
1650  Proceedings of the IEEE | Vol. 105, No. 9, September 2017

0018-9219 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Digital Object Identifier: 10.1109/JPROC.2017.2679490

ABSTRACT  |  In the past decade, flash memory has been in the

spotlight across a variety of research communities from circuits to

computer systems, and significant progress has been accomplished.

This has enabled flash memory to become increasingly pervasive

across the entire information technology infrastructure, from

consumer electronics to cloud and supercomputing. This paper

aims to provide a comprehensive survey on the important

advancements and milestones in the domains across flash

translation layer (FTL), operating systems, and applications. As the

storage device hardware has been quickly commoditized, software

becomes increasingly important to tap the potential of flash

memory to its full extent. Therefore, a comprehensive survey with

a focus on software aspects will be very valuable to the research

community and industry. It is our hope that this survey paper will

serve as a good reference for system practitioners and researchers.

KEYWORDS  |  Flash translation layer; nand flash memory;

software; solid-state storage

I .   IN TRODUCTION

Computer storage systems have been dominated by
rotating media for decades. In the past ten years, we have

witnessed a landscape change in storage technologies—Solid-
state storage, represented by nand flash memory, quickly
expands its application scope from consumer electronics
(e.g., cell phones, PDAs, digital cameras) to personal com-
puters, servers, and data center systems [27]. Today, flash
storage can be found in various computing environments,
from mobile systems, database, virtualization, Internet ser-
vices to high-performance computing, and many others.

This grand landscape change has created an enormous
space for innovations and attracted tremendous interest
from both academia and industry. For example, a sim-
ple search of “flash memory” on Google Scholar returns
over 2 000 000 results, and the industry has experienced
a big wave of startups on solid-state data storage (e.g.,
SandForce, Fusion-io, Pure Storage, Kaminario, Nimble
Storage, to name few). Over the past decade, the research
community has accomplished significant progress on
every aspect of flash-based storage devices and systems,
spanning flash memory circuits, flash memory signal
processing and error-correction coding (ECC), storage
device firmware, OS and file systems, and applications.
These advancements together have brought solid-state
storage devices and systems into a well-established and
researched domain with a broader impact in the real
world. Therefore, it is imperative now to conduct a sur-
vey about the state of the art of this broad domain, which
could not only provide a comprehensive reference to the
practitioners but also facilitate future research efforts.
This survey paper focuses on the software aspect, from
the software inside storage device up to applications. We
hope our discussion will serve as a guidance for research-
ers and system practitioners for a quick understanding on

Manuscript received November 28, 2016; revised January 27, 2017; accepted
February 23, 2017. Date of publication April 12, 2017; date of current version
August 18, 2017. This work was supported in part by Louisiana Board of Regents
under Grant LEQSF(2014-17)-RD-A-01 and in part by the U.S. National Science
Foundation under Grants CCF-1629218, CCF-1629201, CCF-1453705, CCF-1629291,
CCF-1629403, CCF-1513944, and CNS-1162165.
F. Chen is with the Department of Computer Science and Engineering, Louisiana
State University, Baton Rouge, LA 70803, USA.
T. Zhang is with the Electrical, Computer and Systems Engineering (ECSE)
Department, Rensselaer Polytechnic Institute (RPI), Troy, NY 12180, USA.
(e-mail: tong.zhang@ieee.org)
X. Zhang is with the Computer Science and Engineering Department, Ohio State
University, Columbus, OH 43210, USA.

Software Support Inside and
Outside Solid-State Devices
for High Performance and
High Efficiency
This paper is focused on the software aspects of the solid-state drives, from the
Flash translation layer (FTL) to the operating system.

By Feng Chen, Member IEEE, Tong Zhang, Senior Member IEEE, and Xiaodong Zhang, Fellow IEEE

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE  1651

the impact of flash memory devices to today’s computing
systems. This paper will survey the prior research efforts and
accomplishments in the following two categories.

•	� Software inside storage devices: As illustrated in
Fig. 1, a solid-state storage device such as solid-state
drive (SSD) mainly contains a controller and mul-
tiple nand flash memory chips, where the software
running on the controller is responsible for all the
intelligence inside the SSD. To simplify the discus-
sion, we call the entire software stack running on the
controller as the flash translation layer (FTL), which
provides a set of highly sophisticated mechanisms to
address the technical limitations of flash memory and
optimize the device performance. As discussed later,
major FTL design objectives include 1) managing
address mapping; 2) reducing write amplification; 3)
dealing with device wearout; and 4) improving speed
performance. In this paper, we will discuss represent-
ative studies across all these four aspects.

•	� Software outside storage devices: On top of FTL is the
application layer. We note that applications here refer
to a general scope of software, including those running
at the system level, such as file systems and virtual
machine hypervisor, rather than being strictly limited
in “user mode” software. Most flash devices provide
a backward-compatible block interface to the host,
which enables a large-scale adoption of flash devices
in the current computing systems without requiring
significant software changes. However, fully exploiting
the great potential and taking advantage of the unique
properties of flash memory devices often demand
efforts of removing or closing the so-called “semantic
gap” between the device and the application, which
refers to the weak ability for application to pass specific
requests or hints to the device for high performance
and high efficiency. A large body of research has been
performed to optimize applications for flash devices.
In this paper, we will discuss representative studies in
three main flash-optimized applications, from caching
systems, file systems, to database systems.

II .   SOF T WA R E INSIDE SSD

Inside SSD, a collection of sophisticated software compo-
nents run on the SSD controller, which are together respon-
sible for managing flash memory resources, handling flash
memory operations, optimizing flash performance, and per-
forming routine management and maintenance. This paper
refers the entire software stack inside SSD as FTL. How well
FTL is implemented directly determines the overall quality
of SSD service. This section will discuss the fundamentals of
the FTL design and survey its state of the art.

A. FTL Design Objectives

We first briefly discuss the major objectives of FTL
design, for which it is necessary to review the very basic
device characteristics of nand flash memory. Each nand
flash memory cell is a floating gate transistor whose thresh-
old voltage can be configured (or programmed) by injecting
certain amount of charges into the floating gate. Before one
memory cell can be programmed, it must be erased (i.e., its
threshold voltage is set to the lowest voltage window). nand
flash memory is subject to gradual memory cell wearout
caused by programming/erase (P/E) operations. This leads
to a P/E cycling endurance limit that continuously degrades
with technology scaling to increase bit density and further
reduce the cost.

nand flash memory cells are organized in an array​→​block​
→​page hierarchy, as illustrated in Fig. 2, where one nand
flash memory array is partitioned into blocks, and each block
contains a number of pages. Within one nand flash memory
block, each memory cell string contains a number of flash
memory cells (typically 64–128), and all the memory cells
driven by the same wordline are programmed and sensed at
the same time. All the memory cells within the same block
must be erased at the same time. Data are programmed and
fetched in the unit of page, where the page size could range
from 4 to 32 kB. All the memory blocks share the bitlines
and an on-chip page buffer that holds the data being pro-
grammed or fetched. In summary, the above description
identifies the following important characteristics of SSD.

Fig. 1. An illustration of SSD architecture [18].

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

1652  Proceedings of the IEEE | Vol. 105, No. 9, September 2017

•	� Absence of update-in-place feature: SSD cannot
directly in-place rewrite or update the content of
one individual flash memory page. Hence, SSD has
to use the same principle of copy-on-write [78] to
write any updated content to a new physical flash
memory page. As a result, address mapping con-
stantly changes, which makes the mapping informa-
tion management a nontrivial task.

•	� Block-based erase: SSD has to erase one entire block,
which stores hundreds of pages, at a time. Before
one block is erased, any pages that still contain live
data must be copied to other locations, leading to
write amplification.

•	� Device wearout: nand flash memory device storage
reliability gradually deteriorates, and the wearout
closely relates the P/E cycling number endured by
each individual memory block. The overall SSD life-
time is typically defined in terms of total amount of
data (e.g., hundreds of terabytes) that can be writ-
ten to SSD over the time before SSD can no longer
ensure its specified storage capacity (e.g., tens
of gigabytes).

Meanwhile, speed performance is one important met-
ric of SSDs, for which FTL plays a critical role as well.
Therefore, SSD FTL design essentially centers around the
following four objectives: 1) managing the address map-
ping at reasonable implementation cost; 2) reducing the
write amplification; 3) dealing with the device wearout;
and 4) improving the speed performance. In the remainder
of this section, we will discuss and survey the FTL design
techniques from these four aspects. For the reference to the
readers, Fig. 3 illustrates these four FTL design objectives
and lists major options for achieving these objectives, which
will be discussed throughout the remainder of this section.

B. Managing Address Mapping

Storage devices internally manage the data being stored
on their physical storage media (e.g., platters in HDD and
flash memory chips in SSD) in the unit of constant-size sec-
tors (e.g., 512 B or 4 kB). Each physical sector is assigned
with one unique physical block address (PBA). Instead of
directly exposing the PBAs to external host, storage devices
expose an array of logical block address (LBA) and inter-
nally manage/maintain an injective mapping between LBA
and PBA. The reason for introducing such an extra layer
of address mapping can be multifold and vary among dif-
ferent types of storage devices (e.g., HDD versus SSD). In
the context of HDD, the primary reason is to facilitate the
tolerance of defective sectors, which may be caused by disk
surface scratches, insufficient magnetic coating material,
and deterioration of magnetic materials. Moreover, regard-
less to their causes, defects in HDDs can be either primary
defects, which are detected during the HDD manufacturing,
or grown defects, which gradually develop over the time in
the field. The internal LBA–PBA mapping makes it possible
for HDD controller to mask out the PBAs of those defec-
tive sectors while still exposing a continuous storage address
space to external host.

