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Abstract—Flash-based key-value caching is becoming popular
in data centers for providing high-speed key-value services. These
systems adopt slab-based space management on flash and provide
a low-cost solution for key-value caching. However, optimizing
cache efficiency for flash-based key-value cache systems is highly
challenging, due to the huge number of key-value items and the
unique technical constraints of flash devices. In this paper, we
present a dynamic on-line compression scheme, called SlimCache,
to improve the cache hit ratio by virtually expanding the usable
cache space through data compression. We have investigated the
effect of compression granularity to achieve a balance between
compression ratio and speed, and leveraged the unique workload
characteristics in key-value systems to efficiently identify and
separate hot and cold data. In order to dynamically adapt to
workload changes during runtime, we have designed an adaptive
hot/cold area partitioning method based on a cost model. In order
to avoid unnecessary compression, SlimCache also estimates
data compressibility to determine whether the data are suitable
for compression or not. We have implemented a prototype
based on Twitter’s Fatcache. Our experimental results show that
SlimCache can accommodate more key-value items in flash by
up to 125.9%, effectively increasing throughput and reducing
average latency by up to 255.6% and 78.9%, respectively.

I. INTRODUCTION

Today’s data centers still heavily rely on hard disk drives
(HDDs) as their main storage devices. To address the per-
formance problem of disk drives, especially for handling
random accesses, in-memory key-value cache systems, such as
Memcached [37], become popular in data centers for serving
various applications [20], [48]. Although memory-based key-
value caches can eliminate a large amount of key-value data
retrievals (e.g., “User ID” and “User Name”) from the back-
end data stores, they also raise concerns on high cost and
power consumption issues in a large-scale deployment. As
an alternative solution, flash-based key-value cache systems
recently have attracted an increasingly high interest in industry.
For example, Facebook has deployed a key-value cache system
based on flash, called McDipper [20], as a replacement of the
expensive Memcached servers. Twitter has a similar key-value
cache solution, called Fatcache [48].

A. Motivations

The traditional focus on improving the caching efficiency
is to develop sophisticated cache replacement algorithms [36],
[26]. Unfortunately, it is highly challenging in the scenario of
flash-based key-value caching. This is for two reasons.

First, compared to memory-based key-value cache, such as
Memcached, flash-based key-value caches are usually 10-100
times larger. As key-value items are typically small (e.g., tens
to hundreds of bytes), a flash-based key-value cache often
needs to maintain billions of key-value items, or even more.
Tracking such a huge number of small items in cache man-
agement would result in an unaffordable overhead. Also, many
advanced cache replacement algorithms, such as ARC [36] and
CLOCK-Pro [26], need to maintain a complex data structure
and a deep access history (e.g., information about evicted
data), making the overhead even more pronounced. Therefore,
a complex caching scheme is practically infeasible for flash-
based key-value caches.

Second, unlike DRAM, flash memories have several unique
technical constraints, such as the well-known “no in-place
overwrite” and “sequential-only writes” requirements [7], [15].
As such, flash devices generally favor large, sequential, log-
like writes rather than small, random writes. Consequently,
flash-based key-value caches do not directly “replace” small
key-value items in place as Memcached does. Instead, key-
value data are organized and replaced in large coarse-grained
chunks, relying on Garbage Collection (GC) to recycle the
space occupied by obsolete or deleted data. This unfortunately
further reduces the usable cache space and affects the caching
efficiency.

For the above two reasons, it is difficult to solely rely
on developing a complicated, fine-grained cache replacement
algorithm to improve the cache hit ratio for key-value caching
in flash. In fact, real-world flash-based key-value cache sys-
tems often adopt a simple, coarse-grained caching scheme. For
example, Twitter’s Fatcache uses a First-In-First-Out (FIFO)
policy to manage its cache in a large granularity of slabs (a
group of key-value items) [48]. Such a design, we should note,
is an unwillingly-made but necessary compromise to fit the
needs for caching many small key-value items in flash.

This paper seeks an alternative solution to improve the
cache hit ratio. This solution, interestingly, is often ignored in
practice—increasing the effective cache size. The key idea is
that for a given cache capacity, the data could be compressed to
save space, which would “virtually” enlarge the usable cache
space and allow us to accommodate more data in the flash
cache, in turn increasing the hit ratio.

In fact, on-line compression fits flash devices very well.
Figure 1 shows the percentage of I/O and computation time
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Fig. 1: I/O time v.s. computation time
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for compressing and decompressing random data in different
request sizes. The figure illustrates that for read requests, the
decompression overhead only contributes a relatively small
portion of the total time, less than 2% for requests smaller
than 64KB. For write requests, the compression operations are
more computationally expensive, contributing for about 10%-
30% of the overall time, but it is still at the same order of
magnitude compared to an I/O access to flash. Compared to
schemes compressing data in memory, such as zExpander [54],
the relative computing overhead accounts for an even smaller
percentage, indicating that it would be feasible to apply on-line
compression in flash-based caches.

B. Challenges and Critical Issues

Though promising, efficiently incorporating on-line com-
pression in flash-based key-value cache systems is non-trivial.
Several critical issues must be addressed.

First, various compression algorithms have significantly dif-
ferent compression efficiency and computational overhead [3],
[5], [32]. Lightweight algorithms, such as lz4 [32] and
snappy [3], are fast, but only provide moderate compression
ratio (i.e., uncompressed

compressed ); heavyweight schemes, such as the
deflate algorithm used in gzip [2] and zlib [5], can provide
better compression efficacy, but are relatively slow and would
incur higher overhead. We need to select a proper algorithm.

Second, compression efficiency is highly dependent on
the compression unit size. A small unit size suffers from
a low compression ratio problem, while aggressively using
an oversized compression unit could incur a severe read
amplification problem (i.e., read more than needed). Figure 2
shows the average compression ratio of three datasets (Weibo,
Tweet, Reddit) with different container sizes. We can see that
these three datasets are all compressible, as expected, and a
larger compression granularity generally results in a higher
compression ratio. In contrast, compressing each key-value
item individually or using a small compression granularity
(e.g., smaller than 4 KB) cannot reduce the data size effec-
tively. In this paper we will present an effective scheme, which
considers the properties of flash devices, to pack small items
into a proper-size container for bulk compression. This scheme
allows us to achieve both high compression ratio and low
amplification factor.

