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ABSTRACT
High energy consumption has become a critical challenge in
all kinds of computer systems. Hardware-supported Dynamic
Power Management (DPM) provides a mechanism to save disk
energy by transitioning an idle disk to a low-power mode.
However, the achievable disk energy saving is mainly depen-
dent on the pattern of I/O requests received at the disk. In
particular, for a given number of requests, a bursty disk ac-
cess pattern serves as a foundation for energy optimization.
Aggressive prefetching has been used to increase disk access
burstiness and extend disk idle intervals, while caching, a crit-
ical component in buffer cache management, has not been
paid a specific attention. In the absence of cooperation from
caching, the attempt to create bursty disk accesses would of-
ten be disturbed due to improper replacement decision made
by energy-unaware caching policies. In this paper, we present
the design of a set of comprehensive energy-aware caching
schemes, called C-Burst, and its implementation in Linux ker-
nel 2.6.21. Our caching schemes leverage the ‘filtering’ effect
of buffer cache to effectively reshape the disk access stream
to a bursty pattern for energy saving. The experiments under
various scenarios show that C-Burst schemes can achieve up
to 35% disk energy saving with minimal performance loss.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Main Memory

General Terms
Design, Experimentation, Performance

Keywords
Hard disk, buffer caches, energy saving, power management

1. INTRODUCTION
Efficient power management has become a required consid-

eration in advanced computing system design. According to
a recent report [8], the overall power consumption by com-
puter servers in data centers has doubled between 2000 and
2005, and this number is still projected to increase in the near
future. Similarly, energy is also regarded as a critical yet lim-
ited resource for mobile computing devices. The explosively
increasing need for energy in all kinds of systems demands
that optimization of energy consumption be a top priority in
system design and implementation. In this paper we present
a novel system enhancement in buffer cache management to
significantly improve energy efficiency in storage systems.

In a computer system, the hard disk is one of the major
contributors to the overall energy consumption, particularly
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for data-intensive applications. For example, disk drives con-
tribute as high as 86% of the total energy consumption in a
typical EMC Symmetrix 3000 storage system [7]. In order
to save disk energy, most practical systems adopt a time-out
based strategy, called Dynamic Power Management: when a
disk is idle for a specific period of time (time-out threshold),
it is spun down to save energy. Upon arrival of a request, the
disk is spun up to service the request. To justify a substantial
energy and performance overhead for spinning up/down disk,
the hard disk must stay in the standby mode for a sufficiently
long period of time, called break-even time. Therefore, the
power consumption in disks can be most effectively optimized
only if requests to disks are clustered in bursts with long idle
intervals in between. Increasing burstiness of disk accesses is
the key to improving efficiency of disk energy consumption.

Prefetching has been recognized as an effective mechanism
for increasing disk access burstiness [15]. By pre-loading to-
be-used data into memory, the future disk accesses can be
directly ‘condensed’ into a sequence of I/O bursts. However,
caching as a fundamental system component in buffer cache
management has not been paid a specific attention. With-
out coordination and a specific effort from an energy-aware
caching design, buffer cache management would have the fol-
lowing limits and cause disk energy saving to be sub-optimal.

1. Caching operations can significantly affect and
disturb periodic bursty patterns in disks. By im-
properly selecting a victim block for eviction, a caching
policy without energy awareness can easily foil the effort
made by prefetching for organizing a periodic bursty ac-
cess pattern. On the contrary, an energy-aware caching
policy can coordinate well with prefetching to maximize
the idle intervals and create a bursty access pattern.

2. Aggressive prefetching shrinks available caching
space, thus demands highly effective caching de-
cisions. In order to maintain sufficient coverage on fu-
ture data requests, all likely-to-be-accessed blocks need
to be prefetched into memory, which raises high memory
contention. As a result, the cache replacement mecha-
nism is often activated to free memory. Properly select-
ing a block for eviction becomes increasingly critical to
system-wide energy saving.

