016.

[34] D. T. Nguyen, G. Zhou, X. Qi, G. Peng, J. Zhao, T. Nguyen, and
D. Le, “Storage-aware smartphone energy savings,” in Proceedings
of the 2013 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, 2013, pp. 677–686.

https://www.sqlite.org/index.html
https://github.com/google/leveldb
https://www.mongodb.com/
https://www.raspberrypi.org/
https://www.hardkernel.com/
https://github.com/brianfrankcooper/YCSB
https://odroid.com/dokuwiki/doku.php?id=en:c2_hardware
https://odroid.com/dokuwiki/doku.php?id=en:c2_hardware
https://azbigmedia.com/business/the-best-iot-databases-for-the-edge-an-overview-and-guide/
https://azbigmedia.com/business/the-best-iot-databases-for-the-edge-an-overview-and-guide/
https://www.mongodb.com/use-cases/internet-of-things
https://www.mongodb.com/use-cases/internet-of-things
https://www.json.org/
https://bsonspec.org/
https://www.raspberrypi.org/forums/viewtopic.php?t=245908
https://www.raspberrypi.org/forums/viewtopic.php?t=245908
https://www.msoon.com
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt

	Introduction
	Background
	Databases
	Single Board Computers

	Methodology and experimental setup
	Single Board Computers
	Benchmark Tools
	Testbed Setup
	Measurement Metrics and Settings

	Experimental Results
	Overall Comparison
	Effect of Workloads
	Access pattern
	Read and write ratio
	Key-value size

	SBC Platforms and Storage Devices
	SBC platforms
	Storage devices

	Discussions
	Related Work
	Conclusion
	References