Third, certain data are unsuitable for compression, either
because they are frequently accessed or simply incompressible,
e.g., JPEG images. We need to quickly estimate the data

compressibility and conditionally apply on-line compression
to minimize the overhead.

Last but not least, we also need to be fully aware of the
unique properties of flash devices. For example, flash devices
generally favor large and sequential writes. The traditional
log-based solution, though being able to avoid generating
small and random writes, relies on an asynchronous Garbage
Collection (GC) process, which would leave a large amount
of obsolete data occupying the precious cache space and
negatively affect the cache hit ratio.

All these issues must be well considered for an effective
adoption of compression in flash-based key-value caching.

C. Our Solution: SlimCache

In this paper, we present an adaptive on-line compression
scheme for key-value caching in flash, called SlimCache.
SlimCache identifies the key-value items that are suitable
for compression, applies a compression and decompression
algorithm at a proper granularity, and expands the effectively
usable flash space for caching more data.

In SlimCache, the flash cache space is dynamically divided
into two separate regions, a hot area and a cold area, to
store frequently and infrequently accessed key-value items,
respectively. Based on the highly skewed access patterns in
key-value systems [8], the majority, infrequently accessed key-
value items are cached in flash in a compressed format for the
purpose of space saving. A small set of frequently accessed
key-value items is cached in their original, uncompressed
format to avoid the read amplification and decompression
penalty. The partitioning is automatically adjusted based on
the runtime workloads. In order to create the desired large
sequential write pattern on flash, the cache eviction process
and the hot/cold data separation mechanism are integrated to
minimize the cache space waste caused by data movement
between the two areas.

To our best knowledge, SlimCache is the first work intro-
ducing compression into flash-based key-value caches. Our
compression mechanism achieves both high performance and
high hit ratio by restricting compressed unit within one flash
page, dynamically identifying hot/cold data for caching with-
out causing thrashing, and maintaining a large sequential ac-
cess pattern on flash without wasting cache space. We have im-
plemented a fully functional prototype based on Twitter’s Fat-
cache [48]. Our experimental evaluations on an Intel 910 PCI-
E SSD have shown that SlimCache can accommodate more



key-value items in the cache by up to 125.9%, effectively
increasing throughput and reducing average latency by up
to 255.6% and 78.9%, respectively. Such an improvement is
essential for data-intensive applications in data centers.

The rest of this paper is organized as follows. Section II
gives the background and related work. Section III introduces
the design of SlimCache. Section IV gives our experimental
results. The other related work is presented in Section V. The
final section concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Background

In this section, we briefly introduce flash memory SSD and
key-value cache systems. The difference between the flash-
based key-value cache and the in-memory cache has motivated
us to design an efficient flash-based solution.

Flash Memory. NAND flash is a type of EEPROM devices.
Typically a flash memory chip is composed of several planes,
and each plane has thousands of blocks. A block is further
divided into multiple pages. NAND flash memory has three
unique characteristics: (1) Read/write speed disparity. Typi-
cally, a flash page read is fast (e.g., 25-100 µs), but a write
is slower (e.g., 200-900 µs). An erase must be conducted in
blocks and is time-consuming (e.g., 1.5-3.5 ms). (2) No in-
place update. A flash page cannot be overwritten once it is
programmed. The entire block must be erased before writing
any flash page. (3) Sequential writes only. The flash pages in
a block must be written in a sequential manner. To address
these issues, modern flash SSDs have the Flash Translation
Layer (FTL) implemented in device firmware to manage the
flash memory chips and to provide a generic Logical Block
Address (LBA) interface as a disk drive. More details about
flash memory and SSDs can be found in prior studies [7], [14],
[15], [16].

Flash-based Key-value Caches. Similar to in-memory key-
value caches, such as Memcached, flash-based key-value cache
systems also adopt a slab-based space management scheme.
Here we take Twitter’s Fatcache [48] as an example. In
Fatcache, the flash space is divided into fixed-size slabs. Each
slab is further divided into a group of slots, each of which
stores a key-value item. The slots in a slab are of the same size.
According to the slot size, slabs are classified into slab classes.
For a given key-value pair, the smallest slot size that is able
to accommodate the item and the related metadata is selected.
A hash table is maintained in memory to index the key-value
pairs stored in flash. A query operation (GET) searches the
hash table to find the location of the corresponding key value
item on flash and then loads that slot into memory. An update
operation (SET) writes the data to a new location and updates
the mapping in the hash table accordingly. A delete operation
(DELETE) only removes the mapping entry from the hash
table. A Garbage Collection (GC) process is responsible for
reclaiming the deleted and obsolete items later.

Although in-memory key-value caches and in-flash key-
value caches are similar in their structures, they show several
remarkable distinctions. (1) I/O granularity. The flash SSD

is treated as a log-structured storage. Fatcache maintains a
small memory buffer for each slab class. This in-memory slab
buffer is used to accumulate small slot writes, and when it is
filled up, the entire slab is flushed to flash, converting small
random writes to large sequential writes. (2) Data management
granularity. Unlike Memcached, which keeps an object-level
LRU list, the capacity-triggered eviction procedure in Fatcache
reclaims slabs based on a slab-level FIFO order.

B. Related Work

Data compression is a popular technique. In prior works,
extensive studies have been conducted on compressing mem-
ory and storage at both architecture and system levels, such
as device firmware [1], [57], storage controller [25], and
operating systems [9], [19], [33], [47], [53]. Much prior works
have also be done in database systems (e.g., [4], [6], [18], [28],
[38], [41]). Our work focuses on applying data compression
to improve the hit ratio of caching key-value data in flash. To
our best knowledge, SlimCache is the first work introducing
data compression into flash-based key-value caching.