3. Energy-aware caching policy can effectively com-
plement prefetching. Prefetching can be effective
only when its prediction on future accesses is correct.
In real systems it is difficult to achieve required ac-
curate prediction, especially when handling workloads
with complicated access patterns. When prefetching
works unsatisfactorily, energy-efficient caching policies
can well complement prefetching besides playing a co-
ordinating role only.

Most existing caching algorithms, such as the well-known
LRU algorithm and recently proposed CLOCK-Pro [13], are
designed for improving performance only. They cannot be di-
rectly employed for the purpose of energy saving for two rea-
sons. First, they are originally designed for reducing the num-
ber of disk accesses with no consideration of increasing disk
access burstiness. Second, these algorithms usually do not pay
a specific attention to the physical time of disk accesses, which



Figure 1: The HC-Burst Caching Scheme.

is essential for estimating energy consumption. In this pa-
per, we present a set of comprehensive energy-aware caching
schemes and its implementations in Linux kernel, called C-
Burst (Caching for Bursts). By leveraging the ‘filtering’ ef-
fect of buffer cache, we can effectively reshape the disk access
stream to an expected bursty pattern and substantial energy
saving can be achieved.

As an executive summary, we have made the following con-
tributions: (1) We present two comprehensive energy-aware
caching policies, the History-based C-Burst (HC-Burst) and
the Prediction-based C-Burst (PC-Burst), and their imple-
mentations in Linux. (2) Our schemes do not rely on com-
plicated disk power models and require no disk specification
data. Also, we do not assume any specific disk hardware,
such as the previsioned multi-speed disks [9]. (3) We pro-
vide flexible performance guarantees to maintain reasonable
performance degradation under a tolerable performance loss
rate. (4) Unlike many previous simulation based research
work, we have implemented our algorithms in recent a Linux
kernel 2.6.21.5 and the experiment results show that C-Burst
schemes can achieve up to 35% disk energy saving with min-
imal performance loss.

2. DESIGN OF C-BURST SCHEMES
In this section we will first introduce the main architecture

of our buffer cache management, then we present the design
of HC-Burst and PC-Burst schemes in details.

2.1 Priority Region & Energy-Aware Region
Buffer cache management can affect system performance

significantly. In order to avoid raising overwhelming mem-
ory misses, the ‘hot’ blocks should be safely held in memory.
Thus, we segment the buffer cache space into two areas, Prior-
ity Region and Energy-Aware Region. The blocks with strong
locality (hot blocks) are managed in the priority region us-
ing a traditional locality-based replacement policy, such as
the 2Q-like replacement algorithm in Linux, to minimize the
number of memory misses. The blocks with weak locality
(cold blocks) are managed in the energy-aware region using
our energy-aware replacement schemes. The partition size of
priority region is initially set half of the total buffer cache
space and automatically tuned on the fly (see Section 2.4).

As shown in Figure 1, when a new block is added into buffer
cache, it is first added into the energy-aware region, because it
has never been accessed before and shows weak locality. An
IN buffer is used to collect blocks and insert them into the
energy-aware region in cluster. Once a block is reaccessed, it is
promoted into the priority region as a hot block. Accordingly,
a block in the priority region is demoted to the energy-aware
region. Whenever free memory is needed, a victim block is al-
ways selected from the energy-aware region using our energy-
aware replacement policies, HC-Burst or PC-Burst scheme.

2.2 History-based C-Burst Scheme
2.2.1 Main Idea

Most computer systems can simultaneously run multiple
tasks, which may exhibit significantly different access pat-
terns. Unfortunately, the existing buffer cache management

does not consider such fundamental divergence and handles
data accessed by various tasks in the same way. In order to
increase disk access burstiness and save disk energy, the ac-
cess pattern of each task should be characterized individually
and the accessed data blocks should be managed accordingly.
For example, in a system concurrently running grep, a text
search tool, and make, a compiling tool, purposely holding
the dataset of make in memory and aggressively evicting that
of grep is a sensible choice, since grep can load data from disk
in a short burst, which incurs a minimal energy cost.

