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ABSTRACT
Under a replacement policy, existing operating systems iden-
tify and maintain most frequently used storage data in buffer
caches located in main memory, aiming at low-latency I/O
data accesses. However, replacement policies can also strongly
affect energy consumptions of various connected storage de-
vices, which has not been a consideration in the design and
implementation of buffer cache management. In this pa-
per, we present a system framework for an energy-aware
buffer cache replacement, called PS-BC (power-saving buffer
cache). By considering several critical factors affecting sys-
tem energy consumption, PS-BC can effectively improve sys-
tem energy efficiency, while it is able to flexibly incorporate
conventional performance-oriented buffer cache replacement
policies for different performance objectives. Our experi-
mental studies based on a trace-driven simulation show that
the PS-BC framework embedded with the CLOCK replace-
ment policy can achieve an energy saving rate of up to 32.5%
with a minimal overhead for various workloads.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Main Memory

General Terms
Design, Experimentation, Performance

Keywords
Hard disk, buffer caches, energy saving, power management

1. INTRODUCTION
Buffer cache is a performance-critical component in oper-

ating systems. As an intermediate layer bridging the perfor-
mance gap between processors and storage devices, based on
its prediction, buffer cache maintains a data set with high
locality in main memory to avoid long I/O latency.

The decision maker in buffer cache management is its re-
placement policy, which distinguishes locality strengths of
blocks and selectively caches the blocks that are most likely
to be reused again. Following this basic performance ori-
ented principle, the advancement of buffer cache manage-
ment has gone three different stages during the last 40 years.
LRU and CLOCK [11] represent an early development in the
field. They are effective for strong locality data accesses and
have been widely used. The major limitation of LRU-like
policies is the inability to handle workloads with weak local-
ity (e.g. one-time accesses and loop-like accesses) [15]. To
address this serious issue, researchers have made many years’
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efforts. Representative algorithms and implementations are
LIRS [15] and CLOCK-Pro [13], which have been gradually
adopted in production systems. The most recent develop-
ment to improve buffer cache management is to make spatial
locality into consideration in replacement policies, such as
sequential accesses versus random accesses in disks [14].

Computer system development has been highly perfor-
mance driven, and power saving issues have been paid at-
tention only recently. Buffer cache management can signif-
icantly influence the energy consumption of computer sys-
tems due to its filtering effect – accessing a block in the buffer
cache can be satisfied in memory without accessing the stor-
age device. As a result, the replacement policy, which de-
cides the selection of blocks for caching, is capable of shaping
the data access sequence to storage devices, in terms of both
the amount of accessed data and the pattern in which data
are accessed. In practice, different data access sequences
can lead to completely divergent energy consumptions, due
to the following three reasons:

1. Accessing different storage devices incurs dis-
parate energy consumptions: Modern computer
systems often interact with a broad set of storage de-
vices, which have various energy consumption require-
ments, such as flash disks and hard drives. Even the
same type of devices can have different power con-
sumption requirements due to variable performance
specifications. For example, a 15,000 RPM IBM Ultra-
star 36Z15 hard disk has an active power of 13.5 Watts,
while a 4200RPM Hitachi DK23DA laptop disk has a
power of only 2 Watts in the same power mode. Thus
caching blocks from high-power devices can save more
energy than caching blocks from low-power devices.

2. Different data access patterns lead to different
energy consumptions: The energy consumption of
accessing storage devices is determined not only by the
amount of accessed data but also by the access pat-
terns. For example, a bursty workload on a hard disk
is more likely to consume less energy than a non-bursty
workload, because its long idle periods can create more
opportunities for the built-in Dynamic Power Manage-
ment (DPM) unit to transition the disk to a low power
mode. Thus caching blocks being accessed in a non-
bursty pattern is more energy efficient.

