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Abstract—Storage technologies have undergone continuous
innovations in the past decade. The latest technical advance-
ment in this domain is 3D XPoint memory. As a type of Non-
volatile Memory (NVM), 3D XPoint memory promises great
improvement in performance, density, and endurance over NAND
flash memory. Compared to flash based SSDs, 3D XPoint based
SSDs, such as Intel’s Optane SSD, can deliver unprecedented low
latency and high throughput. These properties are particularly
appealing to I/O intensive applications. Key-value store is such
an important application in data center systems.

This paper presents the first, in-depth performance study
on the impact of the aforesaid storage hardware evolution
to RocksDB, a highly popular key-value store based on Log-
structured Merge tree (LSM-tree). We have conducted extensive
experiments for quantitative measurements on three types of SSD
devices. Besides confirming the performance gain of RocksDB
on 3D XPoint SSD, our study also reveals several unexpected
bottlenecks in the current key-value store design, which hinder
us from fully exploiting the great performance potential of the
new storage hardware. Based on our findings, we also present
three exemplary case studies to showcase the efficacy of removing
these bottlenecks with simple methods, achieving a performance
improvement by up to 18.8%. We further discuss the implications
of our findings for system designers and users to develop schemes
in future optimizations. Our study shows that many of the current
LSM-tree based key-value store designs need to be carefully
revisited to effectively incorporate the new-generation hardware
for realizing high-speed data processing.

I. INTRODUCTION

With the rapid growth of Internet services, data center
systems need to handle a huge volume of data at a very high
processing rate [31]. This grand trend demands a non-stopping,
fast-pace evolution of the storage subsystems, incorporating
cutting-edge hardware and software technologies and optimiz-
ing the entire system in a cohesive manner.

On the hardware side, NAND flash based SSDs have already
been widely adopted in today’s data centers [32]. Although
compared to conventional disk drives, flash SSDs can deliver
higher performance and better power efficiency, the well-
known slow random write and limited lifetime issues still
remain a non-negligible concern in large-scale systems.

More recently, Intel’s Optane SSD [16], which is built
on 3D XPoint [15], a type of Non-volatile Memory (NVM)
technology, has received increasingly high interests in the
industry. Unlike flash SSD, 3D XPoint SSD uses resistance-
based recording material to store bits, enabling it to provide

much lower latency and higher throughput. Most importantly,
3D XPoint SSD significantly alleviates many long-existing
concerns on flash SSDs, such as the read-write speed disparity,
slow random write, and endurance problems [26], [42]. Thus
3D XPoint SSD is widely regarded as a pivotal technology for
building the next-generation storage system in the future.

On the software side, in order to accelerate I/O-intensive
services in data centers, RocksDB [11], which is the state-
of-art Log-structured Merge tree (LSM-tree) based key-value
store, has been widely used in various major data storage
and processing systems, such as graph databases [8], stream
processing engine [1], and event tracking systems [29]. They
all rely on RocksDB as the storage engine to provide high-
speed queries for key-value workloads.

However, since RocksDB is particularly optimized for flash-
based SSDs, new challenges would naturally emerge as we
transit to 3D XPoint SSD in the future. Considering the
architectural differences between flash SSD and 3D XPoint
SSD, it is a highly interesting and practical question—Is
the current design of LSM-tree based key-value store readily
applicable to the new 3D XPoint SSD?

Fig. 1: A motivating example—performance improvement of
RocksDB workloads on Intel Optane SSD

To have a glimpse of the potential problem, we show a
motivating example in Figure 1. We use Intel Open Storage
Toolkit [25] to generate 4KB random requests with 8 threads
and read/write ratio being 1:1 to access the first 10GB storage
space on a 280GB Intel Optane 900P SSD. The raw I/O
throughput increases from 26 kop/s on an Intel 530 SATA
SSD to 408 kop/s on the 3D XPoint SSD, which is a speedup
of 15.7 times. Then we benchmark RocksDB with 4KB



requests following the randomreadrandomwrite distribution
and read/write ratio being 1:1. The key-value I/O throughput
on RocksDB increases from 13 kop/s to 23 kop/s, which is
an increase of only 76.9%. It indicates that impediments exist
in the current design, hindering us from effectively exploiting
the high processing capacity of the new hardware.

In this paper, we present a set of comprehensive experimen-
tal studies to quantitatively measure the performance impact
of 3D XPoint SSD on RocksDB. In the experiments, we have
identified several unexpected performance bottlenecks and also
gained important insight for future deployment of RocksDB
in data center systems. To our best knowledge, this paper is
the first study on the performance behavior of RocksDB on
3D XPoint SSD.