Among the related work, zExpander [54], which applies
compression in memory-based key-value caches, is the closest
to our work. SlimCache is particularly designed for key-value
caching in flash, which brings several different and unique
challenges. First, small random writes are particularly harmful
for the lifetime and performance of flash devices, so storing
and querying an item using a small-size (2KB) block on SSD
as what zExpander does would be sub-optimal in our scenario.
Second, as the amount of key-value items stored in flash-based
key-value cache is much larger than that in a memory-based
cache, the organization unit has to be much coarser and the
metadata overhead brought by each item must be minimized.
Third, choosing a proper compression granularity on flash
needs to consider the flash page size to minimize the extra
I/Os caused by loading irrelevant data. Finally, in order to
guarantee that all the writes are sequential in flash, the space
occupied by the obsolete values in one slab cannot be freed
until the whole slab is dropped. A special mechanism is needed
to handle such situations to avoid the loss of hit ratio caused by
data promotion and demotion while preserving the sequential
write pattern. All these distinctions and new challenges have
motivated us to design an efficient on-line data compression
scheme, customized for caching key-value data in flash.

III. DESIGN OF SLIMCACHE

In order to fully exploit compression opportunities for key-
value caching in flash, we need to carefully consider three
critical issues: the compression overhead, the constraints of
flash hardware, and the data compressibility.

A. Overview

We present a comprehensive on-line compression scheme
for flash-based key-value caching, called SlimCache. As shown
in Figure 4, SlimCache adopts a similar structure as Fatcache:
A hash table is held in memory to manage the mapping
from a hashed key to the corresponding value stored in flash,



Fig. 4: An illustration of SlimCache architecture.

compressed or uncompressed; An in-memory slab buffer is
maintained for each slab class, which batches up writes to
flash and also serves as a temporary staging area for making
the compression decision.

Unlike Fatcache, SlimCache has an adaptive on-line com-
pression layer, which is responsible for selectively com-
pressing, decompressing, and managing the flash space. In
SlimCache, the flash space is segmented into two areas, a hot
area, which stores the frequently accessed key-value data, and
a cold area, which stores the relatively infrequently accessed
data. Note that the key-value items in the hot area are stored in
the original uncompressed format, which speeds up repeated
accesses, while data in the cold area could be stored in either
compressed and uncompressed format, depending on their
compressibility. The division of the two regions is dynamically
determined by the compression module at runtime. In the
following, we will explain each of these components.

B. Slab Management

Similar to Fatcache, SlimCache adopts a slab-based space
management: The flash space is sliced into slabs. A slab
is further divided into equal-size slots, which is the basic
storage unit. Slabs are virtually organized into multiple slab
classes, according to their slot sizes. Differently, the slab slot
in SlimCache can store compressed or uncompressed data.
Thus, a slab could contain a mix of compressed slots and
uncompressed slots. This design purposefully separates the
slab management from the compression module and simplifies
the management. A slab could be a hot slab or a cold slab,
depending on its status. The hot slabs in aggregate virtually
form the hot area, and similarly, the cold slabs together form
the cold area. We will discuss the adaptive partitioning of the
two areas later.

Slab Buffer. As flash devices favor large and sequential
writes, a slab buffer is maintained to collect a full slab of
key-value items in memory and write them to the flash in
a bulk. Upon an update (PUT), the item is first stored in
the corresponding memory slab and completion is returned

immediately. Once the in-memory slab becomes full, it is
flushed to flash. Besides asynchronizing flash writes and
organizing large sequential writes to flash, the buffer also
serves as a staging area to collect compressible data.

Compression Layer. SlimCache has a thin compression
layer to seamlessly integrate on-line compression into the I/O
path. It works as follows. When the in-memory slab buffer
is filled up, we iterate through the items in the slab buffer,
and place the selected compressible ones into a Compression
Container until full. Then an on-line compression algorithm
is applied to the container, producing one single Compressed
Key-value Unit, which represents a group of key-value items
in the compressed format. Note that the compressed key-
value unit is treated the same as other key-value items and
placed back to the in-memory slab buffer, according to its
slab class, and waiting for being flushed. In this process, the
only difference is that the slot stores data in the compressed
format. The slab I/O management is unnecessary to be aware
of such a difference.

Mapping Structure. In SlimCache, each entry of the
mapping table could represent two types of mappings. (1) Key-
to-uncompressed-value mapping: An entry points to a slab slot
that contains an original key-value item, which is identical to
a regular flash-based key-value cache. (2) Key-to-compressed-
value mapping: An entry points to the location of a slab slot
that contains a compressed key-value unit, to which the key-
value item belongs. That means, in SlimCache, multiple keys
could map to the same physical location (i.e., a compressed
slot in the slab). In the items stored on flash, we add a 1-
bit attribute, called compressed bit, to differentiate the two
situations. Upon a GET request, SlimCache first queries the
mapping table, loads the corresponding slot from the flash,
and depending on its status, returns the key-value item (if
uncompressed) or decompresses the compressed key-value
unit first and then returns the demanded key-value item.

The above design has two advantages. First, we maximize
the reuse of the existing well-designed key-to-slab mapping
structure. A compressed key-value unit is treated exactly the
same as a regular key-value item—select the best-fit slab
slot, append it to the slab, and update the mapping table.
Second, it detaches the slab management from the on-line
compression module, which is only responsible for deciding
whether and how to compress a key-value item. This makes
the management more flexible. For example, we can adaptively
use different container sizes at runtime, while disregarding the
details of storing and transferring data.

C. Compression Granularity

Deciding a proper compression container size is crucial,
because the compression unit size directly impacts the com-
pression ratio and the computational overhead. Two straight-
forward considerations are compressing data in slot granularity
or compressing data in slab granularity. Here we discuss the
two options and explain our decision.
• Option 1: Compressing data in slot granularity. A simple

method is to directly compress each key-value item individ-



ually. However, such a small compression unit would result
in a low compression ratio. As reported in prior work [8],
in Facebook’s Memcached workload, the size of most (about
90%) values is under 500 bytes, which is unfriendly to
compression. As shown is Figure 3, around 80% of items in the
three datasets, Weibo [50], [51], Twitter [49] and Reddit [42],
are under 288 bytes, 418 bytes and 637 bytes, respectively.
Compressing such small-size values individually suffers from
the low-compression-ratio problems (see Figure 2), and the
space saving by compression would be limited.