3. Energy consumption of the base system is also
I/O performance dependent: Besides storage de-
vices, the base system, including the power-hungry
CPU and memory, also consumes a significant amount
of energy. For example, the SUN Fire X4100 Server
base system has a power of 218 Watts, while a high
performance disk has a power of only around 10 Watts.
Though storage devices in such a system only account
for a small portion of the overall energy consumption,
the high storage access latency can cause the whole
system to waste energy by waiting for slow I/O opera-
tions. In other words, improving I/O performance can
effectively reduce system-wide energy consumption, es-
pecially for data-intensive applications [16]. Therefore



caching blocks accessing which would incur high I/O
latency is also beneficial for energy-saving purpose.

Having carefully considered the three factors, we propose a
system framework for an energy-aware buffer cache replace-
ment, called PS-BC (power-saving buffer cache). PS-BC can
effectively optimize energy efficiency based on the key fac-
tors affecting the system energy consumption, meanwhile,
it is able to flexibly incorporate conventional performance-
oriented buffer cache replacement policies for different per-
formance objectives. Our trace-driven simulation based stud-
ies show that PS-BC embedded with the CLOCK replace-
ment policy can achieve an energy saving rate of up to 32.5%
with a minimal overhead under various scenarios.

2. ENERGY SAVING RATE
Modern storage devices often provide multi-level power

modes. For example, a typical hard disk usually has four
power modes: active, idle, standby, and sleep. Similarly,
wireless network interface cards (WNIC) provide continuous-
aware mode (CAM) and power saving mode (PSM). For the
purpose of energy saving, the built-in DPM mechanism can
transition a device from a high power mode to a low power
mode, once the device has been idle for a ‘time-out’ period.

Without loss of generality, we call the periods of time
when a storage device stays at the high power mode busy pe-
riods, and the rest quiet periods. If all blocks accessed during
a busy period were already held in memory by an energy-
aware caching policy, the busy period could be avoided and
become a quiet period, since the device would be kept at
the low power mode. In other words, each block accessed
during a busy period consumes a certain amount of energy,
and caching it in memory could save the same amount of
energy. Our goal is to identify and cache the blocks caching
which could save the most energy.

ESR =
Ehigh(d) − Elow(d) + Etrans(d) + Pbase × L(b)

S(b)
(2.1)

Figure 1: Energy Saving Rate (ESR). Ehigh(d) and
Elow(d) are energy consumptions of a device d at high
and low power modes, respectively. Etrans(d) is the
energy overhead of power mode transition. Pbase is
the base system power. L(b) is the I/O latency of
accessing data during a busy period, b. S(b) is the
number of blocks accessed during the busy period.

To quantitatively describe the amount of energy that caching
a block could save, we introduce a metric, Energy Saving
Rate (ESR), as shown in Equation (2.1). In this equation,
the involved parameters either can be found in the device
specifications (e.g. Pbase(d)), or can be measured or calcu-
lated out during runtime. For example, Ehigh(d) is a prod-
uct of the device high power (in Watts) and the duration of
the measured busy period time (in Seconds).

ESR describes the three key factors affecting energy saving
in one single metric. In particular, Ehigh(d) − Elow(d) +
Etrans(d) reflects the power consumption characteristics of
the storage device, Pbase ×L(b) describes the impact of I/O
latency to the energy consumption of the base system, and
S(b) represents the burstiness of data accesses. In essence,
ESR is a model describing the average energy consumed for
accessing a block, and it also can be flexibly extended to
incorporate other device power models (e.g. the devices with
multi-level power modes), if needed.

In the end of a busy period, i.e. when a device is transi-
tioned to the low power mode, we can know the measured
I/O latency, the amount of accessed data, and the duration
of the busy period. The ESR value for this busy period
can be calculated using Equation (2.1). Each block accessed
during the busy period is associated with this ESR value.
In PS-BC, we use the ESR value associated with a block

as an indicator to describe its value for energy saving. In
particular, the larger an ESR value is, the more valuable the
associated block is regarded for energy saving.

3. THE DESIGN OF PS-BC FRAMEWORK
As a flexible system framework, PS-BC can incorporate

any advanced replacement policies designed for optimizing
performance, while it introduces the capability of being en-
ergy aware to buffer cache management. In this section, we
will explain how to achieve this goal in our design.

