
SmartSaver: Turning Flash Drive into a Disk Energy Saver
for Mobile Computers

Feng Chen
The Ohio State University

Columbus, OH 43210, USA

fchen@cse.ohio-
state.edu

Song Jiang
Wayne State University
Detroit, MI 48202, USA

sjiang@ece.eng.wayne.edu

Xiaodong Zhang
The Ohio State University

Columbus, OH 43210, USA

zhang@cse.ohio-
state.edu

ABSTRACT
In a mobile computer the hard disk consumes a considerable
amount of energy. Existing dynamic power management poli-
cies usually take conservative approaches to save disk energy,
and disk energy consumption remains a serious issue. Mean-
while, the flash drive is becoming a must-have portable stor-
age device for almost every laptop user on travel. In this
paper, we propose to make another highly desired use of the
flash drive — saving disk energy. This is achieved by using the
flash drive as a standby buffer for caching and prefetching disk
data. Our design significantly extends disk idle times with
careful and deliberate consideration of the particular charac-
teristics of the flash drive. Trace-driven simulations show that
up to 41% of disk energy can be saved with a relatively small
amount of data written to the flash drive.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Secondary Storage

General Terms
Design, Experimentation, Performance

Keywords
Hard disk, flash drive, energy saving, mobile computer

1. INTRODUCTION
As one of the major energy consumers in a mobile com-

puter [9], the hard disk accounts for a considerable amount
of energy consumption. Constrained by its mechanical na-
ture, hardware support for disk energy conservation has not
changed much over the years. Existing Dynamic Power Man-
agement policies are still using a simple timeout strategy to
save disk energy: Once disk is idle for a specific period (time-
out threshold), it is spun down to save energy. Upon arrival
of a request, the disk is spun up to service the request. This
strategy is also the basis of most existing disk energy-saving
schemes for mobile computers [3,4,6,13,15].

Recently, with a rapid technology improvement, the flash
drive has quickly taken the place of the floppy disk as a conve-
nient portable storage device. Attracted by its compact size
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and low price, almost every mobile computer user now car-
ries a flash drive on travel. Different from the hard disk, the
flash drive is made of solid-state chips without any mechanical
components, such as disk platters, which consume a consider-
able amount of energy. In addition, as a non-volatile storage
device, the flash drive does not need power to maintain its
data as main memory does. Compared with the hard disk,
the energy consumption of the flash drive is almost negligible
(its standby energy consumption is only around 1% of disk
standby power consumption [14]). Unfortunately, in current
mobile systems the flash drive is only used for file transfer
or temporary storage, while its low energy consumption ad-
vantage has not yet been well exploited. In this paper we
present a novel and practical scheme to utilize the low-price
and ubiquitous flash drive to achieve a highly desired goal —
saving disk energy.

This idea is challenged by two particular characteristics of
the flash drive. First, the bandwidth of the flash drive is usu-
ally much lower than the peak bandwidth of the hard disk.
For example, the Transcend TS1GJF2A Flash drive has a read
bandwidth of 12MB/sec and write bandwidth of 8MB/sec
[14], while the 4200RPM Hitachi-DK23DA hard disk can achieve
a bandwidth of 35MB/sec. Second, the flash drive has a lim-
ited number of erasure (rewrite) cycles. Typically, a flash
memory cell could wear out with over 100,000 overwrites.
These two characteristics of the flash drive must be carefully
considered in the scheme design to effectively use it for saving
disk energy.

In this paper we present a comprehensive disk energy-saving
scheme, called SmartSaver. This scheme uses the flash drive
as a standby buffer for caching and prefetching disk data
to service requests without disturbing disk. Although main
memory can also be used as a buffer, it is undesired to use
main memory for disk energy saving, as main memory itself
is a big energy consumer [11].