• Option 2: Compressing data in slab granularity. Another
natural consideration is to compress the in-memory slab, which
is typically large (1 MB in Fatcache as default). However,
upon a request to a key-value item in a compressed slab, the
entire compressed slab has to be loaded into memory, decom-
pressed, and then the corresponding item is retrieved from
the decompressed slab. This read amplification problem incurs
two kinds of overhead. (1) I/O overhead. Irrelevant data have
to be transferred over the I/O bus, no matter they are needed
or not. (2) Computational overhead. We apply lz4 [32], an
efficient compression algorithm, on data chunks of different
sizes, generated from /dev/urandom. As shown in Figure 5,
the computational overhead becomes non-negligible when the
compressed data chunk increases, considering that a flash page
read is typically 25-100 µs. So, compressing data in slabs
would cause concerns on the overhead issues.

The above analysis indicates that we must carefully balance
between two design goals, achieving a high compression ratio
and reducing the overhead. Directly applying compression in
either slab or slot granularity would be unsatisfactory.

SlimCache attempts to make a GET operation completed
in no more than one flash page read. We keep track of the
compression ratio at runtime, and calculate an average com-
pression ratio, avg compression ratio. The estimated com-
pression container size is calculated as flash page size ×
avg compression ratio, where flash page size is the
known flash page size (typically 4-16 KB), and must be
no smaller than a memory page size (4KB as default). The
rationale behind this is that we desire to keep the compression
algorithm having a sufficient amount of data for compression
(at least one memory page), and also minimize the extra I/Os
of loading irrelevant data (at least one flash page has to be
loaded anyway). In our experiments, we have particularly stud-
ied the effect of compression granularity on the performance
of SlimCache in Section IV-C1.

D. Hot/Cold Data Separation

In order to mitigate the computational overhead, it is im-
portant to selectively compress the infrequently accessed data,
cold data, while leaving the frequently accessed data, hot data,
in their original format to avoid the read amplification problem
and unnecessary decompression overhead.

For this purpose, we logically partition the flash space
into two regions: The hot area contains frequently accessed
key-value items in the uncompressed format; the cold area
contains relatively infrequently accessed key-value items in

the compressed format, if compressible (see Figure 6). We
will present a model-based approach to automatically tune the
sizes of the two areas adaptively in Section III-E.

Identifying hot/cold data. SlimCache labels the “hotness”
at the fine-grained key-value item level rather than the slab
level, considering that a slab could contain a random collection
of key-value items that have completely different localities
(hotness). Identifying the hot key-value items rather than hot
slabs would provide more accuracy and efficiency. In order
to identify the hot key-value items, we add an attribute,
called access count, in each entry of the mapping table. When
updating a key-value item, its access count is reset to 0. When
the key-value item is accessed, its access count is incremented
by 1. During garbage collection, if a compressed key-value
item’s access count is greater than zero, it means that this key-
value item has been accessed at least once in a compressed
format and could be a candidate for promotion to the hot area
or continue to stay in the cold area. In Section III-F, we will
discuss these two polices. Another issue is how many bits
should be reserved for an access count. Intuitively, the more
bits, the more precisely we can tell the hotness of a key-value
item. We will study this effect in Section IV-C3.

Admitting key-value items in cache. Two options are
possible for handling new key-value items. The first one is
to insert the newly admitted key-value item into the hot area,
and when the hot area runs out of space, we demote the cold
items (access count is 0) into the cold area, compress and
“archive” them there. The second method is to first admit
the key-value item into the cold area, and when the garbage
collection process happens, we decompress and promote the
hot items to the hot area. Both approaches have advantages and
disadvantages. The former has to write most key-value data at
least twice (one to the hot area and the other to the cold area),
causing write amplification; the latter applies compression in
the front, which could cause the decompression overhead if a
promotion happens later. Considering the high locality in key-
value caches, only a small set of key-value items is hot and
most are cold, the latter solution would remove unnecessary
flash writes and thus be more efficient. We choose the second
solution in SlimCache.

Promotion and demotion. Key-value items can be pro-
moted from the cold area to the hot area, and vice verse. Our
initial implementation adopts a typical promotion approach,
which immediately promotes a key-value item upon access,
if its access count is non-zero. However, we soon found a
severe problem with this approach—in order to create a log-
like access pattern on flash, when a key-value item is promoted
into the hot area, its original copy in the cold area cannot
be promptly released. Instead, it has to be simply marked
as “obsolete” and waits for the garbage collection process to
recycle at a later time. During this time window, the occupied
space cannot be reused. In our experiments, we have observed
a hit ratio loss of 5-10 percentage points (p.p.) caused by
this space waste. If we enforce a direct reuse of the flash
space occupied by the obsolete key-value items, random writes
would be generated to flash.



  250

  300

  350

  400

  450

256B 1KB 4KB 16KB 64KB256KB1MB

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s)

Size of Data Chunk

Compression
Decompression

  0

  50

  100

  150

  200

Fig. 5: Compression time vs. unit size. Fig. 6: Hot and cold data separation Fig. 7: Data recycling in garbage collection.

SlimCache solves this challenging problem in a novel way.
Upon a repeated access to a key-value item, we do not
immediately promote it to the hot area, rather, we postpone
the promotion until the garbage collector scans the slab. In the
victim slab, if a key-value item has an access count greater
than the threshold (see Section III-F), we promote it to the
hot area and its original space is reclaimed then. In this way,
we can ensure that hot data be promoted without causing any
space loss, and in the meantime, we still can preserve the
sequential write pattern.

For demotion, when the hot area is full, the Least Recently
Used (LRU) hot slab is selected for demotion. Instead of di-
rectly dropping all the key-value items, SlimCache compresses
the items with a non-zero access count and demotes them into
the cold area, which offers the items that have been accessed a
second chance to stay in cache. For the items that have never
been accessed, SlimCache directly drops them since they are
unlikely to be accessed again.

In both promotion and demotion, we simply place the
compressed/uncompressed key-value items back to the slab
buffer, and the slab buffer flushing process is responsible for
writing them to flash later. Such a hot/cold data separation
scheme is highly effective. In our experiments the write
amplification caused by data movement between the two areas
is found rather low (see Section IV-C2).