3.1 The PS-BC Framework

Figure 2: The PS-BC framework for energy-aware
buffer cache replacement. Each circle in the list rep-
resents a memory block. The numbers beside blocks
in the regular list are its REF counter, AGE counter,
normalized ESR value, respectively.

In the PS-BC framework, the buffer cache is segmented
into two regions, regular region and priority region (see Fig-
ure 2). The blocks in the two regions are managed sepa-
rately by using different replacement policies. As the names
indicate, the priority region manages its blocks as ‘first-class
citizens’ by using a performance-oriented replacement pol-
icy, e.g. CLOCK, to optimize system performance. The
blocks in the regular region are regarded as ‘second-class
citizens’ and managed by an energy-oriented replacement
policy (shown in Section 3.3) for energy saving.

Initially, a block fetched into the buffer cache is inserted
into the regular region. If it is recognized as a big ‘energy-
saving contributor’ (e.g. it is accessed frequently or carries
a large ESR value), the block is promoted to the priority re-
gion. Accordingly, a block, which is regarded as least valu-
able for I/O performance, is demoted from the priority region
to the regular region. Upon a memory miss, a victim block
is selected from the regular region.

Partitioning the buffer cache with different region sizes
can affect the buffer cache management. For example, a
large regular region means the overall replacement is more
energy-saving oriented. As a configurable option, we set
the regular region size twice as large as the priority region
size to make the replacement more energy effective. In our
experimental studies we found this setting largely balances
performance and energy-saving and works pleasantly well in
practice. We also can apply techniques similar to that in [9]
to automatically tune this parameter during runtime.

3.2 Managing the Priority Region
The priority region adopts a performance-oriented replace-

ment policy, which manages the blocks to optimize I/O
performance. The PS-BC framework flexibly allows any
performance-oriented replacement policy (e.g. CLOCK-Pro
[13] or LIRS [15]) to be integrated into the management of
the priority region, which has several merits. First, adopting



a performance-oriented replacement policy to manage the
priority region can effectively hold the most performance-
critical blocks in memory and avoid introducing high I/O
latency. Second, the blocks are promoted to the priority re-
gion due to their high contribution for energy saving, so sys-
tem energy efficiency would not be affected much without
further considering their energy-saving properties. Third,
this design can also flexibly incorporate different replace-
ment policies for various design objectives. In this paper,
we show a case of embedding the CLOCK algorithm [11] in
the PS-BC framework to manage the priority region.

3.3 Managing the Regular Region
A block’s value for energy saving is determined not only

by how much energy it could save, its associated ESR value,
but also how likely it would be accessed, its locality. For ex-
ample, caching a frequently accessed block with a small ESR
value can save a substantial amount of energy comparable
to caching an infrequently accessed block with a large ESR
value. Therefore, the regular region manages the blocks by
considering both the blocks’ energy-saving properties and
temporal locality.

Akin to the CLOCK algorithm [11], we link the blocks in
the regular region in a circular list, called regular list, and a
clock hand points to the list end. Each block is associated
with two counters, REF, which records how many times the
block has been accessed, and AGE, which records how many
times the block has been swept over by the clock hand. Both
counters are initialized to zero when the block is inserted
into the list. A block’s ESR value, which represents its value
for energy saving, is normalized to an integer, nESR, as a
threshold to determine how long this block is allowed to stay
in the buffer cache. In the next section, we will introduce
the normalization of ESR values.
/* initialize the promotion threshold */
Initialize promo_thld = 0;

get_victim_on_regular_list()
{
diff = INFINITE;
victim = NULL;
for each block in the regular list{

block->AGE ++;
/* return the first met block that is over-aged */
if(block->AGE > block->nESR){

return block;
}
if(block->nESR - block->AGE < diff){
diff = block->nESR - block->AGE;
victim = block;

}
}
return victim;
}
hit_block_on_regular_list(block)
{
block->REF ++;
block->AGE = 0;
if(block->REF*block->ESR > promo_thld){

victim = get_victim_block_from_priority_region();
promo_thld = p*promo_thld + \\

(1-p)*(victim->REF*victim->ESR);
demote_block_to_regular_region(victim);
promote_block_to_priority_region(block);