For our experiments, we use db bench to generate various
types of key-value workloads to conduct extensive experiments
and characterize RocksDB. Our purpose is not to compare
the absolute performance difference of RocksDB running on
different storage devices. Rather, we desire to obtain insightful
understanding on the effect of the unique properties of the
new-generation storage hardware on RocksDB performance,
and to gain system implications for designers to effectively
integrate RocksDB into data center systems. We have made
the following contributions in this paper:
• This is the first work studying the performance behavior
of RocksDB on 3D XPoint SSD. We have identified several
important bottlenecks in RocksDB through experiments and
analysis, such as the throttling mechanism, the Level-0 file
query overhead, the read/write interference, etc.
• Leveraging our findings, we have also designed and im-
plemented three exemplary case studies to showcase the
efficacy of removing the bottlenecks with simple methods
on RocksDB, such as mitigating the near-stop situation for
workloads with periodic write bursts, dynamic Level-0 file
management that improves the throughput by up to 13%, and
a simulated NVM logging approach that reduces the 90th
percentile write tail latency by up to 18.8%.
• Based on our observations, we have also discussed the
related system implications as future guidance to optimize
RocksDB on 3D XPoint SSD and to integrate the new hard-
ware into large-scale systems and date centers.

The rest of this paper is organized as follows. Section II
introduces the background. Section III and Section IV present
the experimental setup and results. Section V gives three
case studies. In Section VI, we summarize our key findings
and discuss the important implications to users and system
designers. Related work is presented in Section VII. The final
section concludes the paper.

II. BACKGROUND

Flash Memory vs. 3D XPoint Memory. NAND flash is
a type of EEPROM devices. A flash memory chip typically
consists of several planes. Each plane is composed of thou-
sands of blocks, each of which is further divided into pages.
There are three major technical constraints for flash memory.
First, a read operation is typically fast (e.g., 50 µs), while a

write is relatively slow (e.g., 500 µs). Second, a programmed
(written) page cannot be overwritten again until the whole
block is erased. An erase is a time-consuming operation (e.g.,
2.5 ms) and conducted in the unit of blocks. Third, the flash
pages of a block must be programmed in a sequential manner.
More details can be found in prior studies [3], [6], [18].

3D XPoint is a type of Non-volatile Memory (NVM)
technology [15], [26]. Unlike NAND flash memory, 3D XPoint
memory is byte addressable, meaning that it can be accessed in
a fine granularity similar to DRAM. Since 3D XPoint memory
does not need an erase operation before write, the read/write
speed disparity problem is significantly alleviated. According
to Micron, compared to NAND flash, 3D XPoint provides up
to 1,000 times lower latency and multiple orders of magnitude
greater endurance [26]. Intel’s Optane SSD, which is recently
available on the market, is built on 3D XPoint memory. In this
paper, we use Intel’s Optane 900P SSD in our experiments.

LSM-tree based Key-value Store. Many modern key-value
data stores are built on Log-structured Merge tree (LSM-
tree) [2], [9], [11], [13], which is optimized for handling inten-
sive update operations. Typically, the key-value data are stored
in both memory and storage devices. A set of Memtables are
maintained in memory to collect incoming writes first and
then flush to the storage device (e.g., a disk or an SSD) in
Sorted Sequence Table (SST) data files. The related metadata
information about SSTs is stored in Manifest files. SSTs are
logically organized in multiple levels of increasing size, from
Level 0 (L0) to Level N (LN) (see Figure 2). Except at Level 0,
where the SSTs can have overlapping key ranges, the other
SSTs at each level (L1 to LN) must have non-overlapping key
ranges in a sorted manner.

A background merging process, called compaction, rou-
tinely runs to remove the deleted and obsolete items. In
particular, when the number of L0 files exceeds a predefined
threshold, multiple L0 files merge with the L1 files that have
overlapping key ranges, generating new L1 files and discarding
the input L0 and L1 files. The compaction processes at the
other levels are similar. Involving heavy I/O and computation
overhead, compaction is considered as the main performance
bottleneck in LSM-tree based key-value stores.

Fig. 2: An illustration of the LSM tree structure
Upon arrival of a write request, the update is first written

into a Write-ahead Log (WAL) for crash recovery. Then
the update is accommodated in a buffer in memory, called
Memtable. If the Memtable is filled up, it is switched to a
read-only Immutable Memtable. A new Memtable is allocated
for holding the subsequent requests. A background thread
periodically flushes the Immutable Memtables to persistent
storage.



For handling a read request, we first check the Memtables,
then the Immutable Memtables, and finally look up the key
in the on-storage SSTs, starting from L0 to LN, until the
requested item is found. To reduce the I/O cost, techniques,
such as Bloom Filters, are used to speed up the queries. The
block cache in RocksDB and the OS buffer cache can also
eliminate unnecessary storage I/O operations.

RocksDB. Compared to LevelDB [13], RocksDB is a
popular LSM-tree based key-value store particularly optimized
for flash SSDs. It employs multiple schemes to exploit the
properties of flash SSD for better performance, such as its rich
internal parallelism resources [7]. For example, RocksDB adds
multiple column families to logically partition the database and
group associated keys together; multiple Immutable Memta-
bles are used to avoid write stalls; the compaction process is
multi-threaded; separate thread pools with different priorities
are used for flushing and compaction. After years of tuning,
RocksDB has optimized its performance with flash storage,
making it highly popular in the industry [4], [9], [27].