Compared with existing disk energy-saving schemes, Smart-
Saver has the following merits: (1) It effectively exploits the
low power consumption feature of the flash drive to save disk
energy. (2) It carefully takes the flash drive’s particular char-
acteristics into consideration. (3) It is designed to be widely
applicable in various operating systems with minimal changes
to existing OS kernels. (4) Our experiments show that it can
achieve significant disk energy saving by effectively extending
disk idle times.

2. RELATED WORK
Existing disk energy-saving schemes for mobile computers

can be classified into three groups. The first group of work
focuses on the selection of timeout threshold, which could be
a fixed time period, such as 2-5 seconds [4], or be adaptively
adjusted at runtime [3, 6]. These schemes passively monitor
disk I/O operations without extending disk idle time, which
greatly limits their energy saving potential. The second group
of work customizes system or application software for saving



disk energy [13,15]. The proposed scheme in [13] uses aggres-
sive prefetching to create bursty disk accesses for long disk idle
periods. While the scheme can extend disk idle time, signifi-
cant changes are required to modify existing buffer cache man-
agement policies in OS kernels. Furthermore, as the buffer
cache management policy is a performance-critical component
in a kernel, practitioners have to be very cautious about po-
tential performance degradation when they orient the compo-
nent towards energy saving. In contrast, our scheme can effec-
tively extend disk idle time with minimal changes to existing
kernel policies. The third group of work proposes hardware
designs to dynamically change disk rotational speed on the fly
so that disk energy can be saved by reducing disk speed [5].
Our solution is complementary to this hardware mechanism,
while such speed-adjustable disks are not yet available in the
mainstream commercial market.

Using the flash memory for disk energy saving was discussed
in an earlier work [10]. However, the work only provides a
preliminary algorithm and many important design issues are
missing, including file prefetching, balanced flash space allo-
cation among cached and prefetched blocks, and considera-
tion of the characteristics of the flash memory. Some of their
design choices are inappropriate from today’s point of view.
For example, they write every missed block into flash mem-
ory when it is read from disk. Today’s applications, such as
movie player, tend to access a large volume of disk data. If all
the data have to go through the flash memory, its low write
bandwidth and limited erasure cycles would pose a serious
problem. Another work [1] proposes to redirect write-back
traffic to the flash drive when the disk is spun down so that
the number of costly disk spin-up/downs could be reduced.
However, this approach simply uses the flash drive as a write-
only cache and it has no caching or prefetching mechanisms.
Some other work also mentions the low power consumption
characteristics of flash memory [12, 16]. However, no further
detailed design considering the particular characteristics of
the flash drive for disk energy saving was proposed. In this
paper we provide a comprehensive flash memory management
scheme that addresses these issues.

3. ISSUES AND CHALLENGES
A straightforward approach [10] to use the flash drive for

disk energy saving is to simply use the flash drive as a new
layer between the main memory and the hard disk in the stor-
age hierarchy. This so-called ‘cache all’ policy simply caches
every byte that is read from disk or evicted from memory into
the flash drive, and uses the LRU replacement algorithm to
free space once the flash drive is full.

After carefully examining this approach, here we summa-
rize its several critical weaknesses, which also serve as tech-
nical bases for us to design an efficient flash-drive-based disk
energy-saving scheme.

1. Flash drive does not fit well in the storage hi-
erarchy. Since the write bandwidth of the flash drive
is usually far less than that of the hard disk, simply
caching all data that are transferred between the disk
and memory in the flash drive can easily make the flash
drive a bottleneck in the storage hierarchy.

2. One-time access data should not be cached at
all. The ‘cache all’ approach inevitably stores one-time
access data in the flash drive, which is a waste of its
space and its precious erasure cycles.

3. What to cache is critical. Energy saving can be max-
imized by caching two types of data in the flash drive
to effectively extend disk idle times: (1) very frequently
reused data, and (2) data that move slowly from/to the
disk, such as multimedia data with think time between
disk reads and widely scattered data in the disk with

long seek times to access. The ‘cache all’ approach pays
no special attentions to these two types.