}
}
Figure 3: Operations on blocks in the regular region

Figure 3 shows the pseudocode of two key operations in
the regular list. Upon a memory miss, we need to identify
and evict the most ‘valueless’ block in the regular region as
a victim block. Each time, we scan the blocks in the regular
list starting from the block that the clock hand points to and
move the clock hand in the clockwise direction. Each swept
block has its AGE counter incremented by one to depreciate
its priority of staying in the buffer cache. If the block’s AGE
counter exceeds its normalized ESR value, nESR, it is identi-
fied as the victim block. Otherwise, we move the clock hand

to the next block and repeat this process until all blocks are
scanned. While scanning the blocks in the list, we record the
block whose AGE is closest to its nESR value. This block
is returned as the victim block, if all blocks in the list are
scanned and no qualified victim block is found. This brings
two benefits: First, it avoids multiple scans for reclaiming
one block, which reduces overhead, especially when there
are a large number of blocks in the list. Second, it ensures
that a block is penalized by incrementing its AGE counter
at most once for a memory miss.

Upon a hit on a block in the regular list, the block’s REF
counter is incremented by one to track the number of ac-
cesses to it, and its AGE counter is cleared to restart the
aging process. If a block has saved a substantial amount of
energy (e.g. it is frequently hit in memory or each hit to it
saves a lot of energy), we grant it a high priority and promote
it into the priority region, where it is given more privilege
to stay in memory. To this end, we check if the block’s ac-
cumulated energy saving exceeds a threshold promo thld, as
shown in the pseudocode. If true, this block is promoted to
the priority region, and a block is demoted from the priority
region accordingly. The threshold is automatically deter-
mined and dynamically updated by the energy saving con-
tributed by the blocks that are recently demoted from the
priority region. The reason behind this is that, if a block
saves even more energy than another block that is resident
in the priority region with a higher priority, it should be
promoted to the priority region.

3.4 Normalizing ESR
As mentioned in the previous section, a block’s ESR value

needs to be normalized to an integer, nESR, which deter-
mines how long the block can stay in the regular list. We
use Equation (3.2) to normalize the ESR values.

nESR(esr) =

—

(esr − ESRfloor) × Resolution

ESRceiling − ESRfloor

+ 1

�

(3.2)
It is non-trivial to select a proper parameter set {ESRfloor,

ESRceiling , Resolution} due to several reasons. First, the
ESR values can vary greatly, especially considering the di-
versity of storage devices and workloads. Second, the blocks
in the regular region can move in and out frequently. A
proper parameter set for the current set of blocks may not
be a sound choice at a later time. Third, resolution de-
termines how much difference between ESR values we can
distinguish. The smaller resolution is, the less difference we
can tell. As an extreme case, setting resolution 1 would dis-
regard the ESR values for replacement, and the caching pol-
icy would behave similar to the CLOCK algorithm. Thus,
the normalized ESR value, nESR, should represent the rel-
ative difference between the blocks’ ESR values. Ideally, we
should ‘zoom in’ when the difference between ESR values is
small, and ‘zoom out’ if ESR values are distributed sparsely.

3.4.1 ESRfloor and ESRceiling

In order to determine ESRfloor and ESRceiling , we track
the number of blocks moved into the regular region. Once
m blocks in the regular list change, we re-evaluate the two
parameters. Simply using the minimum and the maximum
of ESR values can be suboptimal, because a small portion
of blocks may carry ESR values that deviate greatly from
the other blocks. Alternatively, we calculate a cumulative
distribution function (CDF) of ESR values. ESRfloor is the
maximum of the s smallest ESR values, and ESRceiling is set
as the minimum of the s largest ESR values. In experiments,
we set m and s as 10% and 5% of the number of blocks in
the regular list, which works well in practice. Since ESR
values can be collected when the regular list is scanned for
searching a victim block, no extra scanning is needed.

3.4.2 Resolution
The parameter resolution determines how likely a caching

policy is to be energy-aware. A high resolution makes caching



more ‘energy-saving oriented’, as a slight difference between
ESR values can be distinguished. Thus, if we can yield
more benefits by setting the caching policy more energy-
saving oriented, resolution should be tuned up, otherwise,
resolution should be tuned down.