III. METHODOLOGY

Our experiment system is a two-socket Intel W2600CR
server. It is equipped with 16 cores on two Intel(R) Xeon(R)
E5-2690 2.90GHz processors and 128 GB memory. An Intel
530 Series SATA Flash SSD, an Intel 750 PCIe Flash SSD,
and an Intel Optane PCIe 3D XPoint SSD are used as three
representative storage devices. We use Ubuntu 14.04 with
Linux Kernel 4.4.0, Ext4 file system, and RocksDB 5.17.0
in our experiments.

The data set used in our experiments is around 100 GB.
We accordingly set the available physical memory space to be
8 GB during the system boot time, which is about 8% of the
data set size. Based on prior study about I/O characterization
in large-scale data centers [12], we configure the workload
with different read/write ratios and the value size being 1 KB.
We use db bench, RocksDB’s default benchmarking tool,
to generate workloads following the randomreadrandomwrite
distribution in each experiment. If not otherwise specified,
each experiment runs for 300 seconds, which is reasonably
long enough to show the performance trend.

IV. BOTTLENECK IDENTIFICATION

As reported by Yahoo! [31], the percentage of write opera-
tions in emerging workloads, such as cloud computing, mobile
devices, and social networks, has significantly increased at
an unprecedented pace. In 2010, the workloads contained
about 10-20% writes, which increased to nearly 50% in 2012.
The high insertion ratio contributes to the quickly increasing
popularity of RocksDB [5], [38], since its multi-level, append-
only structure is highly suitable for handling intensive traffic
of updates on flash device. In this work, we conduct a com-
prehensive measurement to study the RocksDB performance
with 3D XPoint SSD, particularly to identify the corresponding
bottlenecks on the new-generation hardware.

A. Throttling Mechanism

The memory component of LSM-tree is for two purposes.
First, an entry can be inserted (SET) into the memory-resident
memtable without involving any I/O cost. Only large, batched
I/Os can be seen at the storage level. Second, GET requests to
the entries in memory can be served quickly without incurring
an I/O to the storage device.

Although the in-memory memtable structure can buffer I/O
requests and eliminate data retrievals from the slow on-storage
component, it raises cost and power consumption concerns
for a large-scale deployment. Thus, in practice, users and
system administrators often impose a limit on the number of
in-memory Memtables (2 by default) and on-disk Level-0 files
(36 by default) in RocksDB. When the number of Level-0 files
hits a threshold, a write throttling mechanism is triggered to
purposefully slow down the incoming request traffic to save
the memory used for buffering the I/Os, until the background
process makes enough space in Level-0 by merging and
deleting Level-0 files. As the insertion ratio of data center
workloads keeps increasing, the throttling mechanism would
be more frequently triggered, posing huge overhead on the
system performance. In this section, we analyze the throttling
mechanism and its impact by increasing the insertion ratio
from 0% to 100% with 4 parallel processes.

Finding #1. On both SATA and PCIe flash SSD, as Figure 3
shows, the throughput of RocksDB increases as the insertion
ratio increases, because of the reduced number of expensive
READ requests. For example, on the PCIe flash SSD, the
throughput increases from 32 kop/s to 41.3 kop/s, when the
insertion ratio increases from zero to 100%. As Figure 6 and
Figure 7 show, READ latency is significantly longer on flash
SSDs than 3D XPoint SSD. In particular, with a high insertion
ratio (90% write), the 90th percentile read tail latency on
3D XPoint SSD is only 251 µs, in contrast to that on the SATA
flash SSD (839 µs); the 90th percentile write tail latency is 26
µs, which is close to that on the SATA flash SSD (28 µs). Thus,
the reduced expensive READ operations bring more benefits
to the throughput on the flash SSDs.

On 3D XPoint SSD, interestingly, Figure 3 shows an
opposite trend—the throughput decreases from 115 kop/s to
45 kop/s, which is close to the PCIe flash SSD. When insertion
ratio continues increasing, the throughput difference becomes
less significant, despite the hardware difference. To explain
the results, we show more details in Figure 4 and 5. When
WRITE operations are dominant, the triggered write throttling
mechanism would introduce delays for insertion operations,
causing performance fluctuation. As shown in Figure 4 and 5,
the throughput variation on 3D XPoint SSD is clearly evident.
The throttling periodically happens, pulling down the through-
put. For example, when insertion ratio is 90%, the throughput
drops from 169 kop/s to as low as 3 kop/s when throttling
happens on 3D XPoint SSD.