4. What to replace is also critical. Following the same
rule mentioned above, we’d better not replace these two
types of data when the flash drive is full. However,
a standard LRU replacement algorithm could easily re-
place the second type of data that are infrequently used.

To address these issues, we must hold two principles in
the design of our scheme. (1) A flash drive is not simply a
‘smaller disk’ or a ‘larger memory’. Its low write bandwidth
and limited erasure cycles need to be carefully considered. (2)
Our scheme needs to balance the benefit (how much energy
is saved) and the cost (how much flash memory space is de-
manded). In other words, it should identify and store the
most valuable data in the flash drive for energy saving.

4. THE DESIGN OF SMARTSAVER
Typically, the hard disk has four power-consumption states

— active, idle, standby, and sleep. To save energy, a disk
is spun down to the standby state if it is idle for a specific
period, and it can be spun up later to the active state for
servicing a request. We call the time period between the disk
spin-up and its consecutive spin-down a busy period, and the
time period between the disk spin-down and its consecutive
spin-up a quiet period. Since spinning up/down disk consumes
substantial energy, the disk has to stay in the standby state for
a sufficiently long period to compensate the energy overhead.
The minimum interval to pay off the overhead is referred to as
break-even time. Obviously, the longer disk is idle, the more
energy can be saved.

To effectively extend disk idle periods, SmartSaver uses the
flash drive as a buffer to store disk data, which can be used
to service requests without disturbing the disk. The avail-
able flash drive space managed by SmartSaver plays three
roles: (1) A caching area for holding data that is likely to be
reused; (2) A prefetching area for storing data preloaded from
the disk; and (3) A writeback area for temporarily storing
the dirty blocks flushed from memory. Accordingly, Smart-
Saver partitions available flash drive space into three areas
for caching, prefetching, and writeback, respectively.

4.1 Energy Saving Rate
The goal of caching is to avoid a future busy period by

holding disk data that are likely to be reused in the flash drive.
The energy that could be saved by avoiding a busy period may
vary greatly. For example, gzip can compress a 20MB file in a
few seconds, while glimpse may need a few minutes to build an
index for the same file. Obviously, avoiding the busy period of
glimpse can keep disk idle longer and save more energy than
avoiding the busy period of gzip, though they have the same
flash space cost.

To quantitatively measure the energy-saving potential of
avoiding a busy period, we introduce a metric, Energy Saving
Rate (ESR). ESR is the energy that could be saved if a busy
period was avoided over the amount of data accessed during
the busy period. The amount of saved energy equals to the
energy spent in the busy period (the sum of disk active energy,
disk idle energy, and the energy overhead of spinning up/down
disk) subtracted by the disk standby energy spent in a quiet
period of the same length. ESR describes the amount of saved
energy each cached block could contribute if its busy period
was avoided.

4.2 Caching
It is important to manage all the blocks accessed during

one busy period as a whole. If we cache only a part of the
accessed data blocks, the disk still has to be spun up for ac-
cessing the remaining blocks uncached in the flash drive, thus
the effort of avoiding a busy period is foiled. To this end,



Figure 1: An example of envelope stack with four
envelopes, among which envelope5 with the smallest H
value (55) is at the stack bottom and envelope8 with
the largest H value (85) is at the stack top. When a
new envelope envelope9 is to be inserted into the full
envelope stack, the algorithm performs four steps as
shown in the figure.

SmartSaver uses a data structure, called envelope, to record
the metadata of all accessed data blocks during a busy pe-
riod. Each envelope is associated with a busy period. When
a block is requested from the disk during a busy period, its
metadata is recorded in its associated envelope. The blocks
in an envelope are organized in the LRU order. When the
busy period is completed, its ESR value can be calculated. If
we decide to cache the envelope, all the data blocks in it are
written into the flash drive to maintain the integrity of the
busy period. Cached envelopes are placed in a queue, called
envelope stack, as shown in Figure 1.