SSD employs the extra layer of address mapping not only
for defect tolerance, but also, more importantly, for embrac-
ing unique device characteristics of nand flash memory as
discussed above. In spite of the seemingly simple task of
LBA–PBA mapping management, it is far beyond trivial and

Fig. 2. nand flash memory structure.

Fig. 3. Illustration of the four FTL design objectives and the major options for achieving these objective.

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE  1653

involves a large design space. Various mapping strategies
have been surveyed in [26]. On one side of the design spec-
trum is the so-called block mapping, which simply uses a
linear LBA–PBA mapping within each flash memory block.
For example, suppose each memory block stores ​​2​​ m​​ sectors,
and each LBA contains ​n​ bits expressed as ​[ ​l​n−m​​ , ​l​m​​]​, where ​​
l​n−m​​​ and ​​l​m​​​ are ​(n − m)​-bit and ​m​-bit vectors. Under block
mapping, the ​​2​​ m​​ LBAs sharing the same ​​l​n−m​​​ are linearly
mapped to the ​​2​​ m​​ PBAs belonging to the same nand flash
memory block. Let ​​ℒ​b​​​ denote the set consisting of all the ​​
2​​ n−m​​ different possible values of ​​l​n−m​​​, and ​P​ denote the set
consisting of all the PBAs. Hence, under block mapping,
the FTL only needs to manage the ​​ℒ​b​​ → P​ mapping. On the
other side of the design spectrum is the so-called page map-
ping, which can map one LBA to any PBA. Let ​ℒ​ denote the
set consisting of all the ​​2​​ n​​ LBAs, then page-mapping FTL has
to manage the ​ℒ → P​ mapping.

Compared with its page-mapping counterpart, the
block-mapping FTL manages ​​2​​ m​​ times less mapping entries,
leading to a much smaller implementation complexity
(especially when the FTL aims to hold the entire map-
ping table in SRAM or DRAM). Meanwhile, the drawback
of block mapping is also very clear, i.e., the much worse
write amplification due to its block-mapping nature, which
leads to much worse SSD speed performance and lifetime.
Intuitively, one may expect to achieve a graceful SSD perfor-
mance versus FTL implementation complexity tradeoffs by
appropriately combining block mapping and page mapping,
which has been well studied by the research community
[32], [46], [51], [56], [57], [74], [92], [96]. Regardless of the
specific design details, most prior work shares the following
common themes: 1) apply page mapping to a small num-
ber of flash memory blocks and combine it with appropriate
data write scheduling in order to largely reduce the write
amplification; and 2) apply block mapping to the bulk of
flash memory blocks to keep the size of the mapping table
relatively small. The key challenge is the development of the
data write scheduling that can best leverage the page map-
ping to reduce the write amplification. In [32] and [96], the
FTL actively estimates the data hotness by observing the
workload characteristics, and accordingly decide whether
the data are written to the block-mapping region or page-
mapping region. The prior work [46], [51], [56], [57], [74],
[92] focused on using the page-mapping region as the write
log buffer for the block-mapping region. Data are first writ-
ten to the write log buffer and then migrated to the nor-
mal memory blocks. Such a two-tier structure prevents the
memory blocks, which are managed by block mapping, from
being directly exposed to random write, leading to much
less write amplification.

Since page-mapping FTL manages a large number
of mapping table entries, its straightforward realization
demands a large memory (SRAM or DRAM) holding the
entire mapping table. The rule of thumb is that the size of
the page-mapping table is roughly 1/1000 of the SSD storage

capacity, e.g., 1 GB of page-mapping entries for each 1-TB
storage capacity. Leveraging the runtime workload spatial
and temporal locality inherent in many real-world applica-
tions, prior research [28], [40], [76], [107] has presented
solutions that only cache a small subset of the entire page-
mapping table to reduce the memory cost. The key concept
is essentially the same as the use of translation lookaside
buffer (TLB) in CPU [31]. For example, Gupta et al. [28]
developed a so-called demand-based FTL (DFTL) design
solution that selectively caches the page-mapping table
content using the least recently used (LRU) policy. More
sophisticated and workload-adaptive cache replacement
policies have been presented in [107].

Regardless of the specific address mapping scheme,
it is important to guarantee the consistency between the
mapping information and the data being stored in SSD.
Because the size of each mapping table entry is much
smaller than the size of flash memory page, FTL should
aggregate many updated mapping table entries together
in SRAM/DRAM before flushing them into flash memory.
As a result, a sudden power loss could cause the loss of
the up-to-date mapping information, especially for SSDs
without internal energy storage devices such as superca-
pacitor. To mitigate this issue, FTL always integrates the
inverse mapping information into each sector being writ-
ten to the flash memory, i.e., FTL records the correspond-
ing LBA information in the spare space within each flash
memory physical page. Hence, in the case of mapping table
corruption/loss, FTL can scan all the flash memory pages
to reconstruct the mapping table.

C. Reducing Write Amplification

Write amplification occurs when one nand flash mem-
ory block to be erased still contains live data. Inside FTL,
a process called garbage collection (GC) is responsible for
choosing the block(s) to be reclaimed/erased and copying
live data out to other blocks. Generally, to reduce the write
amplification inside SSD, we have only two options: 1) to
improve the efficiency of GC, i.e., reduce the amount of live
data inside memory blocks to be erased; and 2) to reduce
the intensity of GC process, i.e., reduce the frequency of
invoking the GC process. Accordingly, all the existing FTL
design techniques for reducing the write amplification fall
into the two categories as described through the rest of this
subsection.

1) Techniques to Improve the Efficiency of GC: Most
straightforwardly, one can use the so-called greedy GC pol-
icy [14], which aims to always reclaim the memory block
that contains the minimal amount of live data among all
the memory blocks in SSD. Typically, FTL invokes the
GC process when the number of free memory blocks falls
below a threshold that is much less than the total number
of memory blocks. As a result, aiming to find the best candi-
date among all the filled memory blocks, the strictly greedy

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

1654  Proceedings of the IEEE | Vol. 105, No. 9, September 2017

GC tends to consume a large number of CPU cycles, espe-
cially for large-capacity SSDs. To reduce the CPU stress, a
few variations of greedy GC can be deployed, which simply
chooses the blocks to be reclaimed from a subset of all the
memory blocks. Notable examples are the age-based greedy
GC strategies [35], [67] that search for the block with mini-
mal amount of live data only among those blocks that were
not recently written. Meanwhile, because of the flash mem-
ory wearout caused by P/E cycling, how the memory blocks
are reclaimed by GC also affects the wearout pace of all the
memory blocks. In order to maximize the SSD lifetime, all
the memory blocks should have roughly the same wearout
pace and approach their end-of-lifetime almost at the same
time. Nevertheless, since greedy GC does not explicitly take
into account of flash memory block wearout, it cannot guar-
antee equalized wearout pace among all the memory blocks.
Reducing write amplification and equalizing flash memory
wearout could be conflicting at times. Hence, many prior
efforts focused on developing GC algorithms that cohesively
consider both write amplification and memory wearout,
which will be discussed in details in Section II-D.

The efficiency of GC can be significantly improved if the
FTL can gain certain knowledge about the characteristics
of the data being stored. The TRIM command [49], [83]
has been introduced for this purpose. Through the TRIM
command, file system can notify the FTL about which data
have been deleted by the file system. Suppose the file sys-
tem writes a sector to the LBA ​​L​i​​​ at the time ​​t​0​​​, which is
mapped to the PBA ​​P​i​​​ in the FTL mapping table, deletes the
data from LBA ​​L​i​​​ at the time ​​t​1​​​, and then writes a new sec-
tor to the LBA ​​L​i​​​ later at the time ​​t​2​​​ (where ​​t​0​​  < ​ t​1​​  < ​ t​2​​​).
Without the TRIM command, the FTL is not aware of the
deletion operation inside file system at the time ​​t​1​​​, hence
must treat the data being stored at the PBA ​​P​i​​​ alive until the
time ​​t​2​​​. As a result, if GC reclaims the block that contains
the PBA ​​P​i​​​ anytime between time ​​t​1​​​ and ​​t​2​​​, it has to copy the
data from ​​P​i​​​ to another location. In comparison, with the
TRIM command, such data copy can be directly obviated,
leading to reduced write amplification.

The efficiency of GC can be further improved if the FTL
could write data with similar lifetime into the same memory
blocks. Nevertheless, it is very difficult, if not impossible,
for FTL to accurately infer or predict data lifetime on its
own. Therefore, to enable its practical realization, applica-
tions must convey the data lifetime information to the FTL,
which of course demands modification and enhancement of
existing storage I/O interface. Researchers at Samsung have
recently demonstrated the feasibility by prototyping so-
called multistreamed SSDs [45], [102]. With multistreamed
SSD, the host can explicitly open different streams through
the enhanced I/O interface, and write data with similar
expected lifetime to the same stream. The FTL of multist-
reamed SSDs tries to place data within the same stream onto
the same memory blocks. Experiments show that such SSDs
can significantly improve the efficiency of GC.

2) Techniques to Reduce the Intensity of GC Process:
The intensity of GC process (i.e., how frequently the GC
process is invoked) is inversely proportional to the amount
of empty memory blocks inside SSDs. As the most straight-
forward option to reduce the intensity of GC process, over-
provisioning [84] has been pervasively used by commercial
SSDs. Through overprovisioning, SSDs reserve certain stor-
age space from being exposed to the user, e.g., one SSD
with 1-TB storage space available to the users may internally
contain 1.2-TB storage capacity in total, representing 20%
overprovisioning.