E. Adaptive Partitioning

As mentioned above, the partitioning of flash space de-
termines the portion of key-value items being stored in the
compressed or uncompressed format. The larger the cold
region is, the more flash space could be saved, and the higher
hit ratio would be, but the more I/Os have to experience a
time-consuming decompression. Thus, we need to provide a
partitioning scheme being adaptive to the change of workloads.
Here we present a solution based on a simple cost model to
achieve such an adaptive partitioning.

Initializing partitions. If we assume the workload dis-
tribution follows the true Zipf’s law [56], [12], which has
α = 1, for a system with 100 million items, a 5% cache can
handle approximately about 85% of the requests, according
to prior cache analysis [11], [44]. Thus in our prototype, we
optimistically set the hot area initially as 5% of the flash
space and use a model-based on-line partitioning method to
adaptively adjust the sizes of the two areas at runtime.

Cost model based partitioning. As mentioned above, there
is a tradeoff between the decompression overhead and the
cache hit ratio. We propose a simple cost model to estimate
the effect of area partitioning.

Cost = Hhot × Chot +Hcold × Ccold

+(1−Hhot −Hcold)× Cmiss

(1)

Hhot and Hcold are the ratios of hits contributed by the hot
(uncompressed) key-value items and the cold (compressed)
key-value items on the flash, respectively. Chot and Ccold are
the costs when the data is retrieved from the hot and cold
areas, respectively. Cmiss is the cost of fetching data from
the backend data store. These parameters can be obtained
through runtime measurement. Our model needs to consider
two possible partitioning decisions, increasing or decreasing
the hot area size:
• Option #1: Increasing hot area size. If the size of the

hot area is increased by S, more data could be cached in the
uncompressed format. The hit ratio contributed by the head S
space of the cold area is denoted as Hc head. The hit ratio H

′

hot

provided by the hot area after increasing by S becomes Hhot+
Hc head/compression ratio. The hit ratio H

′

cold provided by
the cold area after decreasing by S becomes Hcold−Hc head.
• Option #2: Decreasing hot area size. If the size of the hot

area is decreased by S, there will be less uncompressed data
cached. The hit ratio contributed by the tail S space of the
hot area is denoted as Hh tail. The hit ratio H

′

hot provided by
the hot area after decreasing by S becomes Hhot − Hh tail.
Correspondingly, the cold area will grow by S, so the hit ratio
H

′

cold provided by the cold area will be increased to Hcold +
Hh tail × compression ratio.

We compare the current cost with the predicted cost after
the possible adjustments. If the current cost is lower, we keep
the current partitioning unchanged. If the predicted cost after
increasing or decreasing the hot area is lower, we enlarge or
reduce the hot area size, accordingly.

The above-said model is simple yet effective. Other models,
such as miss ratio curve [55], could achieve a more precise
prediction but is more complex and costly. In our scenario,
since multiple factors vary at runtime anyway and the step S
is relatively small, the cost estimation based on this simple
model works well in our experiments.



F. Garbage Collection

Garbage collection is a must-have process. Since flash mem-
ory favors large and sequential writes, when certain operations
(e.g., SET and DELETE) create obsolete value items in slabs,
we need to write the updated content to a new slab and recycle
the obsolete or deleted key-value items at a later time. When
the system runs out of free slabs, we need to reclaim their
space on flash through garbage collection.

Traditional garbage collection directly drops all the items,
including the valid data, to reclaim free space. SlimCache
deploys a recycling mechanism in garbage collection as shown
in Figure 7. Based on the access count, the key-value items
can be divided into three categories: hot, warm and cold.
Accordingly, we can apply different recycling policies for
them—the cold or invalid (obsolete or deleted) key-value items
are dropped directly; the warm items continue to stay in
the cold area in the compressed format; the hot items are
decompressed and promoted into the hot area. After modifying
the hash table mappings, the whole slab is placed back to the
free cold slab list. This garbage collection procedure collects
and promotes valuable items for retaining a high hit ratio. We
will study the effect of threshold settings for hot, warm, and
cold data identification in Section IV-C3.

Our proposed garbage collection process is integrated with
the hot/cold data management. The data promotion and de-
motion happen only when the garbage collection process is
triggered, which effectively removes the undesirable waste of
cache space, as discussed in Section III-D.

G. Compressibility Recognition

Some key-value data are incompressible by nature, such
as encrypted or already-compressed data, e.g., JPEG images.
Compressing them would not bring any benefit but incurs
unnecessary overhead. We need to quickly estimate data
compressibility and selectively apply compression.

A natural indicator of data compressibility is the entropy of
the data [45], which is defined as H = −

∑n
i=1 pi × logb pi.

Entropy quantitatively measures the information density of a
data stream based on the appearing probability (pi) of the n
unique symbols. It provides a predictive method to estimate
the amount of redundant information that could be removed
by compression, such as the Huffman encoding [23], [27].
Entropy has been widely used for testing data compressibility
in various scenarios, such as primary storage [23], memory
cache [17], device firmware [43], image compression [35], and
many others. We use normalized entropy [52], which is the
entropy divided by the maximum entropy (logb n), to quickly
filter out the incompressible data, which are implied by a high
entropy value (greater than 0.95). The items that are detected
incompressible are directly written to the cold area in their
original uncompressed format. Thus the cold area could hold
a mix of compressed and uncompressed data. This entropy-
based estimation fits well in our caching system, especially
for its simplicity, low computation cost, and time efficiency.
We will study the effect of compressibility recognition in
Section IV-C5.

H. Summary

SlimCache shares the basic architecture design with regular
flash-based key-value caches, such as the slab/slot structure,
the mapping table, the in-memory slab buffer, and the garbage
collection. However, SlimCache also has several unique de-
signs to realize efficient data compression.