To estimate the effectiveness of tuning resolution, we set
an additional buffer, called victim buffer, to record the meta-
data of blocks evicted from the regular region and its size
is set the same as the regular region. An energy saving
counter ESvictim is associated to the victim buffer and ini-
tialized to zero. We also associate another counter ESregular

to the regular region. Once a memory miss occurs, we check
whether the on-demand block is resident in the victim buffer.
If true, ESvictim is incremented by the block’s ESR value.
If a block is hit in the regular region, ESregular is updated
in the same way. Periodically, we compare the two counters.
If ESregular is larger than ESvictim, which means the last
tuning is beneficial, we tune resolution linearly to the same
direction as we did last time. If ESregular is smaller than
ESvictim, which means resolution is over-tuned last time,
we tune it exponentially back to the opposite direction.

3.5 Adapt to Run-time Dynamics
In practice, many run-time dynamics, such as cold misses,

may prevent us from powering down a device. If that hap-
pens, a busy period cannot be converted to a quiet period as
expected. In order to adapt to such situations, we associate
each storage device with a scale, a floating point value be-
tween 0 and 1, to describe how much likely we can achieve
the expected optimal case. In particular, a small scale value
means that we are unlikely to achieve the optimal case. The
scale value is determined as follows.

In the optimal case, a busy period can be avoided, so the
lowest energy consumed by a storage device is its energy
consumption in the low power mode, denoted as Energyopt.
In practice, the achievable lowest energy consumption is the
energy consumed when all available memory space is allo-
cated to hold blocks from the device exclusively, denoted as
Energypseudo−opt. We also denote the energy actually con-
sumed by the storage device as Energyreal. With the three
values, scale can be calculated by using Equation (3.3).

scale =
Energyreal − Energypseudo−opt

Energyreal − Energyopt

(3.3)

In this equation, Energyopt and Energyreal can be cal-
culated based on the storage device specification data and
the observed data access sequence. Energypseudo−opt can be
estimated by assuming all the memory space is allocated to
hold blocks from the storage device exclusively. Periodically,
scale for each device is updated to reflect the most recent
change, and we use scale × ESR rather than the original
ESR value for replacement. As each block’s ESR value does
not need to be scaled until it is swept over by the clock hand,
scaling ESR values would incur little run-time overhead.

4. EVALUATION

4.1 Simulation
We conducted a trace-driven simulation to evaluate the ef-

fectiveness of the PS-BC framework. The simulator, called
iosim, emulates the policies used in the Linux system, in-
cluding the 2Q-like memory page replacement algorithm, the
two-window based readahead policy, the I/O request clus-
tering mechanism, and the periodic write-back scheme, etc.
We also simulated the policies of the Linux laptop mode [2]
as a baseline case to show the energy saving achieved by the
existing power management mechanism.

In our simulation, the write-back interval is set 10 min-
utes, the sync delay is set 5 seconds, the highest ratio of
dirty blocks is set 40%, and the lowest ratio of dirty blocks
is set 5%. The disk spin-down timeout is set 20 seconds.

4.2 Storage Devices
We simulated five different types of storage devices, in-

cluding a flash drive, a wireless interface card, a laptop disk,
a high performance SCSI disk, and a flash disk.

The simulated flash drive is a Transcend TS1GJF2A flash
drive with a 1GB capacity [8]. Its read and write bandwidths
are 12MB/sec and 8MB/sec, respectively. Its maximum ac-
tive power is 0.37W, and its sleep power is 0.6mW.

The simulated wireless card is a Cisco Aironet 350 with
a bandwidth of 11Mbps [4]. It has two power modes, PSM
mode and CAM mode. If being idle for more than 800 msec,
the wireless card switches to the PSM mode. If more than
one packet is received, it switches back to the CAM mode.
Its power consumption parameters are shown in Table 1.