Beyond explicit overprovisioning, FTL can internally
deploy data reduction techniques (e.g., lossless data com-
pression and data deduplication) to create more empty
memory blocks for reducing the intensity of GC process.
This can be considered as opportunistic overprovisioning
without demanding additional physical flash memory
devices. Since FTL-based data reduction is completely trans-
parent to the external host, SSDs always expose the same
storage capacity to the users regardless the efficiency of
their internal data reduction. Data reduction can be realized
by either lossless data compression or data deduplication, or
even their combination. FTL-based lossless data compres-
sion has been first implemented in SandForce1 SSD control-
lers. The biggest challenge of implementing FTL-based com-
pression is to realize a cost-effective address mapping due to
the variable length of compressed sectors. If we record the
full location information of each compressed sector (i.e., its
head location and its length) in the address mapping table, it
could significantly increase the address mapping table size.
A hybrid design solution was presented in [23], which sheds
a light on how SandForce addressed this issue. The key idea
is to split the full location information of each compressed
sector between SRAM/DRAM and flash memory. Each
physical nand flash memory contains a fixed number of ECC
units (e.g., suppose each ECC unit protects 2 kB, each 16 kB
flash memory pages contains eight ECC units). Each ECC
unit is assigned with a unique physical ECC unit address
(PEUA), similar to the PBA. Given the size of ECC unit, we
can calculate the maximum number of ECC units over
which one compressed sector can span, denoted as ​​n​sp​​​.
Since the size of ECC unit typically ranges between 1 and 4
kB in commercial SSDs, the value of ​​n​sp​​​ is very small (e.g.,
less than 6). FTL maintains an in-SRAM/DRAM LBA-PEUA
mapping table, in which each entry contains one PEUA and
additional ​⌈ ​log​2​​ ​n​sp​​ ⌉​-bit span information. Inside each ECC
unit on the flash memory, there is a header that stores the
metadata for recovering the full location information of
each compressed sector. Such a hybrid design solution can
support FTL-based data compression with almost the same
mapping table size as the one without using compression.

Although data deduplication has been well studied (e.g.,
see [11], [60], [87], and [108]), FTL-based data deduplication

1SandForce Inc. is one of the pioneers on developing commercial
SSD controllers, which was acquired by LSI Inc. in 2012.

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE  1655

inside SSDs faces several unique challenges, including
1) limited computing and memory resources of SSDs; 2) rel-
atively lower redundancy, especially compared with backup
and archival systems; 3) lack of semantic hints from host file
systems; and 4) stringent requirement on low performance
overhead. How to practically address these challenges was
first studied in [19] and [29]. For example, Chen et al. [19]
presented a design framework, referred to as content-aware
FTL (CAFTL), to comprehensively address these challenges.
In particular, CAFTL combines both inline and out-of-line
(also known as postprocessing or out-of-band) deduplica-
tion. Inline deduplication proactively examines the incom-
ing data and cancels duplicate writes before committing a
write request to flash, while out-of-line deduplication peri-
odically scans the flash memory and coalesces redundant
data. CAFTL employs a two-level mapping mechanism to
coalesce redundant data. In order to minimize the perfor-
mance impact caused by computing hash values, CAFTL fur-
ther incorporates a set of acceleration methods to speed up
fingerprinting. In addition to identical data deduplication,
Wu and He [98] applies delta compression (or similarity-
based data deduplication) to better exploit the inherent data
redundancy at the cost of a higher FTL design complexity,
which could further reduce the intensity of GC process.

D. Dealing With Device Wearout

We can handle the cycling induced device wearout to
improve the SSD lifetime from two aspects: 1) to equalize the
device wearout across all the memory blocks/pages through
wear leveling; and 2) to increase the lifetime of each mem-
ory block/page. This section reviews prior research efforts
from these two aspects.

1) Wear Leveling: To maximize the lifetime of SSD, one
would expect that the reliability of all the memory blocks
should degrade to the point beyond the ECC tolerance
almost the same time. The process of leveling (or equaliz-
ing) the reliability of all the memory blocks is called wear
leveling. Ideally, wear leveling aims to schedule the usage
of memory blocks in such a way that all the memory blocks
maintain the same data storage reliability throughout the
SSD lifetime. As one of the most critical components in
FTL, wear leveling has been very well studied (e.g., see [13],
[14], [21], [33], [50], [69], [86], [99], and [103]) and sur-
veyed in [10] and [26].

Since wear leveling and GC schedule the usage of mem-
ory blocks with different objectives (i.e., equalizing the
memory block reliability versus reducing the write ampli-
fication), their integration and interaction could largely
affect the overall quality and complexity of FTL. The design
schemes, which more cohesively consider the wear lev-
eling and GC, are called static wear leveling. In particular,
static wear leveling aims to equalize the wearout across all
the memory blocks through proactively moving cold data
from less worn out blocks to more worn out blocks. In com-
parison, the so-called dynamic wear leveling represents

loose coupling between wear leveling and GC, i.e., GC first
reclaims/erases memory blocks based upon the write ampli-
fication efficiency, then wear leveling chooses which mem-
ory blocks to use. As a result, memory blocks storing cold
data are worn out slowly relative to other blocks. Assuming
a 20%:80% ratio of dynamic data versus static data in one
SSD, all the data write traffic is accommodated by 20% of
flash memory blocks under dynamic wear-leveling. In com-
parison, static wear-leveling utilizes all the flash memory
blocks to absorb the write traffic. As a result, when using
dynamic wear leveling, 20% of flash memory blocks will
be worn out much more quickly, leading to five times less
lifetime than the case of using static wear leveling. A large
variety of specific wear-leveling algorithms has been
reported in the open literature [13], [14], [21], [33], [50],
[69], [86], [99], [103]).

Because the reliability of memory blocks monotonically
degrades with the P/E cycling, most prior work on wear lev-
eling uses the P/E cycling number as the reliability metric,
i.e., they aim to equalize the P/E cycling number across all
the memory blocks. Nevertheless, due to the inevitable fab-
rication process variation (especially under highly scaled
technology nodes), different memory blocks could exhibit
different storage reliability even under the same P/E cycling
number, particularly among memory blocks in different
flash memory chips. Therefore, memory block could have
(largely) different levels of P/E cycling endurance. As a
result, simply using P/E cycling number as the equalization
target could lead to suboptimal wear leveling. A few recent
works [41], [73], [94], [104] investigated the design of wear
leveling that explicitly embraces such interblock P/E cycling
endurance variation. Pan et al. [73] and Yang et al. [104]
proposed wear-leveling algorithms that directly track and
use the runtime bit error statistics of memory block as the
equalization target. Woo and Kim [94] presented design
schemes that combine the bit error statistics and other flash
memory operational characteristics such as programming
latency to more accurately quantify the reliability of mem-
ory blocks. A so-called wear-unleveling solution is presented
in [41] that exploits the wearout pace variation at the page
level instead of block level to further improve the overall
SSD lifetime.

2) Improving Memory Block/Page Lifetime: An effective
option for improving the endurance of each memory block/
page is to deploy more powerful ECC such as low-density
parity-check (LDPC) codes. Since the ECC module in SSD
is largely independent from FTL and has been discussed in
other papers in this special issue, we will not discuss it in
this paper. Beyond using more powerful ECC to increase the
lifetime of individual memory pages, one may recycle worn
out memory blocks/pages by leveraging certain flash memory
device characteristics. For example, motivated by the intra-
page reliability variation (e.g., different segments within
the same physical page may exhibit noticeably different reli-
ability), Lin and Hsieh [61] developed a half-level-cell (HLC)

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

1656  Proceedings of the IEEE | Vol. 105, No. 9, September 2017

scheme that logically combines segments from two worn out
physical pages to form a new usable logic page. Leveraging the
self-recovery effect of flash memory cells, a recovery-aware
throttling technique was presented in [53] to enhance FTL
for improving flash memory lifetime. Motivated by the obser-
vation that slowing down the erase process at a lower erase
voltage could significantly reduce the cycling-induced device
damage, Jeong et al. [39] presented an FTL design strategy
that can enhance flash memory cycling endurance with mini-
mal impact on system speed performance by dynamically
adjusting the memory block erase voltage/latency.

The cycling-induced physical damage also depends on
the data content being programmed into memory cells.
Hence, it is desirable to transform or manipulate the
data content in a damage-aware manner, which however
demands extra storage space to enable data content trans-
formation. Li et al. [59] proposed to apply data compression
approach to create extra space for enabling damage-aware
data content transformation. A set of mathematical formu-
lations have been further derived in [59] that can quanti-
tatively estimate flash memory physical damage reduction
gained by the proposed design strategies for various com-
pression schemes.

E. Improving Speed Performance

FTL can improve SSD speed performance from three
aspects: 1) better utilization of internal hardware paral-
lelism at the channel, package, die, and/or plane level;
2) exploring the high-speed performance of the flash mem-
ory pages operating in the SLC mode; and 3) intra-SSD write
buffering. The importance of exploiting and utilizing SSD
internal hardware parallelism has been well demonstrated
[15], [16], [36]. Appropriate LBA–PBA mapping and request
scheduling are critical for better utilizing SSD internal par-
allelism. A variety of techniques (e.g., see [30], [44], [55],
[65], [93], and [101]) have been developed to improve the
SSD speed performance by enhancing the address mapping
and/or request scheduling. A common theme is for FTL
to on-the-fly infer the access characteristics of data being
stored and utilize such inferred information to guide the
address mapping and request scheduling.