2.2.2 Tracking Tasks
A task’s access pattern can be recognized based on its ac-

cess history, however, many tasks’ lifetimes are too short to
be tracked, say a few seconds or even less. To address this
problem, we associate an I/O Context (IOC) to each task to
maintain its access history across many runs. IOCs are man-
aged in a hash table and each IOC is identified by a unique
ID number, which is a 32-bit hash value of the absolute path-
name of a user-level application’s executable or the task name
of a kernel thread.

2.2.3 Identifying Burstiness
The access pattern of a task may change over time. Thus we

break down the disk operation time to epochs, say T seconds
for each. Selecting a proper epoch length, T , is non-trivial. A
too short or a too long epoch are both undesirable. We sug-
gest to adopt half of the disk spin-down time-out threshold
as the epoch length for two reasons. First, by comparing two
epoch times, we can easily infer whether a disk spin-down,
the most critical event for disk energy saving, would occur
between them or not. Second, we can ignore the distribution
of individual I/O requests in each epoch, because disk en-
ergy consumption would not change as long as no disk power
transition happens between requests.

In each epoch all the data accesses generated by a task
are called an I/O burst in aggregate. The blocks requested
in one I/O burst are managed as a unit, called Block Group
(BG). Each block group is identified by the task’s IOC ID and
the epoch time. The blocks in a block group are managed
in the LRU order. In this way, a task’s access pattern can
be described using a sequence of block groups, and the disk
access burstiness during each epoch can be described using
the number of blocks in the corresponding block group.

2.2.4 HC-Burst Replacement Policy
When free memory is needed, a victim block should be iden-

tified for replacement. Two kinds of blocks are of special
interests, the blocks being accessed in a bursty pattern and
blocks that are unlikely to be reaccessed. Such blocks can be
found in the largest block group. This is because the more
burstily a task accesses data during an epoch, the larger the
block group would be. Also, the less frequently these blocks
are used, the less number of blocks in the block group would
be promoted to the priority region. Therefore, we need to
identify the largest block group as a victim block group first
and return the LRU block as a victim block.

In order to efficiently identify the victim block group, we
maintain a structure of multi-level queues to manage the block
groups as shown in Figure 1. Each queue links a number of
block groups in the order of their epoch times. Block groups
sharing the same epoch time but owned by different tasks are
placed together in their insertion order. Each block group can
stay in only one queue, and the queue level is determined by
the size of the block group. Specifically, for a block group
with N blocks, the queue level it stays at is ⌊log2(N)⌋. When
the block group’s size changes (e.g. a block is promoted to or
demoted from the priority region), the block group may move
upwards or downwards on the queue stack. We maintain 32
queues in total, and block groups containing equal to or more
than 231 blocks are placed on the top queue.

Identifying a victim block group is simple. We scan from
the top queue level to the bottom. If the queue contains
valid block groups, we select the block group with the oldest
epoch time (the LRU block group) as a victim. All of its
blocks are filled to an OUT buffer for replacement, once the



buffer becomes half empty, victim block groups are identified
to refill the buffer. The blocks in the buffer are evicted in
their insertion order.

In order to avoid holding inactive block groups at low levels
infinitely, we associate each block group with a reference flag,
which is cleared initially. Whenever a block is accessed, the
reference flag of its block group is set to indicate that this
block group is being actively used. Each time when a victim
block group at queue level q is evicted from memory, we scan
the LRU block groups on queues from level q−1 to level 0. The
first met block group with unset reference flag is identified as
a victim; otherwise, the block group’s reference flag is cleared.
In this way, the blocks that have not been accessed for a while
will be gradually evicted.

2.3 Prediction-based C-Burst Scheme

2.3.1 Main Idea
Caching policy can not only affect the disk access burstiness

but also manipulate the timing of disk accesses. Selectively
evicting or holding a block which is to be accessed at a spe-
cific time will create or remove a disk access at that time.
Suppose we know some disk accesses that will deterministi-
cally occur in the future, namely deterministic accesses, we
can purposely coordinate with these known future disk ac-
cesses to improve disk energy efficiency. For example, we can
evict a block that will be accessed during a short interval be-
tween two deterministic accesses and avoid breaking a long
idle interval. The challenge is how to precisely and efficiently
predict the deterministic accesses and blocks’ access times.