When the caching area is full, we need to identify and re-
claim the most ‘valueless’ blocks in terms of energy saving. A
block’s value for energy saving is determined not only by how
much energy could be saved, which can be presented by ESR,
but also by how likely it is to be accessed. The challenge is
to evaluate and compare the blocks’ value for energy saving
simultaneously using these two orthogonal metrics.

To address the challenge, we adopt an algorithm similar
to GreedyDual-Size [2], which is originally designed for web-
caching. In the algorithm when an envelope e is inserted into
the envelope stack or accessed in the stack, it is given an H
value, where H(e) = ESR(e) + L. In the formula ESR(e)
is its corresponding busy period’s ESR value, L is a global
inflation value and is set to the H value of the most recently
reclaimed envelope. L is initialized to 0. Envelopes in the
stack are sorted in ascending order of their H values from
the bottom to the top. When the caching area is full and a
replacement is needed, the envelope at the stack bottom is
selected, and the blocks in the envelope are reclaimed one by
one in the LRU order. Once all blocks in an envelope are re-
claimed, the envelope is destroyed, and L is updated using the
H value of the destroyed envelope. Thus, the L value keeps
being inflated. The most recently accessed block always uses
the up-to-date L value, which represents its locality, and its
ESR value, which represents its energy-saving potential, to
calculate its H value. The H value determines the block’s po-
sition in the stack and its timing to be reclaimed. Therefore,
the block with the smallest H value is the most ‘valueless’
block and is located at the stack bottom for reclamation.

4.3 Prefetching
Prefetching is used for disk energy saving through condens-

ing the sequential disk accesses at the beginning of an access
sequence, which is called stream. After an initial prefetching
of data into the flash drive, future requests to the data can
be satisfied from the flash drive without accessing data on the

disk. In other words, prefetching makes the evenly distributed
disk accesses more bursty. In this section, we first explain how
to identify the sequential disk accesses and then describe the
prefetching mechanism itself.

Effective prefetching in SmartSaver requires an accurate
identification of sequential accesses of files. In order to avoid
intrusive changes to existing buffer cache management in OS
kernels, SmartSaver does not conduct its own sequential ac-
cess pattern detection. Instead, it relies on the kernel to pro-
vide hints of file access patterns to conduct its prefetching.
In Linux, the file-level prefetching mechanism uses two reada-
head windows to detect access patterns, and the sizes of reada-
head windows are dynamically adjusted according to current
accesses. SmartSaver monitors the readahead window sizes
and uses them as the hints for its prefetching decisions. When
the windows are enlarged to their full sizes, which indicates
the kernel concludes that the file is being accessed sequen-
tially, SmartSaver initiates a prefetching stream for it. When
the windows are shrunk, which indicates a change of file ac-
cess patterns, SmartSaver terminates the associated prefetch-
ing stream. If there exist multiple prefetching streams, we
consider them as one aggregate stream to create a common
disk idle period. When the disk is spun up or a stream uses
up its prefetched blocks, all the streams are refilled.

Considering the low write bandwidth and limited erasure
cycles of the flash drive, we need to reduce the amount of data
written to the flash drive by avoiding inefficient prefetching.
In a mobile computing environment, many applications are
rate-based applications [13], which hold a steady rate of data
consumption, such as mplayer and xmms. For such applica-
tions, Prefetching Efficiency for energy saving (the percentage
of energy that can be saved through prefetching) is affected
by two factors: data consumption rate and prefetching time
(the maximum interval during that requests can be serviced
with prefetched data in the flash drive). To guarantee effi-
cient prefetching, we set some rules as follows: First, if the
data consumption rate of a stream is not lower than the flash
write bandwidth or the data consumption rate is so large that
we can not use available space in the prefetching area to keep
the disk idle longer than the disk break-even time, SmartSaver
does not prefetch data for the stream. Second, SmartSaver
sets the lower bound of prefetching time to the disk break-even
time, and the upper bound to 300 seconds, as the prefetching
time that goes too large brings diminishing benefits.