The second option aims to leverage the fact that SLC
flash memory sustains a much higher write/read speed than
its MLC/TLC counterparts. It is well known that the same
physical nand flash memory blocks can operate in either
SLC, MLC, or TLC mode with different tradeoffs among
speed, density, and reliability. Leveraging this feature,
researchers have developed design techniques (e.g., see
[12], [38], and [70]–[71]) that enhance FTL to improve the
overall SSD speed performance. The underlying rationale is
that, if FTL configures a certain portion of MLC/TLC flash
memory to operate in SLC mode and uses the SLC region to
handle most data access traffic, the overall SSD speed per-
formance could significantly improve. In spite of the simple

concept, its practical realization may not be trivial and could
noticeably complicate the FTL implementation, especially
for FTL that aims to dynamically conthe SLC and MLC/TLC
partition during the runtime. Wang et al. [91] studied the
optimal SLC versus MLC capacity ratio and implemented an
FTL that can dynamically adjust the SLC versus MLC capac-
ity ratio according to runtime workload characteristics.

Write buffering has been widely used in SSDs to
improve the overall speed performance. Current commer-
cial SSD controllers use either embedded SRAM or stan-
dalone DRAM as write buffers. Most SSDs acknowledge
the completion of write operation to the host as soon as
the incoming data reach the write buffer (i.e., before the
data are eventually written to flash memory), even for syn-
chronous write requests. To mitigate the volatile nature of
SRAM and DRAM, most SSDs (and all the enterprise-grade
SSDs) integrate a supercapacitor to prevent data loss in the
case of sudden power loss. The size of write buffer is limited
by the energy storage capacity of supercapacitors. Kim and
Kang [48] presented a technique that applies delta encoding
to enable the use of large write buffer with a small superca-
pacitor. Prior works [34], [37], [42], [82], [97] have devel-
oped various write buffer management algorithms that can
further effectively leverage the write buffer to improve SSD
speed performance.

III .   SOF T WA R E OU TSIDE SSD

Application software has been heavily tuned and optimized
for underlying disk storage for decades. While migrating to
flash storage, application software designers need to address
three critical challenges for a successful adoption of such an
unconventional technology into the existing I/O stack.

•	� Challenge #1: The high cost and relatively small
capacity of flash devices limit the affordability.
When commercial flash SSDs initially emerged in
the storage market, a significant obstacle for a large-
scale adoption of flash storage devices was their
high cost and relatively small capacity, compared
to magnetic disk drives. A critical research issue is
how to achieve high cost- and performance-efficient
operations. Thus, building hybrid storage and lev-
eraging flash SSDs as caching media has been an
important research direction at the software level.
In this section, we will discuss several such repre-
sentative work [17], [63], [81].

•	� Challenge #2: Flash memory has more distinct
properties than rotating media. As a semiconduc-
tor device, flash memory is fundamentally different
from magnetic disks. On one hand, flash memory
has several unique technical advantages, such as
high random read speed [16] and rich internal par-
allelism [18]. On the other hand, flash memory also
has several significant constraints, such as the high-
overhead garbage collection and device lifetime

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE  1657

issues. How to exploit the benefits and mitigate
the problems is important and challenging. A large
body of prior research has studied these aspects in
various systems, such as databases [62], [75] and file
systems [43], [47], [52].

•	� Challenge #3: The block interface raises an infor-
mation barrier between applications and storage.
On one hand, the standard LBA interface allows
the legacy software systems to easily migrate to
flash storage without any change. On the other
hand, this interface creates a huge semantic gap and
greatly limits the capability of exploiting the seman-
tic knowledge at the application level and the rich
hardware resources at the device level. In this sec-
tion, we will select and discuss several efforts made
to address this issue [43], [63], [62], [75], [81].

In this section, we select three key software applications
of flash storage in practical systems, namely caching sys-
tems, file systems, and database systems, and we discuss sev-
eral representative works in each of them. We hope through
these discussions we can gain insight from these prior stud-
ies on how to efficiently adopt flash memory technology in
application software.

A. Caching Systems

Flash memory has been considered as an ideal media for
caching—its speed, capacity, and price fall nicely between
traditional disk drives and DRAM memory [58]. Prior stud-
ies have discussed flash-based caching at different levels,
from operating system kernels, virtual machine hypervisors,
to applications. Here we discuss three representative ones.

1) Block-Level Caching: A natural consideration is to add
flash-based caching layer at the block level. Hystor [17] is
a kernel-level hybrid block storage solution that integrates
flash memory and conventional disk drives together. Hystor
regards compatibility as the top design priority. Similar to
redundant array of independent disks (RAID), Hystor pro-
vides a virtual block device to the upper level components
and hides the complex internals from users. So users can use
the hybrid device as any directly attached disk drive, such as
creating partitions and making file systems. Internally, the
Hystor driver runs as an operating system kernel module,
tracks I/O accesses during runtime, and decides the data
placement in either the flash SSD or the disk drive. The
caching and data placement decisions are completely based
on the I/O accesses observed at the block level, which is sim-
ply a stream of LBAs.

The key challenge that Hystor addresses is to identify
the blocks that are most appropriate for caching. A naïve
consideration is to directly use standard caching policies,
such as the well-known least recently used (LRU) replace-
ment algorithm. However, on flash memory, the “value” of
a block for caching is determined not only by locality but
also access pattern. For example, randomly accessed data

are considered more valuable for caching than sequentially
accessed data, since the former incur higher latencies on
disk. Thus, Hystor attempts to cache data that can bring
the most benefit, randomly and frequently accessed data.
To identify such blocks during runtime, Hystor maintains a
data structure, called block table, which is akin to the page
table in memory management. By traversing the block table,
Hystor can quickly find the hottest region, the hottest sub-
region, and the hottest block for caching. Eventually, Hystor
splits I/O traffic into different devices based on their access
patterns—small and random I/O requests are served from
the flash SSD; large and sequential I/O requests are served
from the disk drive.

Industry has also made efforts in flash caching. For
example, Apple has released a hybrid drive product, called
Fusion Drive [8], which has been influenced by Hystor and
combines a hard drive with an nand flash SSD. Microsoft
Windows Vista includes a feature called ReadyBoost [68]
to use flash devices, such as flash thumb drives, as memory
extension and disk cache. Intel Turbo Memory (ITM) [66]
uses a PCI-Express based flash device and a special driver to
cache small request data and buffer dirty data. These indus-
trial solutions share a similar principle, using the high-speed
flash memory device to accelerate storage I/O.

2) VM-Level Caching: As a middle layer residing
between the host hardware and guest operating systems, vir-
tual machine (VM) is required to deliver high performance,
maximize resource utilization, and also provide system
isolation. S-CAVE [63] is a hypervisor-based flash caching
solution for virtual machine environment. In S-CAVE, the
caching decision is made at the hypervisor level, based on its
global view of the entire system and all guest VMs. S-CAVE
maintains a cache monitor for each VM and a cache space
allocator to collect and analyze cache usage information
from all VMs to make a global caching decision. Essentially
S-CAVE measures the working-set size of each VM during
runtime, and according to the trend of hit ratio and working-
set size, S-CAVE can decide whether increase or decrease
the cache allocation. During this process, each guest VM
does not directly involve in caching decision, and the hyper-
visor makes a global decision based on the observed behav-
iors of all guest VMs.

To some extent, S-CAVE adopts a relatively conserva-
tive approach by respecting the existing interface, similar to
Hystor, and attempts to contain changes at the hypervisor
level and avoid leaving burdens to the upper-level compo-
nents. Such a design choice is understandable, since avoid-
ing penetrative changes to guest VM is highly desirable for
virtualization environment.

3) Application-Level Caching: Flash devices are also
highly desirable to application-level cache systems. In-flash
key-value cache systems (e.g., Facebook’s McDipper [5]
and Twitter’s Fatcache [6]) are becoming popular recently.
Such application-level cache systems adopt a Memcached-
like mechanism to manage key-value data: The flash space

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

1658  Proceedings of the IEEE | Vol. 105, No. 9, September 2017

is sliced into fixed-sized slabs. Each slab is further divided
into fixed-sized slots, or chunks, each of which is used for
storing a key/value pair. A hash mapping table is maintained
in memory to map a hashed key to the slab that contains
the corresponding key/value item. Clients use get, set, and
delete operations to read, write, and remove a specified
key/value pair. A garbage collection (GC) procedure rou-
tinely runs to reclaim the space of the obsolete and deleted
key-value items by examining slabs in a certain manner
(e.g., FIFO).

Such a scheme raises several unique issues as it runs on
flash SSDs.

1) � Redundant mapping table: The FTL in the device
firmware maintains a mapping structure to trans-
late logical block addresses to physical flash memory
pages, and similarly, the key-value cache running at
the application level also maintains an in-memory
hash table to map the hashed key to the correspond-
ing slab block in flash.

2) � Redundant GC procedures: The FTL implements a
device-level GC to recycle the invalidated flash pages
before erasing the entire flash erase block, and the
key-value cache also has a GC procedure to reclaim
the invalidated key-value slots in a slab.

3) � Over-overprovisioning: Modern flash SSDs often
reserve a large over-provisioning space (OPS), typi-
cally 20%–30% of flash space. Such a large amount
of reserved flash memory is a hidden and unusable
space from the perspective of users. Since key-value
caches are often read intensive [9], such a large OPS
becomes an expensive overkill.