2.3.2 Predicting Deterministic Accesses
Predicting future disk accesses is challenging. Some previ-

ous research work [2, 5] adopts complicated models, such as
learning tree and Markov processes, to predict disk activities.
Unfortunately, directly applying such models in real systems
often brings prohibitively high overhead and works unsatisfac-
torily to accommodate uncertain dynamics. Here we present
a practical solution to identify the deterministic accesses.
Initialize credit = 0;
Initialize predictable = 0;
Initialize cred_inc = cred_dec = 1;

/* when an idle interval is observed */
if observed interval == predicted interval

credit = min(credit+cred_inc, 32);
cred_inc = min(cred_inc*2, 8);
cred_dec = max(cred_dec/2, 1);

else
credit = max(credit-cred_dec, -32);
cred_dec = min(cred_dec*2, 8);
cred_inc = max(cred_inc/2, 1);

predictable = (credit > 0) ? TRUE : FALSE;

Figure 2: Prediction of deterministic accesses
In a computer system, there exist many tasks that peri-

odically request disk data in a well predictable pattern. For
example, many system kernel threads are triggered by built-in
timers and periodically access disk (e.g. pdflush writes dirty
blocks to disk every 5 seconds). Also, many applications,
especially multimedia applications, have a steady data con-
sumption rate and their disk accesses are well predictable [6].
Such periodically incurred disk accesses can serve as deter-
ministic accesses.

In practical environment, however, intervals between such
periodic disk accesses may still change over time. It could
be caused by true pattern shift or just occasional system dy-
namics. We need to respond quickly to real pattern change
and accommodate accidental deviation simultaneously. We
present a simple yet effective algorithm as shown in Figure
2. For each task we predict the future interval using the av-
erage of four recently observed intervals. Once a new inter-
val is observed, it is compared with the predicted one. If
the prediction is continuously proved to be correct, we credit
the task exponentially. When significant pattern change oc-
curs, consecutive mis-prediction should be observed and the
task’s credit would be quickly decreased. Meanwhile, occa-

Figure 3: The PC-Burst Caching Scheme.

sional dynamics would just charge the task’s credit slightly.
Once the task’s credits become negative, it is identified as ‘un-
predictable’. Using predicted interval, we can easily estimate
a task’s future disk accesses. The predicted disk accesses of all
predictable tasks are merged to get system-wide deterministic
accesses.

2.3.3 Predicting Block Re-accesses
Estimating a block’s future access time is even more chal-

lenging, since we have to maintain access history of all blocks,
including those non-resident blocks. We use the block table,
which has been effectively used in DULO [14], to record up
to four epoch times for each block with little overhead. In-
terested readers can refer to the paper for more details. By
searching the block table with logic block number (LBN), we
can quickly locate the epoch times of recent accesses to a
block. If the block has been accessed in a constant interval,
we can easily predict the next access. Otherwise, this block
is recognized as ‘unpredictable’. The reason we take such a
conservative way for prediction is that, improperly evicting a
block may cause a disk access at an unexpected time (e.g. in
the middle of a long disk idle interval), which leads to unde-
sired energy expense.

2.3.4 PC-Burst Replacement Policy
In PC-Burst scheme, we introduce Predicted Block Groups

(PBG) to hold blocks that are predicted to be accessed at
a future epoch time. The remaining unpredictable blocks
are managed in History Block Groups (HBG) as in HC-Burst
scheme. As time elapses, a predicted block group may expire
(the predicted epoch time is passed), its associated blocks are
moved to corresponding history block groups.