First, we add a compression layer that applies compression
algorithms on the suitable items at a proper granularity. The
compressed unit is placed back to the slab-based cache struc-
ture as regular key-value items, so that the cache space can be
consistently allocated and managed. Accordingly, the mapping
structure is also modified to point to either compressed or
uncompressed items. Second, SlimCache dynamically divides
the flash cache space into two separate regions, a hot area and
a cold area, to store data in different formats for minimizing
the computational overhead caused by compression. Third,
SlimCache also enhances the garbage collection process by
integrating it with the hot/cold data separation mechanism to
avoid the cache space waste caused by data movement between
the two areas. Finally, we add compressibility recognition
mechanism to identify the data suitable for compression. These
differences between SlimCache and a regular flash-based key-
value cache, such as Fatcache, contribute to the significant
performance gain of SlimCache.

IV. EVALUATION

To evaluate the proposed schemes, we have implemented a
prototype of SlimCache based on Twitter’s Fatcache [48]. Our
implementation accounts for about 2,700 lines of code in C.
In this section, we will evaluate the SlimCache design on a
real SSD hardware platform.

A. Experimental Setup

Our experiments are conducted on three Lenovo
ThinkServers. All the three servers feature an Intel Xeon(R)
3.40GHz CPU and 16GB memory. In the key-value cache
server, an 800GB Intel 910 PCI-E SSD is used as the storage
device for key-value caching. Note that for a fair comparison,
only part of the SSD space (12-24 GB) is used for caching
in our experiments, proportionally to the workload dataset
size. All the experiments use direct_io to minimize the
effect of page cache. Our backend data store is MongoDB
v3.4.4 running on a separate server with 1TB Seagate
7200RPM hard drive. The clients run on another ThinkServer
to generate traffic to drive the experiments. The three servers
are connected via a 10Gbps Ethernet switch. For all the three
servers, we use Ubuntu 14.04 with Linux kernel 4.4.0-31 and
Ext4 file system in the experiments.

We use Yahoo’s YCSB benchmark suite [21] to generate
workloads to access the key-value items, following three
different distributions (Zipfian, Normal, and Hotspot) as de-
scribed in prior work [13], [54] to simulate typical traffic
in cloud services [8]. Since the YCSB workloads do not
contain actual data, we use the datasets from Twitter [49] and
Flickr [24] to emulate two typical types of key-value data
with different compressibility. The Twitter dataset has a high



compression ratio (about 2), while the Flickr dataset has a
low compression ratio, nearly 1 (incompressible). In order to
generate fixed-size compressible values (Section IV-C1), we
use the text generator [22] based on Markov chain provided
by Python to generate the pseudo-random fixed-size values.
We use lz4 [32] and the deflate method in zlib [5] for
compression in comparison.

In the following, our first set of experiments evaluates the
overall system performance with a complete setup, including
both the cache server and the backend database. Then we
focus on the cache server and study each design component
individually. Finally we study the cache partitioning and
further give the overhead analysis.

B. Overall Performance

In this section, our experimental system simulates a typical
key-value caching environment, which consists of clients, key-
value cache servers, and a database server in the backend.
We test the system performance by varying the cache size
from 6% to 12% of the dataset size, which is about 200 GB
in total (480 million and 2 million records for Twitter and
Flicker, respectively), so note that only part of the 800GB
SSD capacity is used as cache (12-24 GB). For each test, we
first generate the dataset to populate the database, and then
generate 300 million GET requests. We only collect the data
for the last 30 minutes in the trace replaying to ensure that the
cache server has been warmed up. All the experiments use 8
key-value cache servers and 32 clients.

1) Performance for Twitter Dataset: Our on-line compres-
sion solution can “virtually” enlarge the size of the cache
space. Figure 8, 10, and 9 show the number of items cached
in SlimCache compared to the stock Fatcache with the same
amount of flash space. As shown in Figure 8, the number of
items in cache increases substantially by up to 125.9%. Such
an effect can also be observed in other distributions. Having
more items cached in SlimCache means a higher hit ratio.
Figure 11, 12, and 13 show the hit ratio difference between
Fatcache and SlimCache. In particular, when the cache size is
6% of the dataset, the hit ratio (54%) of SlimCache-zlib for
the hotspot distribution is 2.1 times of the hit ratio provided
by Fatcache. For Zipfian and normal distributions, the hit ratio
of SlimCache-zlib reaches 72.6% and 64.7%, respectively. A
higher hit ratio further results in a higher throughput. As the
backend database server runs on a disk drive, the increase
of hit ratio in the flash cache can significantly improve the
overall system throughput and reduce the latencies. As we can
see from Figure 14, 15, and 16, compared to Fatcache, the
throughput improvement provided by SlimCache-zlib ranges
from 25.7% to 255.6%, and the latency decrease ranges from
20.7% to 78.9%, as shown in Figure 17, 18, and 19.

TABLE I: Hit ratio gain of compression in SlimCache

Scheme Zipfian Hotspot Normal
Fatcache 65.1% 25.2% 32%

SlimCache w/o Compression 66.2 % 26.4% 33.5%
SlimCache with lz4 70.2 % 45.4% 52.8%

To further understand the reason of the performance gains,
we repeated the experiments with compression disabled. Ta-
ble I shows the results with a cache size as 6% of the
dataset. We can see that without data compression, solely
relying on the two-area (hot and cold area) cache design
in SlimCache only provides a slight hit ratio increase (1.1-
1.5 p.p.) over the stock Fatcache. In contrast, SlimCache with
compression provides a more significant hit ratio improvement
(5.1-20.8 p.p.). It indicates that the performance gain is mainly
a result of the virtually enlarged cache space by on-line
compression rather than the two-area cache design.

2) Effect of the Compression Algorithms: We compare
the performance of applying three different compression al-
gorithms, the lightweight lz4, snappy, and heavyweight
deflate in zlib, when the cache size is 6% of the dataset.
Figure 20 shows that zlib performs the best among the three,
while lz4 and snappy are almost identical. In particular,
zlib provides a hit ratio gain of 2.4-11.9 p.p. over lz4 and
snappy, which results in a throughput increase of 3.4%-
25%. This indicates that heavyweight compression algorithms,
such as the deflate method in zlib, work fine with flash-based
caches, since the benefit of increasing the hit ratio significantly
outweighs the incurred computational overhead in most of our
experiments.