In a multi-task system, other concurrent disk events may
break a long disk idle period created through prefetching. For
example, we prefetch 4 minutes of movie clips in an attempt
to keep the disk idle for that long period of time. However,
if a virus-scanning application touches the disk every 10 sec-
onds during that period, the expected 4 minutes of idle period
cannot be realized. To coordinate prefetching with other disk
events, we classify disk events that spin up a standby disk into
two types: (1) Bumps, which are disk spin-up events that take
place when streams use up their prefetched data and need to
be refilled. A bump can be avoided by increasing prefetching
time. (2) Holes, which are the other disk spin-up events wak-
ing up a standby disk, such as cold misses. If one bump takes
place, which indicates that the disk could be kept idle longer if
the prefetching time was increased, we then double the current
prefetching time so that the prefetching becomes more aggres-
sive. When a hole appears, which indicates that the current
prefetching has been overshot, we reduce the prefetching time
to the length of the most recent interval between two holes to
avoid overshooting the expected disk idle period time.

4.4 Writeback
In most OS kernels, dirty blocks in main memory are pe-

riodically flushed to the disk to avoid losing data in volatile
memory. For example, Linux writes dirty blocks older than 30
seconds back to the disk every 5 seconds. Such periodical disk
accesses conflict with disk energy-saving efforts. Linux lap-



top mode recommends to accommodate a large ratio of dirty
pages in memory and reduce the frequency of writing back
of dirty pages. However, this solution increases the risk of
losing data in volatile memory. SmartSaver solves this prob-
lem by redirecting the writeback traffic to the flash drive, a
non-volatile buffer, to avoid breaking a long disk idle period.

In SmartSaver, the writeback area serves as a destaging
buffer for temporarily holding dirty blocks. When a disk is in
the standby state, dirty blocks are written to the writeback
area to avoid spinning up the disk. Otherwise, dirty blocks
are directly written to the hard disk. When the disk is back
to the active state and over 90% of the writeback area is used,
the dirty blocks in the writeback area are flushed to the disk.
When the writeback area is overflowed, the disk is spun up
to write back all the dirty blocks. In this way, SmartSaver
achieves both energy saving and data safety purposes.

4.5 Balancing the three areas
As the flash drive is partitioned into the caching, prefetch-

ing, and writeback areas, SmartSaver employs a balancing
mechanism to dynamically adjust the sizes of these three ar-
eas to optimize overall energy-saving efficiency. The principle
for the mechanism is that the area that can save more en-
ergy with the same amount of additional buffer space should
be given more buffers. SmartSaver monitors accesses to each
area and periodically evaluates the amount of energy saved
due to the addition of another N blocks. Each time N blocks
are reclaimed from the least ‘productive’ area, where adding
N more blocks can achieve less increased energy saving than
adding them to other areas, and allocated to the most ‘pro-
ductive’ one.

5. PERFORMANCE EVALUATION

5.1 Simulation
We wrote a trace-driven simulator to evaluate our disk

energy-saving scheme. It simulates the management of three
storage devices: main memory, hard disk, and flash drive.
The simulator emulates the policies used for Linux buffer
cache management, including the 2Q-like memory page re-
placement algorithm, the two-window readahead policy that
prefetches up to 32 pages, and the I/O request clustering
mechanism for grouping consecutive blocks in multiple re-
quests into a large request.

The disk simulated in our experiment is the Hitachi-DK23DA
hard disk [7]. It has a 30GB capacity, 4200 RPM and 35MB/sec
peak bandwidth. Its average seek time is 13.0 ms, and its
average rotation time is 7.1ms. Its energy consumption pa-
rameters are listed in Table 1. The timeout threshold for disk
spin-down is set as 20 seconds, the default value for Linux
laptop mode.

Pactive Active Power 2.00 W
Pidle Idle Power 1.60 W

Pstandby Standby Power 0.15 W
Espinup Spin up Energy 5.00 J

Espindown Spin down Energy 2.94 J
Tspinup Spin up Time 1.60 sec

Tspindown Spin down Time 2.30 sec

Table 1: The energy consumption parameters for the
Hitachi-DK23DA hard disk.