Thus, opposite to our common expectation that 3D XPoint
SSD can always provide significantly better performance than
flash SSD, we find that such a performance benefit is workload



Fig. 3: Throughput vs. Insertion Ratio Fig. 4: Throughput (5% Write) Fig. 5: Throughput (90% Write)

Fig. 6: Read (90% Write) Fig. 7: Write (90% Write) Fig. 8: Num. of Level-0 Files vs. File Size

dependent (more significant with a lower insertion ratio). For
a write-intensive workload, the current throttling mechanism
in RocksDB, which is heavily optimized for flash memory,
drags down the performance of RocksDB on 3D XPoint SSD
to the level of running on a regular flash SSD.

Analysis #1. Algorithm 1 briefly describes the write control
process in RocksDB. The write process is put to sleep when
a delay is needed (e.g., Level-0 slowdown threshold is hit).
The delayed write rate is adjusted to make sure the amount
of data being processed at each interval during compaction
roughly constant and stable (i.e., ideally, Prev Bytes equals
Esti Bytes).

We use a simple model to explain and estimate the decrease
of throughput. Let λa and λs, respectively, denote the appli-
cation level throughput, which is the performance perceived
by applications, and the system level throughput, which is the
processing capacity of the key-value system; refill interval
denotes the minimum of an injected delay period. From
Algorithm 1, we can see λa converges to delayed write rate
to guarantee that the request arrival rate roughly equals to the
processing rate. For a time period t during which one write
finishes (i.e., the median latency), we have:

λa × (refill interval + t) = λs× t (1)

Based on Equation 1, we can have:

λa =
t

refill interval + t
× λs (2)

According to our measurement on the 3D XPoint SSD, λs,
the background processing capacity of RocksDB when com-

paction happens, is 190 kop/s, and t, the median write latency,
is 15 µs, so we have:

λa =
15

1024 + 15
× 190kop/s = 2.74kop/s

For the SATA SSD, λs and t are measured to be 130 kop/s
and 15 µs, respectively, so we have:

λa =
15

1024 + 15
× 130kop/s = 1.88kop/s

The above calculated results are close to our measurement
data in Figure 5. We can see that when the throttling process
is triggered, the application level throughput would degrade to
a similarly low level, disregarding the hardware differences.

Discussion #1. Due to the throttling mechanism, the achiev-
able application level throughput is much lower than expected,
even though the underlying storage hardware is highly capable.
The throttling process is such a case that exactly showcases the
potential problem—if we blindly operated the same throttling
strategy on 3D XPoint SSD in the same way as that on slower
flash devices, the hardware performance benefit enabled by the
new technology would become negligible. As we evolve to the
new-generation storage technology, many such optimizations
should be carefully reconsidered.

B. Level-0 File Query Overhead

In the LSM-tree structure, the keys in a Level-0 SST files are
not sorted. Thus the key ranges could be overlapped. Typically,
it requires to search multiple Level-0 SST files and possibly
other-level files to find the key-value item. This results in a
significant read amplification problem on flash based devices.



Algorithm 1 WRITE CONTROL PROCESS

1: Dec=0.8, Inc=1.25
2: delayed write rate = usr defined value
3: refill interval =1024 µs
4: num bytes = last batch group size
5: procedure WRITE(num bytes)
6: if need delay then
7: if Prev Bytes <= Esti Bytes then
8: delayed write rate∗ = Dec
9: else

10: delayed write rate∗ = Inc
11: end if
12: delay = DELAYWRITE(num bytes)
13: sleep(delay)
14: end if
15: Process(WRITE)
16: end procedure
17: function DELAYWRITE(num bytes)
18: time slice = time now − last refill time
19: bytes refilled = time slice ∗ delayed write rate
20: if bytes refilled > num bytes then
21: if time slice > refill interval then
22: return 0
23: end if
24: end if
25: single ref = refill interval∗delayed write rate
26: if bytes refilled+ single ref > num bytes then
27: return refill interval
28: else
29: return num bytes/delayed write rate
30: end if
31: end function

As the storage becomes dramatically faster with the 3D XPoint
technology, it is worth studying if this read amplification
problem could become less significant.

We desire to study the performance impact with different
number of Level-0 files. In the current RocksDB, a challenge
is that the numbers of Level-0 files cannot be statically set. In
fact, it dynamically changes during runtime. We find that the
number of Level-0 files is largely determined by the file size.
To show such a relationship between file size and the number
of Level-0 files, we vary the Level-0 file size from 32MB to
512MB with 4 concurrent processes and 1:1 READ/WRITE
ratio and show the results in Figure 8. By setting different
Level-0 file sizes, we can roughly control the desired numbers
of files generated at Level 0.

Finding #2. Figure 9 shows the throughput with different
numbers of Level-0 files. Opposite to our expectation, we
find that the number of Level-0 files has a significant impact
on the performance with 3D XPoint SSD, which is even
more pronounced compared to flash SSDs. In specific, the
throughput on the PCIe flash SSD decreases by only 12.3%,
from 41.5 kop/s to 36.4 kop/s by increasing the number of

files from 2 to 8. In contrast, the throughput on 3D-XPoint
SSD decreases even more, from 86.4 kop/s to 69.2 kop/s,
which is 19.9%, meaning that the negative impact of the read
amplification problem is more significant on faster storage.