3) Performance for Flickr Dataset: We have also studied
the performance of SlimCache when handling incompressible
data. SlimCache can estimate the compressibility of the cache
data, and skip the compression process for the items that
are not suitable for compression, such as already-compressed
images. We have tested SlimCache with the Flickr dataset and
Figure 21 shows that for workloads with little compression
opportunities, SlimCache can effectively identify and skip such
incompressible data and avoid unnecessary overhead, showing
nearly identical performance as the stock Fatcache.

C. Cache Server Performance

In this section, we study the performance details of the
cache server by generating GET/SET requests directly to
the cache server. Since we focus on testing the raw cache
server capabilities, there is no backend database server in this
set of experiments, if not otherwise specified, and we load
about 30GB data to populate the cache server, and generate
10 million GET/SET requests for the test. All the experiments
use 8 key-value cache servers and 32 clients.

1) Compression Granularity: We first study the effect of
compression granularity. Figure 22 and Figure 23 show the
throughput and the average latency of the workload with a
GET/SET ratio of 95:5. We vary the fixed-size compression
granularity from 4 KB to 16 KB, as comparison to our
dynamically adjusted approach (see Section III). It shows that
by limiting the size of the compressed items in one flash page,
the throughput can be significantly higher than those spreading
over multiple flash pages. For example, when the value size
is 128 Bytes, if the compression granularity is 16 KB, the
throughput is 34K ops/sec, and it increases to 51K ops/sec
by using our dynamic method. The improvement is as high as
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Fig. 10: Num. of objects, Normal
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50%. Figure 22 also shows that the throughput of the dynamic
mechanism is always among the top two and is close to the
highest static setting. Figure 23 shows a similar trend.

2) Hot/Cold Data Separation: Figure 24 compares the
throughput with and without the hot area for the Zipfian-
distributed Twitter dataset. As shown in the figure, the through-
put of GET operations is 39K ops/sec and 65K ops/sec for
SlimCache without and with hot/cold data separation, respec-
tively (66.7% improvement). Such an improvement can also

be seen with other SET/GET ratios, but when all the requests
are SET operations, the two mechanisms achieve almost the
same throughputs. That is because the SET path in SlimCache
is identical, no matter the data separation is enabled or not—
the items are all batched together and written to the cold area
in the compressed format. However, the difference emerges
when GET operations are involved, because the hot items are
promoted to the hot area in uncompressed format, and the
following GET requests to this item can avoid the unnecessary
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overhead. Although the hot area only accounts for a small
percentage of the cache space, it improves the performance
significantly compared to that without hot/cold separation.

We note that such a great performance improvement is
not for free. Frequent data movement between the hot and
cold areas may cause a write amplification problem, which is
harmful for the performance and also the lifetime of flash. In
our experiments, we find that the write amplification factor
(WAF) is 4.2% in SlimCache, meaning that only 4.2% of the
traffic is caused by the switch between the two areas. Since the
WAF is quite low and the hot/cold data switch is a background
operation, the benefit introduced by hot/cold data separation
clearly outweighs its overhead, as shown in Figure 24.

3) Garbage Collection: We investigate the effect of thresh-
old setting for hot, warm and cold data identification during
garbage collection, with 300 million requests following Zipfian
distribution. The cache size is set 6% of the workload dataset
size. Figure 25 shows the hit ratio change by setting different
thresholds. When the high threshold and the low threshold
are both 1 (denoted as H1L1 in the figure), which means
that the items will be promoted to the hot area when they
are reaccessed at least once and all the rest are dropped
directly, the hit ratio reaches the highest, 70.4%, among all
the settings. When we vary the threshold settings, the hit
ratio drops to about 60%. It indicates that recycling hot
data to the hot area is very effective to identify the most
valuable data. However, recycling warm data to the cold area
incurs inefficient recollection, since many of the recollected
warm data are not frequently reaccessed but occupy the cache
space that could be used for other valuable items. Based on
the experimental results, we simplify the garbage collection
process without recycling warm data to the cold area. Instead,
only hot items are promoted to the hot area.

Table II shows the percentage of GET requests that are
served from the hot area when the high threshold and the low

threshold are both 1. With a SET:GET ratio of 5:95, 56.7% of
the GET requests fall in the hot area, whose size is only 5%
of the entire cache space. These results show that the hot/cold
data separation can effectively alleviate the read amplification
problem caused by on-line compression.

TABLE II: Ratio of GET requests served in the hot area

SET:GET 95:5 50:50 5:95 0:100
SlimCache 79.1 % 87.3% 56.7% 55%

4) Garbage-Collection-Merged Promotion: We compare
two different promotion approaches. The first one is on-
line promotion, which moves the items to the hot area in
the uncompressed format immediately after this item is re-
accessed. The second one is called Garbage Collection Merged
(GCM) promotion, which is used in GC in SlimCache (see
Section III-F). In the GCM promotion, re-accessed items are
promoted to the hot area during the GC period. Neither of
the two approaches causes extra read overhead, since the on-
demand read requests or the embedded GC process needs to
read the items or the slab anyway. However, these two methods
have both advantages and disadvantages. On-line promotion is
prompt, but it wastes extra space, because the original copy
of the promoted items would not be recycled until the slab is
reclaimed, reducing the usable cache space and harming the
hit ratio. On the contrary, the GCM promotion postpones the
promotion until the GC process happens, but it does not cause
space waste, which is crucial for caching.

As Figure 26 shows, when we test the server without
considering the backend database server, the on-line promotion
shows a relatively better performance than the GCM promo-
tion, because the on-line compression can timely promote
a frequently accessed item into the hot area, reducing the
decompression overhead. However, the duplicate copies would
incur a waste of cache space. Table III shows the effect of such
a space waste on the hit ratio. We have repeated the Twitter
experiments in Section IV-B1 and set the cache size as 6%
of the dataset size. It shows that SlimCache-GCM provides
a hit ratio increase of 0.7-7.2 p.p. over SlimCache-Online,
which would correspondingly translate into performance gains
in cases when a backend database is involved. As space saving
for hit ratio improvement is the main goal of SlimCache, we
choose GCM in SlimCache. This highly integrated garbage
collection and hot/cold data switch process is specifically
customized for flash-based caching system, where it shows
significant performance improvement.