As shown in Figure 3, the PC-Burst scheme also maintains
32-level queues and each level has two queues, one for pre-
dicted block groups and the other for history block groups.
Block groups are placed on the queues in the same way as
in HC-Burst scheme. In the queue of predicted block groups,
Reference Points (RP) are inserted to represent deterministic
accesses. To facilitate a quick scan, the reference points on
the same queue are linked together.

For replacement, we start from the top queue level to the
bottom level. On each level, the queue of predicted block
groups is examined first. We traverse all reference points
linked in the queue and attempt to locate a victim from pre-
dicted block groups. For each reference point, we check its
neighbor block groups on the queue. If the epoch time of
the predicted block group is exactly the same as the reference
point or just one epoch before or after the reference point, it is
identified as a victim. If no such block group exists, the block
group locating in the shortest interval between two reference
points is selected. If multiple such block groups are found,
the one whose epoch time is closest to a reference point is
preferred. Whenever possible, the block group to be accessed
in the farthest future is identified as a victim first. If no
predicted block group exists on the queue, the history block
groups are checked using the same policy as in the HC-Burst
scheme.



2.4 Performance Loss Control
Energy-aware caching policies may introduce more memory

misses by aggressively replacing blocks that are recently ac-
cessed but in a bursty pattern. To estimate the incurred mem-
ory misses due to applying energy-aware caching, we maintain
a pseudo-LRU buffer, whose size is the same as the energy-
aware region, and simulate LRU replacement policy there.
Once a memory miss occurs, we first check if the block is res-
ident in the pseudo-LRU buffer. If true, the memory miss is
identified as a miss caused by applying energy-aware caching,
because if the LRU replacement policy was conducted, the
memory miss would be avoided. Every T seconds, we esti-
mate a total performance loss, Tloss seconds, by multiplying
the number of such memory misses with the observed aver-
age disk latency. The performance loss rate, Ploss, can be
estimated as Tloss/T .

The user can set a maximum tolerable performance loss
rate, which serves as a high watermark, HW . We also set a
low watermark, LW , say 1%, and use MW to denote HW+LW

2
.

The energy-aware region size is adaptively tuned as follows.
Suppose current energy-aware region size is Scur, then: if Ploss

is smaller than MW , the target energy-aware region size Stgt

is (1 + min( (MW−Ploss)×2
HW−LW

, 1)) × Scur; if Ploss is larger than

MW , Stgt is (1 − min( (Ploss−MW )
HW−LW

, 0.5)) × Scur. The new

energy-aware region size Snext is Scur × p + Stgt × (1 − p),
where p is set 0.5 to smooth the change of region size.

3. PERFORMANCE EVALUATION
To evaluate the HC-Burst and PC-Burst schemes in a prac-

tical operating system, we implemented a prototype in a Linux
2.6.21.5 kernel with about 1000 lines of code in 15 existing files
and another 4500 lines of code in new files to implement the
main algorithms.

3.1 Implementation Issues
In order to predict the deterministic disk accesses, we need

to track the disk I/O operations caused by each task. In
Linux, requests for disk data are first issued to the generic
block layer, then forwarded to the I/O scheduler, which later
issues requests to the disk. Directly associating each operation
observed at disk with one specific task is cumbersome, since
I/O scheduler may merge, sort, and reschedule I/O requests
issued from tasks. Instead, we monitor the requests issued by
each task on the generic block layer. Though there may exist
a small delay between when the request is received at generic
block layer and when the disk actually starts transferring re-
quested blocks, the interval is nearly negligible compared to
the epoch length (usually a few seconds) and this works well
in practice.

3.2 Experiment Methodology
The experiments were conducted on a machine with a 3.0GHz

Intel Pentium 4 processor, 1024MB memory, and a Western
Digital WD1600JB 160GB 7200rpm hard drive. The OS is
Redhat Linux WS4 with the Linux 2.6.21.5 kernel using the
Ext3 file system.