To investigate this result, a closer look at READ requests
further reveals where the overhead originates from. For READ
requests, fewer Level-0 files are generally beneficial, on all
the three devices. For example, on 3D XPoint SSD, the 90th
percentile tail latency of READ requests is 134 µs when the
number of Level-0 files is 8, and it drops to 101 µs when the
number of Level-0 files decreases to 2, as Figure 10 shows.

This overhead difference can be explained by the lookup
process. For illustration, we use Figure 11 to show the different
querying processes with large and small Level-0 files, both
containing the same number of items. Note that all the small
files whose key ranges cover the desired key have to be
searched until the key is found. The reason is as follows.

Assume the small file case has k small files, each with size
N , while the large file case has a large file with size k ×N .
Because the files in Level-0 are organized by Skiplist [28], if
we split the large file into k small files, the lookup complexity
would increase from O(log(k×N)) to O(k× log(N)), which
is equal to O(log(Nk)). Since a lookup operation in a large
Level-0 file on 3D XPoint is not significantly longer (e.g., 9.7
µs for 256MB vs. 8.5 µs for 32MB), the number of involved
Level-0 files becomes the dominant factor. As so, maintaining
more Level-0 files would lead to a longer READ latency.

Analysis #2. Our results show that it is beneficial to
maintain a small number of files with a relatively large size.
However, it does not mean that we should maintain one
single huge Level-0 file. In the current system design, the
mutable memtable becomes immutable when it is full. Then
another new mutable memtable is allocated to continue serving
incoming requests. The immutable table is further flushed to
Level 0. Thus a larger Level-0 file, meaning a larger mutable
memtable, will cause a longer latency for WRITE operations.

As shown in Figure 12, the 90th percentile tail latency
of WRITE operations increases from 25 µs to 31 µs, when
the SST file size increases from 64MB to 256MB on the
SATA flash SSD. It is because WRITE operations are first
accumulated in the mutable memtable and then it switches to
immutable when full and is further flushed to disk. As the
complexity of insertion to a skiplist is O(log(N)), a larger
memtable would cause a longer latency for WRITE operations.

According to the analysis above, fewer but larger Level-0
files would result in smaller READ latencies due to a smaller
number of files for search, but a very large Level-0 file size
would cause a longer WRITE latency. Such an effect is more
evident on 3D XPoint SSD than that on flash based ones, since
3D XPoint SSD is much faster and the overhead involved in
Level-0 file queries contributes a more significant portion to
the overall request processing time.

Discussion #2. Unlike our expectation, as the underlying
storage media becomes faster, the role of the memory compo-
nents and Level-0 files of RocksDB would become even more
important. The memory component management, as well as



Fig. 9: Throughput vs. Num. of L0 Files Fig. 10: Read Latency vs. Num. of L0 Files Fig. 11: Large File vs. Small Files

the Level-0 file number setting and the querying mechanism,
would have a greater impact on the overall performance.

C. Parallelism and Interference

Due to internal parallelism, flash SSDs are particularly suit-
able for parallel I/O processing. RocksDB supports concurrent
writers and write batching to provide high throughput perfor-
mance. However, the parallel read and write operations may
interfere each other [7]. We benchmark RocksDB by varying
the number of processes from 1 to 32 with READ/WRITE
ratio being 1:1.

Finding #3. Figure 13 shows that the throughput increases
significantly as the number of threads increases on all three
devices. For example, the throughput increases from 35.4 kop/s
to 79.5 kop/s on 3D XPoint SSD by changing the parallelism
degree from 1 to 32.

However, READ and WRITE requests behave differently as
storage device evolves. As for READ requests, as Figure 14
shows, read latency on 3D XPoint SSD is significantly smaller
than that on the flash SSDs. With 32 threads, the 90th
percentile tail latency on the 3D XPoint SSD is 335 µs, which
is 76% smaller than that on the SATA flash SSD (1.4 ms).

The WRITE requests show opposite results. The 90th
percentile tail latency on the 3D XPoint SSD (440 µs) is
significantly longer than that on the SATA flash SSD (47 µs)
when the thread number is 32, as shown in Figure 15.

The pipelined write process, which is used in RocksDB
to improve concurrent write throughput, can explain these
phenomena. By default, RocksDB keeps one single write
thread queue for concurrent writers. A thread becomes the
leader of the write batch group, when it reaches the head of
the queue, and is responsible for flushing the updates for the
batch group. The whole process is described in Algorithm 2.