Mode Power Consumption

PSM(idle/recv/send) 0.39 W /1.42 W /2.48 W
CAM(idle/recv/send) 1.41 W /2.61 W /3.69 W

CAM to PSM(Delay/Energy) 0.41sec/0.53J
PSM to CAM(Delay/Energy) 0.40sec/0.51J

Table 1: The Cisco Aironet 350 wireless card [4].

Two types of hard disks are simulated, a laptop disk and
a high performance disk. The simulated laptop disk is a
Hitachi DK23DA laptop disk which has a 30GB capacity,
4200 RPM and 35MB/sec bandwidth [9]. The simulated
high performance disk is an IBM Ultrastar 36Z15 SCSI disk
which has a 18.4GB capacity, 15000 RPM and 53MB/sec
bandwidth [9]. Their power consumption parameters are
listed in Table 2. The spin-down timeout for both disks is
set 20 seconds, the default value for Linux laptop mode.

Power mode Hitachi DK23DA IBM Ultrastar

Active Power 2.00 W 13.5 W
Idle Power 1.60 W 10.2 W

Standby Power 0.15 W 2.5 W
Spin up 1.6 sec/5.00 J 10.9 sec/135 J

Spin down 2.30 sec/2.94 J 1.5 sec/13 J

Table 2: The hard disk power parameters [9].

The simulated flash disk is an Adtron A35FB flash disk
with a capacity of 128GB [1]. Its read and write bandwidths
are 65MB/sec and 55MB/sec, respectively. Its active power
is 2.0W and idle power is 1.75W.

4.3 Traces
In our simulation, we designed two typical computing sce-

narios to show how PS-BC behaves under different environ-
ments. The first experiment simulates a mobile computing
scenario, in which a laptop user is programming, searching
codes, and listening to music. The base system is an IBM
T20 laptop, which has a power of 15.8 Watts [4]. Three ap-
plications, make, grep, and xmms, are traced by using our
modified strace utility [8], which can intercept I/O related
system calls, such as read() and write(). The details of three
applications are shown in Table 3.

Name Description File # Size(MB)
make a Linux kernel compiler 2579 72.5
grep a text search tool 1332 50.4
xmms a mp3 player 116 47.9

Table 3: Trace description of applications

This workload is synthesized by concatenating the col-
lected traces of the aforesaid applications. As shown in Fig-
ure 4(a), it includes seven stages, each of which is a replay
of one or multiple traces on different storage devices, indi-
vidually or simultaneously. Three storage devices are used
in this case, including a laptop disk, a flash drive, and a
wireless network card. In this workload, a laptop user first
compiled a Linux kernel binary (make) on the disk and on
the flash drive. Later, the user re-compiled the Linux kernel
binary on the disk again, and connected to a remote storage



server via the wireless card and searched in a set of Linux
source code files (grep) stored on the remote server, then the
user made another compilation on the disk again. Finally
the user opened the xmms media player to enjoy the music
while compiling the codes on the remote storage.

The second experiment is designed to evaluate PS-BC on
an enterprise server running real-world workloads. It sim-
ulates a Sun Fire X4100 server, which has a power of 218
Watts (the aggregate power consumed by all components,
including CPU and memory, except storage devices) [3]. It
is equipped with two storage devices, a 15,000RPM IBM
Ultrastar 36Z15 disk and an Adtron flash disk. For servers
equipped with more hard disk drives, we expect to see more
significant gains on energy saving, since energy consumption
would increase with the number of attached hard disks. This
server provides web searching service and NFS file service.
The search engine I/O trace [5] is collected from a popular
search engine and it features intensive random data accesses
due to high access concurrency. The NFS trace [10] is col-
lected in a typical office/research environment, which shows
a strong locality. As done in practice, we dedicate the flash
disk to host the search engine workload to speedup random
data accesses. The NFS workload is held on the IBM disk.

4.4 Case 1: Mobile Computing
This workload is designed as a micro-benchmark to specif-

ically show how PS-BC behaves to achieve the design goals.
In addition to PS-BC, we also simulate the 2Q-based mem-
ory replacement algorithm adopted in current Linux ker-
nel, and GreedyDual [7], which is a cost-aware caching al-
gorithm. Respectively, they are referred to as Linux and
GreedyDual. For a fair comparison, we use the ESR value,
which is used in PS-BC, to label the cost of each block in
GreedyDual. We set the memory size 64MB to trigger the
buffer cache replacement by creating a high memory pres-
sure. In practice, available memory size is often larger, but
the demand for memory space is much higher too. Also note
that the memory used by the OS is not included here.