To evaluate the disk energy consumption, we adopt a method-
ology similar to [11]. The disk activities are collected in an
experiment machine and sent via netconsole to another mon-
itoring machine through a Gigabit network interface. Using
the collected trace of disk accesses, we calculate disk energy
consumption based on the disk power models off line. Two
disk models are emulated in our experiments, a HITACHI
DK23DA laptop disk [10, 15], which features 30GB capacity,
2MB cache, 4200 RPM, and 35MB/sec bandwidth, and an
IBM Ultrastar 36Z15 SCSI disk [12, 16], which has 18.4 GB
capacity, 4MB cache, 15000 RPM, and 53MB/sec bandwidth.
Table 1 shows the energy consumption parameters.

With direct support from the Linux kernel, Linux laptop-
mode [1] is designed for optimizing disk energy consumption
by employing many techniques, such as delayed write-back
and aggressive prefetching. As the de facto disk energy-saving
mechanism used in practice, Linux laptop-mode (denoted as

Power mode HITACHI-DK23DA IBM Ultrastar
Active Power 2.00 W 13.5 W
Idle Power 1.60 W 10.2 W

Standby Power 0.15 W 2.5 W
Spin up 1.6 sec/5.00 J 10.9 sec/135 J

Spin down 2.30 sec/2.94 J 1.5 sec/13 J

Table 1: The disk energy consumption data.

LPM) is used as the baseline policy to compare with our HC-
Burst and PC-Burst schemes. Since our schemes are designed
for optimizing single disk energy consumption and largely or-
thogonal to the multi-disk oriented caching policies, such as
PA-LRU [16] and PB-LRU [17], we did not implement and
compare with them. Also, in experiments we do not assume
using the previsioned multi-speed disks [9] as these studies.

In the experiments, the write-back interval is set 120 sec-
onds, the highest ratio of dirty blocks is set 60%, the lowest
ratio is set 1%. The readahead is set 6144 sectors. The disk
spin-down timeout is 10 seconds, and accordingly the epoch
length is 5 seconds. The maximum tolerable performance loss
rate is set 30%, and the interval of tuning region size is set 30
seconds.

3.3 Workloads
Name Description MB/ep. Req./ep.
make Linux kernel compiler 1.98 119.7
vim text editor 0.006 0.395

mpg123 mp3 player 0.15 3.69
transcode video converter 3.2-6.5 10.9-19.1
TPC-H database query 17 7.3 476.7
grep* textual search tool 102.2 10186.6
scp* remote copy tool 51.5-53.8 135-139
CVS* version control tool 19.9 1705.7

Table 2: The application description. Applications
with bursty pattern are denoted with (*). The table
shows the amount of accessed data and the number
of requests per epoch for each application. Data are
collected in the default system setting.

As listed in Table 2, five applications with non-bursty ac-
cess pattern and another three applications with bursty access
pattern are used in our experiments. We run these applica-
tions in combination to synthesize three representative sce-
narios, programming, multimedia processing, and multi-role
server for our case study. Since energy consumption is time
sensitive, we carefully concatenate applications in sequence
and use shell scripts to accurately control the timing of each
workload for repeatable experiments. The details about each
workload are presented in later sections.

3.4 Case Study I: Programming
The first case emulates a typical software development sce-

nario, and three applications, make, grep, and vim, are in-
volved. In this workload, the user is working on Linux kernel
by building the kernel image three times in sequence. When
compiling kernels, the user is editing another set of Linux
source code simultaneously using vim. Every three minutes
the user searches the source code for keywords that are ran-
domly selected from file /boot/System.map.

As shown in Figure 4(a), HC-Burst and PC-Burst con-
sume much less energy than LPM, even with limited mem-
ory space. For example, with 480MB memory, LPM con-
sumes 2036.6J energy, while HC-Burst and PC-Burst consume
18.5% less (1658.6J) and 15.4% less (1721.8J) energy respec-
tively. As memory size increases, the disk energy consump-
tion for LPM does not show corresponding improvement until
available memory size increases over 660MB. This is because
LPM uses locality-based replacement policy without consid-
ering task access pattern. As long as available memory space
cannot hold the working set of both make and grep, searching
a large amount of data using grep will evict partial working-
set of make from memory. This incurs constant disk accesses
later. In contrast, C-Burst schemes protect working set of
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make in memory and only incur bursty accesses for grep. As
a result, C-Burst schemes are more likely to benefit from in-
creased memory size. For example, HC-Burst and PC-Burst
consume around 18.2% less (1356.6J) and 22.8% less (1329.1J)
energy with 600MB memory than with 480MB memory. Note
that if memory size is too small, say less than the working set
size of make, our schemes would have limited space to effec-
tively protect make and work no better than LPM. However, it
is clear that our solution can more effectively leverage limited
available memory space to achieve higher energy efficiency.