DIDACache [81] addresses these issues by deeply inte-
grating device and application together, which allows the
application-level key-value cache manager to directly drive
the low-level flash memory operations. In this solution, the
device is only responsible for minimum hardware-level func-
tions, such as scheduling and operating flash memory com-
mands. Other functions that are traditionally handled at the
FTL level, such as device-level buffering, FTL-level mapping,
wear leveling, garbage collection, are moved to the upper lay-
ers. An intermediate library layer is responsible for bad block
management, translates slabs to flash blocks, and provides an
API interface to the key-value cache system. The key-value
cache manager sees and directly manages the flash space,
such as mapping the hashed key to the physical location in
flash, arranging data layout to exploit the internal parallel-
ism, recycling obsolete key-value items and determining a
proper OPS space based on workload demands, etc.

Hystor, S-CAVE, and DIDACache represent three dif-
ferent approaches for flash-based caching. Hystor is a very
general-purpose caching scheme and its optimization goal
is to maximize the flash space utilization while still retain-
ing the highest backward compatibility by hiding all details
from applications at the block level. S-CAVE leverages its
domain knowledge at the VM hypervisor level. It requires a

change in the hypervisor but the caching details are hidden
from the guest VMs, which exploits certain level of seman-
tic knowledge but is still unaware of semantic details of
applications. DIDACache represents a more recent trend in
flash-optimized applications [72], [90], [105]–[106]—break
the traditionally strictly defined interface, open the under-
lying device details to applications, and exploit the seman-
tic knowledge available at the application level and also the
device-level knowledge about the flash memory media. A
great deal of application- and device-specific knowledge can
be utilized, but the tradeoff is its limited applicable scope
and the dependence on special hardware support.

B. File Systems

Designing a flash file system is nontrivial, since it needs
to consider several important hardware properties of flash
memory, such as the read/write disparity, slow random
writes, and wearout problem, just to name a few. Traditional
file systems are heavily optimized and tuned for rotating
media. Switching to flash storage thus has incited a lot of
studies in file systems. Here we discuss three representative
ones.

1) File System for Flash Memory: As early as in 1995,
Kawaguchi et al. presented a design of flash-memory-
based file system [47]. Many elements in this paper have
influenced the design of modern FTLs and flash-based file
systems. For example, in order to create sequential writes
on flash, the file system adopts a structure similar to log-
structured file system [79]. The data are appended to the
tail of the log-like structure. A translation table (i.e., map-
ping table) is maintained to map a block number to a flash
address. Upon a read, the translation table is looked up to
locate the corresponding location in flash memory. Upon a
write, a new flash page is allocated and the data are written,
the original flash page is simply marked as invalid, and the
mapping table is updated to point to the new location. A
cleaner (i.e., garbage collector) is triggered when the num-
ber of available flash memory blocks drops to a low level.
The cleaner selects a flash block as a victim, in which the
valid pages are first copied to a new location and then the
entire block is erased.

As a pioneering work, this paper outlines several impor-
tant components for flash-based file systems, such as the
log-like structure, the logical-to-physical mapping table, the
periodic garbage collection, etc. All are essential to optimiz-
ing flash storage and can be found in today’s FTLs and flash-
based file systems, such as YAFFS [64] and JFFS2 [95].

2) Direct File System (DFS): DFS [43] is designed for
Fusion-io’s ioDrive [1]. Without being constrained by the
traditional disk interface (e.g., SATA and SCSI), such PCI-
E-based flash devices can not only provide high performance
but also allow more direct control over the flash hardware.
Leveraging the flexible PCI-E interface, DFS divides the
flash management and file system functions among hard-
ware, device driver, and file system in a new way.

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE  1659

The core part is virtualized flash storage layer (VFSL),
an intermediate layer running as a device driver in OS ker-
nel between the device and the file system. VFSL provides
a large virtualized block address space and implements core
FTL functions, such as block abstraction, logical-to-physical
translation, space allocation and reclamation, garbage col-
lection, wear leveling, etc. Accordingly, the device firmware
is simplified, and so is the file system. For example, VFSL
provides a huge 64-b virtual block address space, which is
orders of magnitude larger than actual physical flash space.
The file system, DFS, can take advantage of the huge virtual
address space by directly placing file system objects (files)
sparsely and contiguously, as single logical extents, in the
logical space. This greatly simplifies the file system design
by leaving the complicated allocation and reclamation work
to VFSL. Other complex issues, such as crash recovery,
buffer cache designs, can also be handled by leveraging the
capability of VFSL.

Compared to Kawaguchi’s design, DFS simplifies the file
system and device firmware design. However, since most
flash-related management logic is moved into the device
driver level, a special device hardware and a custom file sys-
tem are needed, which limits its applicable scope.

3) Flash-Friendly File System (F2FS): A more recent
work that has been practically used in production systems is
F2FS [52] developed by Samsung. Unlike Kawaguchi’s early
work, which was designed for managing raw flash memory,
F2FS is designed for modern flash devices, such as eMMC
and SSD. Unlike raw flash memory, these devices are already
equipped with a sophisticated FTL to handle flash-specific
operations at the firmware level, such as address transla-
tion, wear leveling, garbage collection, etc. Therefore, F2FS
can be freed from directly handling the low-level technical
constraints of flash memory and can focus more on creat-
ing a “flash friendly” I/O patterns to indirectly influence the
performance.

F2FS does not strictly follow the requirement of flash
memory for sequential writes, although it still attempts
to organize sequential write patterns. In F2FS, the stor-
age space is sliced into multiple zones, which is divided
into sections and further into segments. Data are written
in segments in a log-like manner, similar to log-structured
file system [79] and Kawaguchi’s solution [47]. However,
in certain cases, it allows in-place writes. For example,
F2FS has a special logging scheme, called threaded logging.
Normal logging policy always writes data sequentially into
clean segments, and when running out of space, the clean-
ing procedure copies valid blocks out and reclaims the space
occupied by invalidated blocks. Such a process removes ran-
dom writes but the cleaning is time consuming. Threaded
logging, in contrast, directly writes data to the “holes” (i.e.,
the invalidated blocks) in the dirty segments. Allowing
such in-place writes would create flash-unfriendly random
writes but lowers the cleaning overhead. F2FS dynamically
switches between the two policies depending on the system

status by examining if the system is under high pressure of
clean segments or not.

Another design consideration in F2FS is to purposefully
exploit the rich internal parallelism resources in modern
flash devices. For example, F2FS maintains multiple active
log segments simultaneously and appends data and meta-
data to different segments based on the update frequency.
So the multiple logs can work simultaneously and the hot
and cold data can be physically separated on the flash media.
In particular, F2FS classifies node and data blocks into three
temperature levels (hot, warm, and cold). For example,
direct node blocks are considered hotter than indirect node
blocks, and directory blocks are considered hotter than file
blocks. In total, six logs are maintained, three logs (hot,
cold, and warm) for node blocks and the other three logs
for data blocks. Since the six active logs can run simultane-
ously, the internal parallelism of modern flash devices can
be effectively exploited.

If we compare the three file systems above, they all
take many key design elements from log-structured file
system [79] for flash management, such as the log-struc-
tured write, periodic garbage collection, etc. The distinction
is where these functions are implemented. Kawaguchi’s
solution directly manages raw flash memory and thus most
functions are implemented in the file system level; DFS
moves much of the flash management into the virtualized
flash storage layer at the device driver level; F2FS is built on
the strength of modern flash devices and relies on a highly
sophisticated FTL at the device firmware level. These are
three representative approaches with different emphasis on
interoperability and efficiency.

C. Database Systems

Database system is a typical data-intensive application.
High-speed flash storage provides a long-awaited stor-
age technology that could significantly enhance the data
retrieval speed for database applications. However, success-
fully adopting flash into databases is nontrivial. An impor-
tant research issue is how to leverage the rich semantic
knowledge of databases (e.g., access patterns of data, specific
requests for storage management and accesses) and how to
exploit the unique properties of flash devices to effectively
serve various database operations. Here we discuss two rep-
resentative work.

1) Hybrid-Storage-Based Database (hStorage-DB): Flash
storage is desirable to database designers and users because
of its high speed. However, building the entire database on
flash is excessively expensive. For this reason, a hybrid stor-
age that integrates both high-speed flash devices and large-
capacity disk drives becomes a practically appealing choice.

A straightforward hybrid solution is to directly use
a hybrid storage, such as Hystor [17], and run database
systems atop. Such an approach relies on the underlying
hybrid storage to identify hot data and cache them in the

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

1660  Proceedings of the IEEE | Vol. 105, No. 9, September 2017

flash devices. For databases, this solution is suboptimal.
First, completely relying on observing I/O patterns at the
storage level takes a long ramp-up time to recognize hot
data and is difficult to make a timely caching decision.
Second, and more importantly, the rich semantic knowl-
edge available at the database level cannot be exploited,
not to mention that many semantic information is impor-
tant but not necessarily related to locality, such as the data
lifetime information.

hStorage-DB [62] is designed to exploit the database-
level knowledge while still retaining minimal changes to the
existing block interface. The key idea of hStorage-DB is to
pass semantic hints to the hybrid storage. In current data-
base, the storage manager simply translates a data request
into a storage I/O request. In hStorage-DB, the I/O requests
are first classified into various predefined classes, and each
I/O request is associated with a class ID. The class ID and
the request are sent together down to the storage layer. At
the hybrid storage layer, each class is linked to a quality of
services (QoS) policy, which defines the caching policy.
Upon receiving an I/O request, the storage layer uses the
class ID as an index to locate the corresponding policy and
enforces it in the cache management. Fig. 4 illustrates this
process.