3D XPoint SSD provides a high processing speed for READ
requests, which unfortunately places a high pressure on the
concurrent WRITE requests. A result is that more awaiting
writes are accumulated during the same period of time. As
shown in Figure 16, the average number of waiting threads
on 3D XPoint SSD is evidently larger than that on flash
SSDs with 32 threads. Each writing thread has to wait for
the previous time-consuming flushing operations to complete,
causing a queuing effect. More waiting threads would lead to

Algorithm 2 PIPELINED WRITE PROCESS

1: procedure PIPELINEDWRITEIMPL
2: if writer.state==Memtable Leader then
3: for writers in Group do
4: writer.state=Memtable Writer
5: end for
6: else if writer.state==Memtable Writer then
7: Write()
8: else
9: Await()

10: end if
11: PickNewLeader()
12: end procedure

a longer waiting time for WRITE requests on 3D XPoint SSD
than on flash SSD, as Figure 15 shows.

Discussion #3. Opposite to the traditional understanding
that 3D XPoint SSD always provides low latency services than
flash SSD, WRITE requests could take longer to complete
in mixed workloads. With a high arrival rate of requests
and intensive READ/WRITE interference, software designs in
RocksDB, such as pipelined write process, would play a sig-
nificant role for request latency. As a result, more accumulated
WRITE requests would result in a longer processing time.

D. Logging

LSM-tree based key-value store usually manages a Write
Ahead Log (WAL) for data recovery and system consistency.
Though being crucial, logging mechanisms can incur high
performance overhead. With a high-speed 3D XPoint SSD, it
is worth studying if the involved overhead could be weakened.
We study their impact by enabling and disabling logging
mechanisms, using a workload with READ/WRITE being 1:9.

Finding #4. According to Figure 17, WAL still has a
significant impact on write performance, even with a much
faster 3D XPoint SSD. The 90% tail latency of WRITE
operations is reduced from about 54 µs to about 22 µs, if
disabling the WAL mechanism on 3D XPoint SSD. It is
because when a write request is issued, the WAL update is
first written to the write buffer. Then the real write operation
is executed in the in-memory data structure, memtable. The
WAL and memtable are flushed to disk asynchronously and



Fig. 12: Write Latency vs. SST File Size Fig. 13: Throughput vs. Parallelism Fig. 14: Read Latency (32 Threads)

Fig. 15: Write Latency (32 Threads) Fig. 16: Waiting Threads vs. Devices Fig. 17: Write Latency vs. WAL

separately later. Thus the device differences are diminished.
Our results show that logging is still an important factor
hindering the performance of RocksDB on all devices.

Discussion #4. WAL poses great performance penalty, even
on 3D XPoint SSD. We need to consider solutions to speed
up this process. Further optimization on this costly process
remains an important demand to achieve stable performance,
even on high-speed 3D XPoint SSD.

V. CASE STUDIES

In this section, we present three case studies to illustrate how
to optimize the performance of RocksDB by overcoming the
bottlenecks discussed above. It is worth noting that these pilot
solutions are not intended to be fully optimized designs but
to serve as examples to showcase the potential optimizations
that could be enabled based on our findings.

A. Removing Near-Stop Situation

The original Level-0 file management mechanism works as
follows. When the number of Level-0 files reaches a com-
paction trigger threshold, the background compaction process
is launched to merge the files that have overlapping keys in
Level-0 and the lower levels. When the number of Level-0
files reaches a slowdown threshold, a throttling process as
described in Algorithm 1 will be triggered. In extreme cases,
when the number of Level-0 files reaches stop threshold, a
stopping process will be launched to constrain the Level-0 size
according to the user’s requirements.

Such a simple throttling mechanism is particularly detrimen-
tal when the system undergoes a periodically appearing “flash
of crowd” situation, in which write bursts periodically appear

and pull the system into a near-stop (under 10 kop/s) situation.
The real-time throughput, as we show in Section IV-A, can be
as low as 3 kop/s, rendering the system almost unusable.

In order to remove the near-stop situation, we propose a
two-stage throttling method to avoid a sharp performance drop.
This is particularly beneficial to workloads with periodic write
bursts, which is common in large-scale systems [22], [37].
• Stage 1: Slight Throttling. When the number of Level-0 files
reaches the user-defined slowdown threshold, throttling is
activated to conservatively reduce the write rate to no lower
than the maximum acceptable delayed write rate.
• Stage 2: Aggressive Throttling. When the number of Level-
0 files continues to grow and reaches the second-level throt-
tling threshold, which is defined as (slowdown threshold+
stop threshold)/2, the more aggressive throttling, Algo-
rithm 1, will be applied to slow down the incoming traffic.

To evaluate the effect of our proposed two-stage throttling
method, we benchmark RocksDB using a workload with
READ/WRITE ratio being 1:1. This workload has a periodic
write burst (READ/WRITE ratio being 1:9) lasting for 25 sec-
onds per minute. As Figure 18 shows, the throttling throughput
of the original design is about 9 kop/s from 135s to 142s,
12 kop/s from 151s to 163s. In contrast, we can hardly see
near-stop periods with our proposed approach, meaning that
even such a simple approach can effectively remove the near-
stop situation for workloads with periodic write bursts.