To further explain how C-Burst schemes increase disk ac-
cess burstiness, we plot the Cumulative Distribution Func-
tion (CDF) curves of the disk idle interval length, as shown
in Figure 4(b). For LPM, nearly 98.8% disk idle intervals are
shorter than 3 seconds. In contrast, HC-Burst and PC-Burst
significantly extend disk idle intervals ( 50.2% and 50.7% of
disk idle intervals are longer than 16 seconds, the break-even
time).

As shown in Figure 4(c), little performance loss is observed
with HC-Burst and PC-Burst schemes. This is because, selec-
tively holding the dataset of make and biasing grep not only
tailor disk accesses to a bursty pattern but also reduce mem-
ory misses. For instance, with 600MB memory, LPM issues
186,092 disk requests, while HC-Burst has only 148,770 disk
requests. The reduction of memory misses effectively com-
pensates the disk power mode transition overhead.

3.5 Case Study II: Multimedia Processing
Multimedia applications are very popular in mobile com-

puting environment, and the second case emulates a multime-
dia processing scenario. In this case, the user uses transcode
to convert a 160MB mpeg movie file to divx format files with
three different frame size setting (480x360, 320x240, 240x180).
After each conversion, the file is uploaded to a remote media
server via scp. While waiting for transcode to finish, the user
is using mpg123 to play a 103MB mp3 file till movie conver-
sion and uploading end. In this case Linux readahead is set
12288 sectors to make aggressive prefetching.

Overshooting prefetching is harmful. When memory is scarce,
prefetched blocks could be evicted even before they are actu-
ally used, which is called prefetch thrashing. In Linux once
such a situation is observed, prefetching is slowed down to
operate conservatively, which unfortunately results in contin-
uous disk accesses later. As shown in Figure 5(a), with only
600MB memory, all three schemes suffer from prefetch thrash-
ing. As memory size increases, effectiveness of prefetching
improves, and C-Burst schemes benefit the most. For exam-
ple, with 700MB memory, LPM consumes 1164J energy, while
HC-Burst and PC-Burst consume only 1075.1J and 934J en-
ergy, respectively. This is because C-Burst schemes selectively
bias scp, which shows bursty pattern, and leave more room for
prefetching blocks of mpg123. This effectively avoids prefetch
thrashing. We further vary the prefetch depth, as shown in
in Figure 6. We can see that, as prefetch depth increases
from 2048 to 4096 sectors, energy consumption for LPM even
increases by 8.2%. In contrast, by managing caching blocks
more efficiently, HC-Burst and PC-Burst schemes can accom-
modate deeper prefetching and achieve additional energy sav-
ing. This indicates that, our schemes are especially useful to
exploit potential of aggressive prefetching in a system with
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Figure 6: Disk energy consumption vs. prefetch ag-
gressiveness (700MB memory)

limited memory. As available memory size increases, prefetch
thrashing risk is highly reduced and all three schemes achieve
comparable energy consumption with 800MB memory.

In this case, we also can see that PC-Burst achieves bet-
ter energy saving than HC-Burst, because this workload is
dominated by sequential accesses with well predictable pat-
tern. For example, with 700MB memory, PC-Burst has 64.6%
disk idle intervals longer than 16 seconds and HC-Burst has
only 46.9% idle periods longer than that, which indicates that
PC-Burst can exploit more energy saving opportunities. As a
result, PC-Burst consumes 13.1% less energy than HC-Burst.