An example is how the temporary data are handled in
hStorage-DB. In databases, some queries can generate tem-
porary data, which are written into storage, consumed, and
then deleted. Due to its weak locality and short lifetime, such
temporary data are a challenge for traditional locality-based
caching schemes. In hStorage-DB, when the temporary data
are generated, the data are assigned the highest priority to
stay in the cache, so the following data consumption opera-
tions can be satisfied in the high-speed flash cache; after the
data are consumed and not useful any more, the database
labels the data as low value for caching, and the cache man-
ager can quickly evict the data. In this way, the underlying
cache manager can be aware of the temporary data lifetime
and make a proper caching decision rather than blindly
follow the standard locality principle, such as LRU.

hStorage-DB represents a “baby-step” strategy in the
database domain: use a hinting approach to allow semantic
information flow between the two layers, and in the mean-
time, avoid radical changes to the standard interface.

2) Transactional Processing on Flash Storage: A
more aggressive approach is to tightly connect database
requirements to flash storage properties. An example of
such efforts is Transactional Flash (TxFlash) [75]. TxFlash
aims to provide new abstractions to better utilize the unique
properties of flash memory for device-level transaction sup-
port. By providing a transactional construct to allow users
to perform atomic writes to flash, TxFlash helps reduce the
complexity of upper level components, such as databases
and file systems.

A TxFlash device is composed of commodity flash pack-
ages. Besides the block interface, TxFlash also exports a
transaction interface, WriteAtomic and Abort. This inter-
face allows an application to specify a set of page writes in
one transaction. The device ensures either all or none of the
pages to be written and also guarantees the isolation between
transactions and allows to abort uncommitted ones.

The design of TxFlash directly takes advantage of several
inherent structural properties of flash SSDs, which make
them effective to support transactions natively. For example,
the FTL uses copy-on-write (COW) and a log-like method to
handle writes. So the “out-of-place writes” requirement by
flash memory ensures that write operations in a transaction
could be undone if uncommitted. In TxFlash, it leverages
the indirection provided by the mapping table to remap
the logical pages to the new locations when a transaction
is committed. Also, in recovery process, TxFlash can iden-
tify the old version and uncommitted intention records and
directly garbage collect them. Thus, the implementation of
supporting transactions in TxFlash is tightly integrated with
the flash SSD internals, rather than a simple change to the
interface.

Comparing hStorage-DB and TxFlash, we can find
that database systems with rich semantic knowledge can
benefit greatly from a close interaction with the storage
layer but the cost is the increased complexity and the loss
of generality. hStorage-DB attempts to achieve a balance
between efficiency and compatibility by passing a small
amount of semantic hints; TxFlash deeply exploits various
flash-only features, such as its COW nature, fast random
reads, and internal parallelism. In essence, this is simply a
design choice, and we believe both solutions well illustrate
how challenging it is to fully exploit this new technology
efficiently.

I V.   THE DI V ISION OF SOF T WA R E

An important factor contributing to the huge success of
modern flash devices is the backward-compatible block
interface, which allows users to quickly adopt such a
new technology without changing any applications. Fig. 4. An illustration of passing database hints to hybrid storage.

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE  1661

The associated cost, however, is the straight division of
software at two separate layers, inside and outside the
device. As flash technologies further advance, especially the
adoption of more flexible hardware interface (e.g., PCI-E), a
quickly growing effort in industry and academia is to remove
the constraint of the current strictly defined block inter-
face to create opportunities for fully exploiting the device
potential and satisfying the application needs.

Recently, there have been two sets of such research
efforts made on different directions. One direction is to
move certain computing functions from the application
level down to the device level, represented by Active Flash
[85] and Willow [80] ; the other is to expose the device-level
details and move low-level device control and functions to
the upper level, represented by software-defined flash [72],
[81], [90] and application-managed flash [54].

A. Moving Functions From Applications to Device

Active Flash [85] is designed for data analysis for high-
performance computing (HPC) applications. Traditional
data analysis in HPC often demands a large amount of data
movement from the storage system to the computing sys-
tem, which raises not only performance but also power
concerns. Active Flash adopts a concept similar to Active
Disk [7], [77]. It tries to exploit the computing capabilities
of low-power multicore storage controllers on flash devices
by carrying certain analysis tasks directly on the device,
which avoids transferring large amount of data across the
device/host interface and consuming host-side computing
resources. Willow [80] is a similar but more general-pur-
pose solution. Willow provides a programmable interface
to allow ordinary programmers to extend the SSD func-
tionality through a mechanism based on remote procedure
call (RPC). Willow potentially can satisfy a broad scope of
applications that desire to directly offload customized data
processing on device, such as Atomic Writes, through the
programmable interface.

Both Active Flash and Willow essentially move certain
functions from applications down to the device level. Such a
“fat-device-thin-application” approach can bring three ben-
efits. First, the abundant device resources can be better uti-
lized. Second, large amount of cross-interface data transfer
can be avoided. Third, applications can be made simpler and
better modularized. In many cases, such an approach can
lead to promising results for applications that can offload
certain data processing, such as Nameless Writes [105].

B. Moving Functions From Device to Applications

Another technical trend is happening in the opposite
direction [54], [72], [81], [90]. These studies take a “thin-
device-fat-application” approach—the device exposes cer-
tain device-level information to the upper level applications
and allows applications to directly see and carry out certain

functions that originally belong to the device. In other
words, move certain parts of the FTL software outside of the
device and let applications directly handle them.

As an early effort, Ouyang et al. presented a scheme
called software-defined flash (SDF) [72], which is designed
for web-scale storage to maximize the bandwidth and usa-
ble capacity for a large-scale deployment of flash storage
in data centers. SDF consists of the hardware part, which
is based on a customized FPGA controller, and a software
layer, which provides applications with accesses to low-
level flash memory resources. SDF takes a minimal hard-
ware design, including only features and functions that are
absolutely necessary for the target application environ-
ment. For example, unlike many commercial SSD prod-
ucts, SDF hardware does not provide parity-based protec-
tion on device but uses software-managed data replication.
Also, the SDF device exposes an asymmetric operation
interface to the software, page-based read and block-based
write, which eliminates the small write problem (all writes
are in large erase blocks). SDF also unlocks erase opera-
tions to applications, which allows applications to directly
implement garbage collection and schedule long-latency
block erase operations. In SDF, the host software has a
direct view and control over flash channels for exploiting
internal parallelism resources inside the SSD. Each chan-
nel is presented to the application layer as an independ-
ent block device, which allows applications to decide data
placement, I/O scheduling, parallelization, etc. Based on
the same platform, Wang et al. further presented an LSM-
tree based key-value store, called LOCS [90]. As discussed
earlier, DIDACache [81] takes a similar principle for flash
based key-value caching. Another similar effort toward the
same direction is application-managed flash (AMF) [54].
Similar to SDF, AMF moves selected functions of flash
management from the device level to the application level.
AMF offers an append-only block interface to applications,
which simplifies the device-level management. For exam-
ple, the remapping and garbage collection can be moved
out of the device, and the device-level complexity is signifi-
cantly reduced and only focuses on core functions, such
as bad block management and wear leveling. Applications,
especially those that already employ append-only writes,
such as log-structured file systems and LSM-tree-based
databases, can easily adopt and benefit from such an
architecture.

Though different, all these efforts attempt to reconsider
a proper division of software functions inside and outside
the device. These research studies are essentially driven by
two facts. First, the flash device’s capability, both comput-
ing and storage, is quickly growing and more abundant than
ever. Second, the applications desire to gain more resources
and controls on hardware for performance, power, and
other reasons. As a result, the above-said research efforts in
two distinct directions all attempt to remove the intermedi-
ate layers out from the I/O path, either bringing computing

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

1662  Proceedings of the IEEE | Vol. 105, No. 9, September 2017

components of applications closer to the hardware or open-
ing the hardware controls to the application. A result of such
efforts is more tightly integrated applications with devices
[81], [106], [105].

On one hand, we are highly optimistic with such
research attempts and strongly believe that they represent
the future of flash storage and could deeply change the com-
puting storage system. On the other hand, we should also
note that when we approach to the goal of closing the gap
between the two layers, we are not only tightening the con-
nection between applications and devices but also making
an increasingly blurrier boundary between the two—either
making a special device for the application or making a spe-
cial application for the device. As researchers and practi-
tioners, we still need to consider how to retain a reasonable
abstraction and balance between efficiency and interoper-
ability, which will still remain a challenging research issue
in the future.

V.  CONCLUSION A ND PROSPECTS

This paper surveys the progress over the past decade on the
development of software stacks inside and outside SSDs.
Software inside SSDs is designed and optimized center-
ing around four objectives, including managing address
mapping, reducing write amplification, embracing device
wearout, and improving speed performance. We have
accordingly discussed major design options and discussed
representative prior work under these four categories. We
have also surveyed recent advancement on rethinking the
design of high-level software stacks to best embrace and
exploit SSDs. We have discussed prior work in three particu-
lar domains, including caching, file system, and databases.
As SSDs are quickly becoming commodity products, we
expect that future innovations will more and more center
around those high-level software stacks. It is our hope that
this survey paper will serve as a comprehensive reference
for academic researchers and industrial practitioners to
continue to advance this exciting and broad domain in the
big data era.