The simulated flash drive is the Transcend TS1GJF2A flash
drive [14] with a 1GB capacity. Its read and write bandwidths
are 12MB/sec and 8MB/sec, respectively. Its maximum ac-
tive power consumption, 0.37W, is conservatively adopted as
both read and write power consumptions in our simulations.
Its sleep power consumption is 0.60mW.

To measure the energy consumed in the disk, we need to
evaluate the period length of each disk state. The period

length of disk active state can be broken down to three com-
ponents: transfer time, rotation time, and seek time. Among
them, the transfer time is the amount of requested data di-
vided by disk bandwidth. As the rotation time is variable,
we use a random value between 0 and 14.2ms (the maximum
rotation delay). The seek time is determined by the seek dis-
tance between two consecutive requests. To estimate the seek
time, we trace the latency of real disk accesses with different
seek distances and plot a seek profile as done in [8]. We can
then estimate seek times for various seek distances using the
seek profile curve.

In the experiments, besides SmartSaver we also simulate
the disk energy-saving scheme presented in [10], which is de-
noted as Baseline, and the original Linux laptop mode with-
out a flash drive, which is denoted as Linux.

5.2 Traces
We modified the strace utility in Linux to collect traces

to drive our simulator. The modified strace can intercept
system calls related to file operations, such as open(), close(),
read(), write(), and lseek(). For each system call, we collected
the following information: PID, file descriptor, inode number,
offset, size, type, timestamp, and duration. Blocks of the
traced files are sequentially mapped to a simulated disk with
a small random distance between files to simulate an actual
layout of files on disk.

Eight traces of seven applications that are typically used
in a mobile computing environment were collected, as listed
in Table 2. Besides the five single-application traces, thun-
derbird, scp-r, make, grep, and xmms, we also collected traces
scp-mplayer and ftp-mplayer, where two applications ran con-
currently as representatives of multi-stream cases.

Name Description # of files Size
thunderbird an email client tool 283 188.0

scp-r a remote copy tool 12669 191.0
make a Linux kernel make tool 2579 72.5
grep a text search tool 1332 50.4
xmms a mp3 player 116 47.9

a ftp client tool
ftp-mplayer & a movie player 91 364.7

a remote copy tool
scp-mplayer & a movie player 91 364.7

Table 2: Trace descriptions. Sizes are in units of MBs.
Both scp-mplayer and ftp-mplayer concurrently run two
programs to access two separate sets of identical files.
Scp transfers data in 8MB/sec, and ftp transfers data
in 20KB/sec.

We synthesized two typical mobile computing scenarios by
concatenating individual application traces one by one. The
first experiment simulates a programming scenario, where a
user is programming, searching codes, listening to music, and
performing remote file transfer. The second experiment sim-
ulates a networking scenario, where a user is checking and
searching emails, performing remote file transfer, using FTP
service, and watching a movie. They are referred to as pro-
gramming and networking, respectively.

5.3 Case 1: Programming
The programming scenario is composed of eight stages. Each

stage is a replay of one trace, make, grep, xmms, make, grep,
scp-r, make, and grep, in that order. This scenario consists
of both non-sequential accesses on a large number of small
files (make, grep, and scp-r), and relatively long sequential
accesses on large files (xmms).