3.6 Case Study III: Multi-role Server
In this case, we examine the performance of HC-Burst and

PC-Burst in a server environment. The disk emulated is an
IBM Ultrastar 36Z15 SCSI hard disk. This server plays two
major roles: It runs a PostgreSQL 7.3.18 database server to
serve business queries. We choose the scale factor 1 to gener-
ate the database and run TPC-H query 17 as a representative
random workload against the database server for four times.
We did not run the entire TPC-H benchmark suite because
of the prohibitively long run time. This server also works as a
CVS server, a version control utility widely used in software
development environment. After each database query, a re-
mote user connected in a Gigabit Ethernet LAN checks out
Linux kernel 2.6.21 source code of 292MB.

As shown in Figure 7(a), HC-Burst and PC-Burst con-
sume much less energy than LPM. For example, with 600MB
memory, HC-Burst and PC-Burst consume only 6960.1J and
6648.7J respectively, which are 19.9% and 23.5% less than
that for LPM (8693.4J). Interestingly, Figure 7(b) does not
show extension of disk idle intervals as expected. This is be-
cause, TPC-H queries characterize very random access pat-
tern, which leads to substantial disk I/O latency. C-Burst
schemes evict dataset of CVS aggressively and protects the
working-set of TPC-H dataset in memory. This resulted in
much less I/O latency and significantly shortened total execu-
tion time. In particular, the execution time for LPM is 553.7
seconds in total, and only 465 seconds for PC-Burst, includ-
ing disk power mode transition overhead. This also explains
why PC-Burst and HC-Burst actually improved performance
by around 15%, as shown in Figure 7(c).
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Figure 5: Multimedia: Energy consumption, CDF of disk idle period length, and performance loss rate
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Figure 7: Multi-role Server: Energy consumption, CDF of disk idle period length, and performance loss rate

4. RELATED WORK
Some previous studies have been conducted to create bursty

access pattern and extend disk idle intervals in buffer cache
management. Papathanasiou et al. [15] proposed a scheme
to conduct aggressive prefetching for increasing disk access
burstiness. However, they still adopt the traditional LRU-
based replacement algorithm to manage caching space. As
we show previously, C-Burst schemes can effectively comple-
ment and even improve the effectiveness of such prefetching
based schemes by managing cached blocks more efficiently and
reducing the risk of prefetch thrashing.

Zhu et al. proposed two caching schemes, PA-LRU [16] and
PB-LRU [17], to manage buffer cache for improving energy
efficiency in multi-disk systems. Their basic idea is to offer
blocks from idle disks a high priority to stay in memory while
biasing blocks from busy disks, such that the idle disks can be
put in low power mode longer. Cai and Lu [3] further consid-
ered the energy consumption of memory by tuning partition
sizes and disk rotational speed. Our C-Burst schemes differ
from these solutions in two aspects. First, these multi-disk
based studies attempt to create unbalanced loads between
disks and save disk energy in a rather coarse granularity. Cre-
ating bursty access pattern in each individual disk is out of
consideration. In this paper we show that there is plenty room
for saving energy of each individual disk by distinguishing the
divergent access patterns of tasks. Second, these schemes are
mainly based on previsioned multi-speed disks [9], which are
still unavailable in mainstream market. Our schemes do not
rely on such multi-speed disks and can benefit existing hard
disks. In general, our C-Burst schemes are largely orthogo-
nal to these studies and can be applied to multi-disk platform
with no significant change. Further leveraging special hard-
ware features [4] and supporting multi-disk is under research
as our future work.

5. CONCLUSION
In this paper we present two comprehensive caching poli-

cies, called HC-Burst and PC-Burst, for disk energy saving.
Our schemes can effectively increase disk access burstiness
and extend disk idle intervals by selectively replacing blocks
based on tasks’ access patterns and predicted access times.
Our implementations in Linux kernel 2.6.21 shows that C-
Burst schemes can achieve up to 35% energy saving in various
scenarios with minimal performance loss.
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