Beyond nand flash, a recent technology breakthrough is
nonvolatile memory (NVM), represented by phase change
memory (PCM) and spin-transfer-torque RAM (STT-RAM).
NVM is interesting, because it carries a combination of
properties of both memory and storage—it provides near-
memory access speed, DRAM-like byte addressability, and

storage-like persistence. In other words, NVM draws a
blurry line between volatile memory and persistent storage.
A fundamental question is how to integrate such an uncon-
ventional technology into our existing I/O stack. A natu-
ral consideration is to insert NVM as a new caching layer
between DRAM and nand flash. For example, leveraging
the byte addressability, we may directly integrate NVM and
DRAM together and expose a huge unified memory space
to accommodate memory-intensive workloads. Similarly,
leveraging its persistence property, NVM can be integrated
into the storage system as an on-device cache (or buffer) or
can be directly used as a high-speed block device, such as
PMBD [20]. Such an approach is conservative but demands
little change to the existing system and application designs.
To fully exploit the NVM properties, more aggressive
approaches can be adopted. An example is NVM-based file
systems, such as BPFS [24], PMFS [25], and SCMFS [100].
These file systems are designed with special consideration
on the unique properties of NVM. For example, PMFS sup-
ports direct memory mapping of file data to process address
space without extra memory copy. An even more aggressive
approach is to directly open persistence and byte address-
ability properties to applications, which allows program-
mers to make certain in-memory structures/objects persis-
tent. However, this implies nontrivial burden to application
developers, especially on handling data integrity issues upon
system failures. Prior studies, such as Mnemosyne [89],
CDDCS [88], and NV-heap [22], all try to provide a pro-
gramming interface to help programmers.

As a disruptive technology, NVM could change many
aspects of system and application designs along with other
emerging technologies, such as NVM-Express [2], CAPI
[3], NVLink [4], etc. The experience that we learned
through adopting nand flash in the past decade can also
shed a light on a smooth transition to NVM in the future:
When integrating an unconventional technology into the
existing stack, we must carefully balance between two
equally important goals, fully exploiting the new technol-
ogy’s potential and minimizing disruptions to the current
ecosystem. Though challenging, we are optimistic that this
process will open numerous research opportunities for
researchers and practitioners.� 

Acknowledgements
The authors would like to thank the reviewers for construc-
tive comments.

REFERENCES
	 [1]	 [Online]. Available: http://www.fusionio.com/

PDFs/Fusion_ioDriveDuo_datasheet_v3.pdf

	 [2]	 [Online]. Available: http://www.nvmexpress.
org/

	 [3]	 [Online]. Available: https://www-304.ibm.
com/webapp/set2/sas/f/capi/home.html

	 [4]	 [Online]. Available: http://www.nvidia.com/
object/nvlink.html

	 [5]	 (2016). [Online]. Available: https://www.
facebook.com/notes/facebook-engineering/
mcdipper-akey-value-cache-for-flash-stor-
age/10151347090423920

	 [6]	 (2016). [Online]. Available: https://github.
com/twitter/fatcache

	 [7]	 A. Acharya, M. Uysal, and J. Saltz, “Active
disks: Programming model, algorithms and
evaluation,” ACM SIGPLAN Notices, vol. 33,
no. 11, pp. 81–91, 1998.

	 [8]	 Apple. (Mar. 22, 2016). Mac Mini (Late 2012
and Later), iMac (Late 2012 and Later): About
Fusion Drive. https://support.apple.com/
en-us/HT202574

	 [9]	 B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang,
and M. Paleczny, “Workload analysis of a
large-scale key-value store,” ACM SIGMET-
RICS Perform. Eval. Rev., vol. 40, no. 1,
pp. 53–64, 2012.

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE  1663

	[10]	 A. Ben-Aroya and S. Toledo, “Competitive
analysis of flash-memory algorithms,” in
Proc. Annu. Eur. Symp. Algorithms, 2006,
pp. 100–111.

	[11]	 D. Bhagwat, K. Eshghi, D. D. E. Long, and
M. Lillibridge, “Extreme Binning: Scalable,
parallel deduplication for chunk-based file
backup,” in Proc. IEEE Int. Symp. Modeling,
Anal. Simulation Comput. Telecommun. Syst.
(MASCOT), Sep. 2009, pp. 1–9.

	[12]	 L.-P. Chang, “A hybrid approach to NAND-
flash-based solid-state disks,” IEEE Trans.
Comput., vol. 59, no. 10, pp. 1337–1349,
Oct. 2010.

	[13]	 L.-P. Chang and C.-D. Du, “Design and
implementation of an efficient wear-leveling
algorithm for solid-state-disk
microcontrollers,” ACM Trans. Design Autom.
Electron. Syst., vol. 15, no. 1, pp. 6:1–6:36,
Dec. 2009.

	[14]	 L.-P. Chang and T.-W. Kuo, “Real-time
garbage collection for flash-memory storage
systems of real-time embedded systems,”
ACM Trans. Embedded Comput. Syst., vol. 3,
no. 4, pp. 837–863, Nov. 2004.

	[15]	 F. Chen, B. Hou, and R. Lee, “Internal
parallelism of flash memory-based solid-state
drives,” ACM Trans. Storage, vol. 12, no. 3,
pp. 13:1–13:39, May 2016.

	[16]	 F. Chen, D. Koufaty, and X. Zhang,
“Understanding intrinsic characteristics and
system implications of flash memory based
solid state drives,” in Proc. Int. Joint Conf.
Meas. Modeling Comput. Syst. (SIGMETRICS),
2009, pp. 181–192.

	[17]	 F. Chen, D. A. Koufaty, and X. Zhang,
“Hystor: Making the best use of solid state
drives in high performance storage systems,”
in Proc. 25th ACM Int. Conf. Supercomput.
(ICS), Tucson, AZ, USA, May/Jun. 2011,
pp. 22–32.

	[18]	 F. Chen, R. Lee, and X. Zhang, “Essential
roles of exploiting internal parallelism of
flash memory based solid state drives in
high-speed data processing,” in Proc. IEEE
17th Int. Symp. High Perform. Comput. Archit.
(HPCA), San Antonio, TX, USA, Feb. 2011,
pp. 266–277.

	[19]	 F. Chen, T. Luo, and X. Zhang, “CAFTL: A
content-aware flash translation layer
enhancing the lifespan of flash memory
based solid state drives,” in Proc. 9th USENIX
Conf. File Storage Technol. (FAST), vol. 11.
2011, pp. 1–14.

	[20]	 F. Chen, M. P. Mesnier, and S. Hahn, “A
protected block device for persistent
memory,” in Proc. IEEE 30th Int. Conf. Massive
Storage Syst. Technol. (MSST), Santa Clara,
CA, USA, Jun. 2014, pp. 1–12.

	[21]	 M.-L. Chiang and R.-C. Chang, “Cleaning
policies in mobile computers using flash
memory,” J. Syst. Softw., vol. 48, no. 3,
pp. 213–231, 1999.

	[22]	 J. Coburn et al., “NV-Heaps: Making
persistent objects fast and safe with next-
generation, non-volatile memories,” in Proc.
Archit. Support Program. Lang. Oper. Syst.
(ASLPOS), Newport Beach, CA, USA,
Mar. 2011, pp. 1–13.

	[23]	 E. T. Cohen, “Why variable-size matters:
Beyond page-based flash translation layers,”
in Proc. Flash Memory Summit, 2012.

	[24]	 J. Condit et al., “Better I/O through byte-
addressable, persistent memory,” in Proc.
ACM SIGOPS 22nd Symp. Oper. Syst. Principles
(SOSP), 2009, pp. 133–146.

	[25]	 S. R. Dulloor, S. Kumar, A. Keshavamurthy,
P. Lantz, D. Reddy, and R. S. J. Jackson,
“System software for persistent memory,” in
Proc. Eur. Conf. Comput. Syst. (EuroSys),
Amsterdam The Netherlands, Apr. 2014,
p. 15.

	[26]	 E. Gal and S. Toledo, “Algorithms and data
structures for flash memories,” ACM Comput.
Surv., vol. 37, no. 2, pp. 138–163, Jun. 2005.

	[27]	 G. Graefe, “The five-minute rule 20 years
later, and how flash memory changes the
rules,” in Proc. 3rd Int. Workshop Data
Manage. New Hardw. (DaMon), Beijing,
China, Jun. 2007, pp. 1–29.

	[28]	 A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL:
A flash translation layer employing demand-
based selective caching of page-level address
mappings,” in Proc. Int. Conf. Archit. Support
Program. Lang. Oper. Syst. (ASPLOS), 2009,
pp. 229–240.

	[29]	 A. Gupta, R. Pisolkar, B. Urgaonkar, and A.
Sivasubramaniam, “Leveraging value locality
in optimizing NAND flash-based SSDs,” in
Proc. USENIX Conf. File Storage Technol.
(FAST), 2011, pp. 91–103.

	[30]	 S. S. Hahn, S. Lee, and J. Kim, “SOS:
Software-based out-of-order scheduling for
high-performance NAND flash-based SSDs,”
in Proc. IEEE Symp. Mass Storage Syst.
Technol. (MSST), May 2013, pp. 1–5.

	[31]	 J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach.
Amsterdam, The Netherlands: Elsevier,
2011.

	[32]	 J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang,
“Efficient identification of hot data for flash
memory storage systems,” ACM Trans.
Storage, vol. 2, no. 1, pp. 22–40, Feb. 2006.

	[33]	 J. W. Hsieh, H. Y. Lin, and D. L. Yang,
“Multi-channel architecture-based FTL for
reliable and high-performance SSD,” IEEE
Trans. Comput., vol. 63, no. 12, pp. 3079–3091,
Dec. 2014.

	[34]	 J. Hu, H. Jiang, L. Tian, and L. Xu, “PUD-
LRU: An erase-efficient write buffer
management algorithm for flash memory
SSD,” in Proc. IEEE Int. Symp. Modeling, Anal.
Simulation Comput. Telecommun. Syst.
(MASCOTS), Aug. 2010, pp. 69–78.