TABLE III: Hit ratio of Online and GCM promotion

Scheme Zipfian Hotspot Normal
Fatcache 65.1% 25.2% 32%

SlimCache-Online 69.5% 38.2% 47%
SlimCache-GCM 70.2% 45.4% 52.8%

5) Compressibility Recognition (CR): The compressibility
recognition (CR) can bring both benefits and overhead. For
incompressible data, it can reduce significant overhead by
skipping the compression process. However, for compressible
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Fig. 26: Online vs. GCM promotion.
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Fig. 27: CR with incompressible data
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Fig. 28: CR with compressible data
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data, the compressibility check incurs additional overhead.
Figure 27 shows the benefit of applying compressibility
recognition to the incompressible Flickr dataset. In particular,
compressibility recognition improves the throughput by up
to 40.5%. In contrast, the CR mechanism adds overhead for
the compressible Twitter dataset, as shown in Figure 28. We
also can see that the overhead is mainly associated with SET
operations. When the GET operations are dominant, which is
typical in key-value cache systems, the overhead is minimal.
In our prototype, SlimCache provides an interface for users
to decide whether to enable compressibility recognition or
not, according to the workload. Our results show that the CR
mechanism is generally more efficient than compressing all
the data indistinctively.

D. Adaptive Partitioning

To illustrate the adaptive partitioning, we collect the average
read latency to configure our proposed cost model. The hot
area cache read is measured 400 µs, the cold area cache read

is 900 µs, and the backend fetch is 300 ms. Figure 29 shows
the runtime hot area size and the hit ratio when dynamic
partitioning happens. As the speed of our backend database is
slow, SlimCache tends to keep a larger cold area and attempts
to reduce the number of cache misses until the convergence
condition is reached. Figure 29 shows that the hit ratio keeps
stable when data migration happens in SlimCache.

We have also studied the effect of step S by setting it to
10%, 15%, and 20% of the hot area size. SlimCache can reach
a stable cache partitioning within 9 minutes for all the step
settings as Figure 30 shows. Considering that the up-time of a
real server is often long (days to months), such a short time for
reaching a stable cache partitioning means that our adaptive
partitioning approach is reasonably responsive and effective.

E. Overhead Analysis

SlimCache introduces on-line compression in flash-based
key-value cache, which could increase the consumption of
CPU, memory and flash resources on the sever side.



• Memory utilization. In SlimCache, memory is mainly
used for three purposes. (1) In-memory hash table. SlimCache
adds a 1-bit access count attribute to record the access count
of the item since stored in the system. (2) Slab buffer. Slim-
Cache performance is not sensitive to the memory buffer. We
maintain a 128 MB memory for slab buffer, which is identical
to Fatcache. (3) Slab metadata. We add a 1-bit attribute for
each slab, called hotslab. This bit indicates whether the slab
belongs to the hot area or not. In total, for a 1TB SSD that
stores 1 billion records, SlimCache consumes about 128 MB
(128 MB for hash table entry metadata, 128 KB for slab
metadata) more memory than Fatcache. In our experiments,
we find that the actual memory consumption of SlimCache
and Fatcache is similar at runtime.

• CPU utilization. SlimCache is multi-threaded. In par-
ticular, we maintain one thread for the drain operation, one
thread for garbage collection, one thread for data movement
between the hot and the cold areas, and one thread for dynamic
partitioning. Compression and decompression operations also
consume CPU cycles. As shown in Table IV, the CPU utiliza-
tion of SlimCache is less than 3.5% in all our experiments.
The main bottleneck is the backend database for the whole
system. Computation resource is sufficient on the cache server
to complete the demanded work.

TABLE IV: CPU utilization of SlimCache

Scheme Zipfian Hotspot Normal
Cache 6% 12% 6% 12% 6% 12%

Fatcache 1.93% 2.08% 1.07% 1.19% 1.84% 2.25%
SlimCache 2.09% 2.14% 1.23% 2.21% 2.05% 3.37%

• Flash utilization. We add a 1-bit compressed attribute
to each key-value item to indicate whether the item is in
compressed format or not. This attribute is used to determine
if a decompression process should be applied when the slot
is read upon a GET operation. Storing 1 billion records will
consume 128 MB more flash space, which is a small storage
overhead.

V. OTHER RELATED WORK

This section discusses the other prior studies related to this
work. Key-value caching has attracted high interests in both
academia and industry. Recent research on key-value cache
focuses mostly on performance improvement [29], [30], [34],
such as network request handling, OS kernel involvement,
data structure design, and concurrency control, etc. Recently
hardware-centric studies [31], such as FPGA-based design [10]
and Open-Channel SSD [46], began to explore the hardware
features. In particular, DIDACache [46] provides a holistic
flash-based key-value cache using Open-Channel SSD through
a deep integration between hardware and software. Besides
the performance, some other studies deal with the scalability
problem [20], [39], [40], which results from hardware cost and
power/thermal problems. For example, Nishtala et al. aim to
scale Memcached to handle large amount of Internet traffic in
Facebook [39]. Ouyang et al. design an SSD-assisted hybrid

memory for Memcached to achieve high performance and low
cost [40]. McDipper [20] is a flash-based key-value cache
solution to replace Memcached in Facebook. Our SlimCache
is a general-purpose software-level solution without relying
on any special hardware. It enhances cache performance
through data compression and is orthogonal to these prior
optimizations.

VI. CONCLUSIONS

In this paper, we present an on-line compression mechanism
for flash-based key-value cache systems, called SlimCache,
which expands the effectively usable cache space, increases the
hit ratio, and improves the cache performance. For optimiza-
tions, SlimCache introduces a number of techniques, such as
unified management for compressed and uncompressed data,
dynamically determining compression granularity, efficient
hot/cold data separation, optimized garbage collection, and
adaptive cache partitioning. Our experiments show that our
design can effectively accommodate more key-value data in
cache, which in turn significantly increases the cache hit ratio
and improves the system performance.
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