Since disk idle time is critical for energy saving, we plot the
Cumulative Distribution Function (CDF) curves of disk idle
times for three schemes, as shown in Figure 2. The vertical
line in the figure is the disk break-even time. Because disk
energy could be saved only when the disk is idle longer than
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Figure 3: Case 1 programming: Disk I/O accesses in original application, Linux, Baseline, and SmartSaver
schemes. All experiments are configured with a 64MB memory and a 128MB flash drive.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300

P
e
rc

e
n
ta

g
e
 o

f 
T

o
ta

l 
Id

le
 T

im
e
(%

)

Disk Idle Time(sec)

CDF of Disk Idle Time

linux-64
linux-128
linux-256

Baseline-64-128
Baseline-64-256

SmartSaver-64-128
SmartSaver-64-256

break-even time(16sec)

Figure 2: The CDF curves of disk idle times for pro-
gramming. Linux-64, Linux-128, and Linux-256 are
the original Linux scheme with a 64MB, 128MB, and
256MB main memory, respectively. Baseline-64-128
and Baseline-64-256 are the Baseline scheme with a
64MB memory and a 128MB or 256MB flash drive,
respectively. SmartSaver-64-128 and SmartSaver-64-
256 are the SmartSaver scheme with a 64MB memory
and a 128MB or 256MB flash drive, respectively. The
vertical line is the disk break-even time, 16 seconds.

Scheme Mem Flash Energy(J) Flash R/W
Linux 64 N/A 7325.0 N/A
Linux 128 N/A 6317.3 N/A
Linux 256 N/A 5231.6 N/A

Baseline 64 128 6365.7 64/493
Baseline 64 256 5312.9 104/442

SmartSaver 64 128 4318.0 96/263
SmartSaver 64 256 4046.2 110/316

Table 3: The energy consumption and the
Read/Write volume in the flash drive for programming.
The memory sizes, flash drive sizes, and flash R/W
volumes are in units of MBs.

the break-even time, we call the percentage of the sum of idle
periods that are shorter than the break-even time over the
total disk idle time Unusable Idleness Percentage (UIP). The
smaller an UIP is, the more energy could be saved.

Figure 2 shows that Linux with a 64MB memory has an
UIP as large as 89.1%. This percentage is reduced to 73.3%
and 57.2% with a 128MB and 256MB memory, respectively.
This is because the working sets of make and grep are more
likely to be held in a larger memory to avoid disk accesses.
In a 64MB memory system, Baseline with a 128MB flash
drive has an UIP of 73.9%, which is almost identical to that
for Linux with a 128MB memory. This is because Baseline
manages the flash drive as a larger memory to hold all data
blocks transferred between memory and disk. In contrast,
SmartSaver with a 128MB flash drive has an UIP of only
30.8%. Correspondingly, SmartSaver consumes only 4318.0J
disk energy, compared with 6365.7J for Baseline and 7325.0J
for Linux, as shown in Table 3.

SmartSaver attempts to save the limited erasure cycles of
the flash drive. With a 128MB flash drive SmartSaver writes
only 263MB data to the flash drive, which is 46.6% less than
493MB for Baseline. Meanwhile, with a 128MB flash drive
SmartSaver reads 96MB data from flash drive, while Baseline
reads only 64MB data. The read/write ratios clearly show
that SmartSaver uses the flash drive more efficiently. This is
a much desired advantage considering limited erasure cycles
of the flash drive. Using existing wear-levelling techniques,
such as JFFS2, SmartSaver can distribute a small amount of
overwrites evenly on the flash drive. For programming, if we
use a 1GB flash drive and configure SmartSaver with 128MB
flash space for energy saving, one cell could be overwritten
once approximately every 4.5 hours.

For a detailed analysis of disk accesses at each stage, we
plot the disk I/O activities with a setting of a 64MB memory
and a 128MB flash drive in Figure 3. As shown in this figure,
there are disk accesses at all stages for Linux, because Linux
cannot accommodate the working set in memory. Baseline
performs better with a flash drive. For example, at stage 4
and stage 5 the disk keeps idle for 822 seconds, as the working
set of make and grep is held in the flash drive. However,
since Baseline caches every byte transferred between memory
and disk, at stage 6 scp-r flushes the data of make out from
the flash drive, which causes the disk to be spun up to serve
make at the next stage. In contrast, SmartSaver protects the
data of make from being replaced by the data of scp-r and
the disk remains idle at stage 7. This figure also shows that
most writeback requests are absorbed by the flash drive and
reshaped as a few bursts, which helps maintain a long disk
idle period.