Linux GreedyDual PS-BC

Total Energy(J) 20148.2 17598.0 15366.7
System Energy(J) 9508.7 8999.8 7036.4
Storage Energy(J) 10639.5 8598.1 8330.3
Disk Energy(J) 6786.6 4873.5 5124.5
Flash Energy(J) 6.6 12.5 6.6
WNIC Energy(J) 3846.2 3712.1 3199.0

Table 4: Case 1 mobile computing: Energy consump-
tions of Linux, GreedyDual, and PS-BC. The system
energy consumption is measured during I/O time.

As Table 4 shows, PS-BC consumes 15366.7J energy in
total, which is 23.7% less than that of Linux and 12.6% than
that of GreedyDual. PS-BC optimizes the access stream to
the laptop disk and wireless network card, which are both
energy-inefficient devices. More specifically, compared to
Linux, PS-BC consumes 24.4% less hard disk energy and
16.8% less wireless card energy. Although PS-BC consumes
a little more (5.1%) disk energy than GreedyDual, it is paid
back by consuming 13.8% less energy for the wireless card.
Since the number of memory misses is reduced, not only the
system performance is improved due to lower I/O latency,
but the energy consumed by the base system during I/O
time is also reduced by 26%, from 9508.7J to 7036.4J.

In order to clearly show how energy saving is achieved by
PS-BC, we plot the storage activities of all three algorithms
in Figure 4. At the first stage, all three algorithms have to
activate the hard disk to load data. At stage 2, building the
Linux kernel binary on the flash drive leads to cold misses
for all three policies. At this stage, Linux behaves differently
from the other two energy-aware algorithms. Linux replaces
the blocks loaded from the disk, since the blocks loaded from
the flash drive are more recently used and have better tem-
poral locality. Consequently, at stage 3, when the disk blocks
are accessed again, Linux has to spin up the high power disk

to service requests, while GreedyDual and PS-BC can keep
the disk at the standby mode. The green spikes shown on
Figure 4(c) and 4(d) are delayed write-back of dirty blocks.
At stage 4, grep, which scans the Linux source code, accesses
the remote storage via the wireless card. Though power con-
sumption of the wireless card is comparable to the laptop
disk, the access pattern of grep is completely different from
that of make. Grep references a large amount of data in a
few seconds, which makes it much more bursty than make.
Both PS-BC and GreedyDual recognize this difference and
protect the disk blocks, while Linux ignores this fact and
evicts the disk blocks out of memory. As a result, at stage
5, substantial energy is saved by PS-BC and GreedyDual.
At stage 6, we activate the ESR scaling to show how PS-
BC adapts to the runtime dynamics. At this stage, the user
begins to use xmms to listen to music, which accesses the
hard disk constantly and makes the disk unable to be spun
down. Simultaneously, the user is building a Linux kernel
binary on the remote storage. As xmms competes with make
for memory space, Linux cannot keep the whole working-set
of make in memory. GreedyDual relies solely on the static
ESR values and cannot dynamically adapt to the change
of device status. Thus GreedyDual still offers disk blocks a
high priority to stay in memory, although xmms keeps the
disk active and no further energy saving can be achieved. In
contrast, PS-BC quickly recognizes that the disk cannot be
spun down, and thus it responds by biasing the disk blocks
and evicting them from memory. Thus, at the last stage,
PS-BC avoids most accesses to the remote storage, while
GreedyDual and Linux have to activate the wireless card,
which raises substantial energy consumption.

4.5 Case 2: High Performance Server

Figure 5: Case 2 server: The storage and system en-
ergy consumptions of Linux and PS-BC. The system
energy consumption is measured during I/O time.