B. Dynamic Level-0 Management

As Section IV-B shows, the number and size of Level-0
files have a great impact on the performance of RocksDB. In
specific, having fewer Level-0 files would reduce the READ
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latency due to a smaller number of files for searching, while
a smaller Level-0 file size would reduce the WRITE latency
due to the reduced insertion overhead to a smaller skiplist.
Therefore, there exists a tradeoff point between the two factors,
depending on the workloads (READ or WRITE intensive).

Assuming the aggregate volume of Level-0 files is constant,
we present a simple dynamic Level-0 management method that
optimizes the number of Level-0 files and the file size based
on the READ/WRITE ratio measured online.

The RocksDB is initialized to throttle writes when the
number of files at Level-0 reaches 24. Then we measure the
READ/WRITE ratio during runtime. When the workload is
observed to be WRITE intensive, we configure the Level-0 to
have smaller, yet more (e.g., 24 in our example) files; When
the workload is READ intensive, we configure the Level-0 to
have larger, yet fewer (e.g., 6 in our example) files.

To evaluate the effect of our proposed dynamic Level-
0 management method, we benchmark RocksDB with the
default configuration by varying the READ ratio from 5%
to 90%. In our example, we empirically tag the workloads
to be WRITE intensive, if write operations account for more
than 25%. According to Figure 19, our proposed approach
can improve the throughput of RocksDB in most cases. For
example, when the READ ratio is 90%, our approach can
improve the throughput from 77 kop/s to 87 kop/s, which is
an improvement of 13%. When the read ratio is 5%, these two
approaches achieve similar throughput.

C. Reducing Logging Overhead

As we show in Section IV-D, WAL incurs noticeable
overhead to RocksDB. In order to reduce the logging overhead,
a potential solution is to separate WAL out and relocate it to
a faster device, such as byte-addressable non-volatile memory
(NVM). Since the size of WAL is quite small, it is reasonable
to deploy a rather small NVM device to accumulate WAL
updates very quickly.

To evaluate the effect of our proposed NVM logging
method, we emulate NVM by using Linux tmpfs in DRAM.
We benchmark RocksDB with the default configuration by
setting the insertion ratio to be 50%. Figure 20 shows that
logging in NVM can effectively reduce the overhead. For
example, the 90th percentile write tail latency decreases from
about 16 µs to 13 µs, which is an improvement of 18.8%.
However, compared with disabling WAL, logging in NVM

still incurs noticeable performance penalty. It indicates that
the WAL overhead cannot be totally removed by using such a
simple approach and a more sophisticated solution is needed
to fully address it.

VI. SYSTEM IMPLICATIONS AND DISCUSSIONS

In this section, we present important implications for system
designers to effectively deploy RocksDB and optimize the
database management on 3D XPoint SSD.
• Reads. For READ operations, the new 3D XPoint SSD
provides much better performance than flash SSDs in most
cases, which is as expected. We also find that other factors,
such as Level-0 file management, can significantly affect
READ performance. In fact, fewer Level-0 files means less
search overhead, which is proven to be noticeably beneficial
for READ performance. In addition, since the number of
Level-0 files is greatly affected by in-memory component
(e.g., memtable size), the memory management could have
non-negligible, indirect performance impact than expected.
Thus optimizing data management in memory also becomes
important as the storage performance continues to improve.
• Writes. For WRITE operations, 3D XPoint SSD can provide
better performance than flash SSDs, for workloads with light
to moderate amount of writes. With a heavy load of write
requests, however, many optimizations in the current key-
value store design, such as the throttling process and write
pipelining, which are customized and heavily tuned for flash
SSDs, can create unexpected negative effect on 3D XPoint
SSD. It unfortunately cancels the great performance advantage
of 3D XPoint SSD, despite the much faster hardware. As
real-world applications are becoming increasingly WRITE
intensive, we must carefully reconsider such “obsolete” op-
timizations and develop new schemes to fit the properties of
the new-generation hardware.
• Memtable. The memtable in RocksDB has an opposite ef-
fect on READ and WRITE operations. On a faster 3D XPoint
SSD, a larger memtable in LSM-tree based data store still can
bring benefits for READ-intensive workloads. It is because a
larger memtable would result in fewer Level-0 files, which
reduces the search time at Level 0. Due to the smaller
performance gap between memory and underlying storage,
such a benefit is more significant on 3D XPoint SSD.