5.4 Case 2: Networking
The networking scenario includes three stages, thunderbird,

scp-mplayer, and ftp-mplayer. Except thunderbird, which ac-
cesses one or multiple email files, each sequentially and non-
continuously, scp, mplayer, and ftp sequentially access files.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300

P
e
rc

e
n
ta

g
e
 o

f 
T

o
ta

l 
Id

le
 T

im
e
(%

)

Disk Idle Time(sec)

CDF of Disk Idle Time

linux-64
linux-128
linux-256

Baseline-64-128
Baseline-64-256

SmartSaver-64-128
SmartSaver-64-256

break-even time(16sec)

Figure 4: The CDF curves of disk idle times for net-
working.

Figure 4 shows the CDF curves of disk idle times. Both
Linux and Baseline have an UIP of around 73%, and no im-
provements can be achieved with additional memory or flash
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Figure 5: Case 2 networking: Disk I/O accesses in original application, Linux, Baseline, and SmartSaver schemes.
All experiments are configured with a 64MB memory and a 128MB flash drive.

Scheme Mem Flash Energy(J) Flash R/W
Linux 64 N/A 2076.4 N/A
Linux 128 N/A 2052.5 N/A
Linux 256 N/A 2052.1 N/A

Baseline 64 128 2103.2 26/574
Baseline 64 256 2102.2 26/552

SmartSaver 64 128 1207.5 210/443
SmartSaver 64 256 1208.0 210/447

Table 4: The energy consumption and Read/Write
volume in the flash drive for networking. The memory
sizes, flash drive sizes, and flash R/W volumes are in
units of MBs.

drive space, because the disk activities in this scenario are
dominated by one-time accesses. In contrast, SmartSaver sig-
nificantly extends disk idle time through prefetching. With a
128MB flash drive, it reduced the UIP to 16.7%. As shown in
Table 4, Linux with a 64MB memory consumes 2076.4J, while
Baseline with a 64MB memory and a 128MB flash drive con-
sumes 2103.2J, which is even more than that for Linux. This
is because Baseline wastes energy on caching the data that
are never to be reused in the flash drive. With the same
setting, SmartSaver consumes only 1207.5J, which is 41.8%
less than that for Linux. We also observe that SmartSaver
is not sensitive to the size of the flash drive. This is because
the upper-bound of prefetching time limits the consumption
of flash drive space by avoiding too aggressive prefetching.
As in programming, SmartSaver with a 128MB flash drive
writes 22.8% less data to the flash drive (443MB) than Base-
line (574MB), but reads 707.6% more data (210MB) than
Baseline (26MB).

Figure 5 plots the disk I/O activities for networking. Both
Linux and Baseline cannot avoid disk busy periods in each
stage. In contrast, SmartSaver reshapes most evenly dis-
tributed disk accesses into several bursts of disk accesses through
prefetching. Figure 5(d) shows that during the overlapped
36 seconds of scp and mplayer at stage 2, there exist disk
accesses. This is because SmartSaver does not prefetch for
scp, whose data consumption rate is 8MB/sec, the flash write
bandwidth. The prefetching for mplayer is not carried out
either, because scp keeps the disk busy and prefetching for
mplayer is meaningless at that time. After scp completes, the
prefetching time for mplayer quickly increases to the upper
bound. At stage 3, the prefetching is conducted for both ftp,
whose consumption rate is only 20KB/sec, and mplayer.

6. CONCLUSION
In this paper, we identify some critical issues involved in

the flash memory management to save disk energy. We pro-
vide a comprehensive set of solutions to maintain an effective
use of the flash drive for three goals: (1) accommodating the
unique properties of the flash memory; (2) minimizing OS
kernel changes; and (3) significantly improving disk energy
saving. Trace driven simulations for typical mobile comput-
ing scenarios demonstrate that our scheme can save up to 41%
disk energy compared with existing policies used in Linux.
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