The second workload is designed to show how PS-BC
works on enterprise servers running real-world workloads.
In the previous section we have shown how PS-BC bene-
fits from the scalable ESR values, compared to GreedyDual,
which uses static ESR values. In this section, we will focus
on comparing Linux and PS-BC with more details.

Linux PS-BC

Flash Hit Ratio 0.17% 0.02%
Flash I/O latency(sec) 137.8 138.0
Flash Energy(Joules) 10066.1 8867.8

Disk Hit Ratio 75.7% 83.2%
Disk I/O latency(sec) 3296.4 2112.9
Disk Energy(Joules) 69462.4 58670.1

Table 5: Case 2 server: Experimental results of Linux
and PS-BC (256MB Memory).

Figure 5 shows the energy consumptions of the storage de-
vices and the base system for Linux and PS-BC with various
amount of memory. The base system energy consumption
is measured during the I/O time. On a system with 128MB
memory, Linux consumes 902938.9J energy, while PS-BC
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(a) Original Accesses
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(b) Linux
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(c) GreedyDual
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(d) PS-BC

Figure 4: Case 1 Mobile computing: Data accesses in original applications, Linux, GreedyDual, and PS-BC schemes.
All experiments are configured with memory size of 64MB.

consumes only 676127.6J energy, which is an energy saving
of 25.1%. The most significant energy saving is observed on
a system with 256MB memory. PS-BC consumes 558271.7J
energy, which is 32.5% less than that of Linux (828222.4J).
More specifically, PS-BC reduces the energy consumption of
storage devices from 79528.6J to 67537.9J, which is a 15%
energy saving. More significant energy saving is achieved
for the base system — the base system of Linux consumes
748693.7J, which is nearly 52.5% more than that of PS-BC
(490733.7J). In this workload, the base system, SUN Fire
X4100 server, has a power of as high as 218 Watts, which
means reducing I/O latency can save a substantial amount
of energy. Since PS-BC takes the base system energy con-
sumption as an important factor in the calculation of ESR
values, it attempts to not only optimize the energy con-
sumption of storage devices but also reduce the I/O latency,
which in turn reduces the base system energy consumption.
In Table 5, we can see that PS-BC apparently biases the
blocks loaded from the flash disk. The accesses to the flash
disk data has a hit ratio of only 0.02% for PS-BC, while
Linux has a much higher hit ratio (0.17%). Unfortunately,
the higher hit ratio only leads to negligible reduction of I/O
latency, 0.2 seconds. In contrast, PS-BC manages memory
blocks in a more efficient way. It improves the hit ratio of
disk blocks from 75.7% to 83.2%, which not only leads to
a significant reduction of I/O latency but also a substan-
tial energy saving for both the power-hungry hard disk and
the base system. With additional memory, energy consump-
tion of both Linux and PS-BC is reduced, but PS-BC still
achieves 14.6% and 5.5% energy saving with 512MB memory
and 1024MB memory, respectively.

5. RELATED WORK
There are some recent research efforts on energy-aware

caching policies for power saving in storage systems, includ-
ing PA-LRU [17], PB-LRU [18], CBSM [6], and C-Burst [9].
PS-BC differs from these schemes in three aspects and effec-
tively addresses their limits. First, PS-BC evaluates energy-
saving properties at a fine-grained level of blocks, thus en-
ergy consumption is optimized not only for different storage
devices but also for each individual storage. Second, PS-BC
carefully takes the base system energy consumption as an
important factor in the design consideration for achieving
system-wide energy conservation, which has not been con-
sidered in most previous studies. Third, PS-BC is designed
as a general caching policy without any requirement on spe-
cial hardware, such as the speed-adjustable disks [12].

6. CONCLUSION
In this paper, we present an effective system framework

for energy-aware buffer cache management, called PS-BC.
PS-BC carefully considers several critical factors affecting
energy consumption efficiency for accessing storage devices.
It achieves the energy saving purpose by holding the most
valuable blocks for energy saving in memory and adapts to
the dynamic storage status. Our experimental studies show
that PS-BC can achieve an energy saving rate of up to 32.5%
for both mobile computing workloads and real-world server
workloads with a minimal overhead.
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