For WRITE-intensive workloads, a large memtable in-
creases the overhead of insertion operations, causing unan-



ticipated performance degradation. The current system design
largely ignores this issue, simply assuming a large in-memory
memtable would be generally beneficial for both READ
and WRITE operations. More sophisticated mechanisms are
needed for performance improvement. For example, since
memtable size has opposite effects on READ and WRITE
requests, system designers may consider dynamically merging
multiple small mutable memtables into a large immutable
memtable according to workload characteristics.
• Read/Write Interference. We have observed significant
throughput improvement with a high I/O parallelism on all
three SSDs. Although RocksDB on 3D XPoint SSD outper-
forms flash based SSDs in terms of throughput, Read/Write
interference on 3D XPoint SSD has a more pronounced impact
on the WRITE request latency than on flash SSDs. It is
because 3D XPoint SSD processes READ requests much
faster, which in turn results in more WRITE threads being
queued up and waiting until the previous batch writing is done.

Many optimizations can be done to alleviate this problem.
For example, we may use multiple short write thread queues
rather than one single long queue, creating more parallelism
and overlapping. We can also associate write requests with
different priority-based performance policies. For example,
latency sensitive requests can be processed with a high priority.
For practitioners, selecting a proper parallelism setting to
balance throughput and latency is a wise choice.
• Logging. Logging is a necessary mechanism to ensure the
reliability of the data store. However, it is also an important
factor affecting performance, which is particularly visible on
the high-speed 3D XPoint SSD. In fact, we see a non-trivial
performance improvement in both throughput and latency by
speeding up the WAL accesses. In practice, system designers
should consider optimizing the current logging mechanism
or proposing novel designs to minimize the overhead. For
example, compressing and condensing the data written to the
log could help reduce the I/O traffic and correspondingly
reduce the time overhead of logging.

The essential difference between flash SSD and 3D XPoint
SSD with RocksDB is not only the significant speed improve-
ment of the physical storage media, but also the continuously
diminishing performance gap between memory and storage.
As a result, although several original designs, such as write
throttling, Level-0 file management, and the pipelined writing,
work well on flash SSD, the involved overhead would become
non-negligible on 3D XPoint SSD. Our work has provided
quantitative results and valuable guidance for system designers
to optimize the current design and successfully integrating it
with 3D XPoint SSD into data center systems.

VII. RELATED WORK

LSM-tree based key-value stores have been extensively
studied. Prior work can be roughly divided into two categories.

Improving Key-value Store Performance. Given the im-
portance of write performance, HyperLevelDB [10] aims to
increase the write throughput by introducing a fine-grained
locking and a new compaction algorithm. bLSM [31] proposes

a new merge scheduler to effectively optimize both write
latency and throughput. VT-Tree [33] introduces an additional
level of indirection for sorting data and also eliminates unnec-
essary data copy operations. WiscKey [23] takes a different
approach to improve performance. It separates keys and values
and moves the values out of the LSM structure. LOCS [40]
exploits the internal parallelism of Open-channel SSDs by
leveraging the exposed low-level hardware details to improve
the compaction performance. Similarly, cLSM [14] also aims
to increase the concurrency in LSM-tree based stores. LSbM-
tree [36] develops an on-disk buffer to mitigate the effect of
invalidated system buffer cache to enhance the compaction
efficiency. LSM-trie [41] develops a data structure, called trie,
to organize keys, therefore mitigating the problem of write
amplification. PebblesDB [30] proposes a structure, called
Fragmented Log-Structured Merge Trees (FLSM), to achieve
high write performance. In this paper, we particularly focus on
RocksDB, a popular key-value store, and study the potential
performance impact of the new storage hardware.

Modeling Key-value Store Performance. Many prior stud-
ies have evaluated the performance of the LSM-tree based
key-value store designs. Some focus on analytic metrics, such
as read/write amplification factor, analyzing the experiment
results and studying the design rationales [10], [11], [20],
[21], [24], [31]. Some other works use the concept of per-
operation costs for analysis [33], [34], [39], [40]. Besides,
other factors, such as operating system [19] and hardware [7],
[35], also have significant performance impact on the key-
value stores. These prior works more focus on the key-value
store itself or other specific layers and lack sufficient studies on
the interaction between the software design and the underlying
hardware. Our work focuses on this aspect, in particular how
the current software design of RocksDB interact with the
underlying storage devices, which are quickly evolving. Thus
this paper is largely orthogonal to these prior works.

Among the related work, NoveLSM [17], which uses a byte-
addressable skiplist, directly manipulates the persistent state,
and enhances read I/O parallelism on NVM, is the closest
to this work. However, our work focuses on identifying the
bottlenecks of the start-of-the-art key-value store design on the
emerging 3D XPoint SSD, which is fundamentally different
from byte-addressable NVM.

VIII. CONCLUSION

In this paper, we have conducted comprehensive exper-
iments to understand the performance impact of the new-
generation storage hardware on RocksDB. Besides confirming
the great performance potential of 3D XPoint SSD, our
experimental results have also observed several unexpected
bottlenecks of RocksDB with this new technology. We have
also developed three case studies as examples to showcase
possible optimizations based on our findings. Finally, we have
discussed the system implications for system designers and
practitioners. Our work shows that the rapidly evolving storage
technology, such as 3D XPoint SSD, not only presents many
challenges but also opens numerous opportunities.
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