	[35]	 X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis,
and R. Pletka, “Write amplification analysis
in flash-based solid state drives,” in Proc.
Israeli Experim. Syst. Conf. (SYSTOR), 2009,
pp. 10:1–10:9.

	[36]	 Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and
S. Zhang, “Performance impact and
interplay of SSD parallelism through
advanced commands, allocation strategy and
data granularity,” in Proc. Int. Conf.
Supercomput. (ICS), 2011, pp. 96–107.

	[37]	 S.-M. Huang and L.-P. Chang, “Exploiting
page correlations for write buffering in page-
mapping multichannel SSDs,” ACM Trans.
Embedded Comput. Syst., vol. 15, no. 1,
pp. 12:1–12:25, 2016.

	[38]	 S. Im and D. Shin, “Storage architecture and
software support for SLC/MLC combined
flash memory,” in Proc. ACM Symp. Appl.
Comput. (SAC), 2009, pp. 1664–1669.

	[39]	 J. Jeong, S. S. Hahn, S. Lee, and J. Kim,
“Lifetime improvement of NAND flash-
based storage systems using dynamic
program and erase scaling,” in Proc. USENIX
Conf. File Storage technol. (FAST), 2014,
pp. 61–74.

	[40]	 S. Jiang, L. Zhang, X. Yuan, H. Hu, and Y.
Chen, “S-FTL: An efficient address
translation for flash memory by exploiting
spatial locality,” in Proc. IEEE 27th Symp.
Mass Storage Syst. Technol. (MSST),
May 2011, pp. 1–12.

	[41]	 X. Jimenez, D. Novo, and P. Ienne, “Wear
unleveling: Improving NAND flash lifetime
by balancing page endurance,” in Proc.
USENIX Conf. File Storage Technol. (FAST),
2014, pp. 47–59.

	[42]	 X. Jin, S. Jung, and Y. H. Song, “Write-aware
buffer management policy for performance
and durability enhancement in NAND flash
memory,” IEEE Trans. Consum. Electron.,
vol. 56, no. 4, pp. 2393–2399, Nov. 2010.

	[43]	 W. K. Josephson, L. A. Bongo, D. Flynn, and
K. Li, “DFS: A file system for virtualized
flash storage,” in Proc. USENIX Conf. File
Storage Technol. (FAST), San Jose, CA, USA,
Feb. 2010.

	[44]	 M. Jung and M. T. Kandemir, “Sprinkler:
Maximizing resource utilization in many-
chip solid state disks,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2014, pp. 524–535.

	[45]	 J.-U. Kang, J. Hyun, H. Maeng, and S. Cho,
“The multi-streamed solid-state drive,” in
Proc. USENIX Workshop Hot Topics Storage
File Syst. (HotStorage), Jun. 2014.

	[46]	 J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A
superblock-based flash translation layer for
NAND flash memory,” in Proc. ACM/IEEE
Int. Conf. Embedded Softw. (EMSOFT),
Oct. 2006, pp. 161–170.

	[47]	 A. Kawaguchi, S. Nishioka, and H. Motoda,
“A flash-memory based file system,” in Proc.
USENIX Winter, 1995, pp. 155–164.

	[48]	 D. Kim and S. Kang, “Dual region write
buffering: Making large-scale nonvolatile
buffer using small capacitor in SSD,” in Proc.
ACM Symp. Appl. Comput. (SAC), 2015,
pp. 2039–2046.

	[49]	 G. Kim and D. Shin, “Performance analysis
of SSD write using TRIM in NTFS and
EXT4,” in Proc. Int. Conf. Comput. Sci.
Converg. Inf. Technol. (ICCIT), Nov. 2011,
pp. 422–423.

	[50]	 H. Kim and S. Lee, “An effective flash
memory manager for reliable flash memory
space management,” IEICE Trans. Inf. Syst.,
vol. 85, no. 6, pp. 950–964, 2002.

	[51]	 J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and
Y. Cho, “A space-efficient flash translation
layer for CompactFlash systems,” IEEE Trans.
Consum. Electron., vol. 48, no. 2, pp. 366–375,
May 2002.

	[52]	 C. Lee, D. Sim, J.-Y. Hwang, and S. Cho,
“F2FS: A new file system for flash storage,”
in Proc. 13th USENIX Conf. File Storage
Technol. (FAST), Santa Clara, CA, USA,
Feb. 2015, pp. 273–286.

	[53]	 S. Lee, T. Kim, K. Kim, and J. Kim, “Lifetime
management of flash-based SSDs using
recovery-aware dynamic throttling,” in Proc.
USENIX Conf. File Storage Technol. (FAST),
2012, pp. 327–340.

	[54]	 S. Lee et al., “Application-managed flash,” in
Proc. 14th USENIX Conf. File Storage Technol.
(FAST), 2016, pp. 339–353.

	[55]	 S. Lee, D. Shin, Y. Kim, and J. Kim,
“Exploiting sequential and temporal
localities to improve performance of NAND
flash-based SSDs,” ACM Trans. Storage,
vol. 12, no. 3, pp. 15:1–15:39, May 2016.

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

1664  Proceedings of the IEEE | Vol. 105, No. 9, September 2017

	[56]	 S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song, “A log buffer-based
flash translation layer using fully-associative
sector translation,” ACM Trans. Embedded
Comput. Syst., vol. 6, no. 3, p. 18, 2007.

	[57]	 Y.-G. Lee, D. Jung, D. Kang, and J.-S. Kim,
“​μ​FTL: A memory-efficient flash translation
layer supporting multiple mapping
granularities,” in Proc. ACM Int. Conf.
Embedded Softw. (EMSOFT), 2008, pp. 21–30.

	[58]	 A. Leventhal, “Flash storage memory,”
Commun. ACM, vol. 51, pp. 47–51, Jul. 2008.

	[59]	 J. Li, K. Zhao, X. Zhang, J. Ma, M. Zhao, and
T. Zhang, “How much can data
compressibility help to improve NAND flash
memory lifetime?” in Proc. USENIX Conf. File
Storage Technol. (FAST), 2015, pp. 227–240.

	[60]	 M. Lillibridge, K. Eshghi, D. Bhagwat, V.
Deolalikar, G. Trezis, and P. Camble, “Sparse
Indexing: Large scale, inline deduplication
using sampling and locality,” in Proc. 7th
USENIX Conf. File Storage Technol. (FAST),
vol. 9. 2009, pp. 111–123.

	[61]	 H.-Y. Lin and J.-W. Hsieh, “HLC: Software-
based half-level-cell flash memory,” in Proc.
Design, Autom. Test Eur. Conf. Exhibit. (DATE),
2015, pp. 936–941.

	[62]	 T. Luo, R. Lee, M. P. Mesnier, F. Chen, and
X. Zhang, “hStorage-DB: Heterogeneity-
aware data management to exploit the full
capability of hybrid storage systems,” in Proc.
38th ACM Int. Conf. Very Large Databases
(VLDB), Istanbul, Turkey, Aug. 2012,
pp. 1076–1087.

	[63]	 T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and
L. Zhou, “S-CAVE: Effective SSD caching to
improve virtual machine storage
performance,” in Proc. 22nd Int. Conf. Parallel
Archit. Compilation Techn. (PACT), Edinburgh,
Scotland, Sep. 2013, pp. 103–112.

	[64]	 C. Manning. (2004). YAFFS: Yet Another
Flash File System. [Online]. Available: http://
www.aleph1.co.uk/yaffs

	[65]	 B. Mao and S. Wu, “Exploiting request
characteristics and internal parallelism to
improve SSD performance,” in Proc. IEEE Int.
Conf. Comput. Design (ICCD), 2015,
pp. 447–450.

	[66]	 J. Matthews, S. Trika, D. Hensgen, R.
Coulson, and K. Grimsrud, “Intel turbo
memory: Nonvolatile disk caches in the
storage hierarchy of mainstream computer
systems,” ACM Trans. Storage, vol. 4, no. 2,
pp. 4:1–4:24, May 2008.

	[67]	 J. Menon and L. Stockmeyer, An Age-
Threshold Algorithm for Garbage Collection in
Log-Structured Arrays and File Systems. New
York, NY, USA: Springer, 1998, pp. 119–132.

	[68]	 I. Moulster. (Apr. 6, 2006). SuperFetch,
ReadyBoost and ReadyDrive: Some New Feature
Names for You. [Online]. Available: https://
blogs.msdn.microsoft.com/ianm/2006/04/06/
superfetch-readyboost-and-readydrive-some-
new-feature-names-for-you/

	[69]	 M. Murugan and D. H. C. Du, “Rejuvenator:
A static wear leveling algorithm for NAND
flash memory with minimized overhead,” in
Proc. IEEE Symp. Mass Storage Syst. Technol.
(MSST), May 2011, pp. 1–12.

	[70]	 M. Murugan and D. H. C. Du, “Hybrot:
Towards improved performance in hybrid
SLC-MLC devices,” in Proc. IEEE Int. Symp.
Modeling Anal. Simulation Comput.
Telecommun. Syst., Aug. 2012, pp. 481–484.

	[71]	 Y. Oh, E. Lee, J. Choi, D. Lee, and S. H. Noh,
“Hybrid solid state drives for improved

performance and enhanced lifetime,” in
Proc. IEEE Symp. Mass Storage Syst. Technol.
(MSST), May 2013, pp. 1–5.

	[72]	 J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang,
and Y. Wang, “SDF: Software-defined flash
for Web-scale Internet storage systems,” in
Proc. 19th Int. Conf. Archit. Support Program.
Lang. Oper. Syst. (ASPLOS), Salt Lake City,
UT, USA, Mar. 2014.

	[73]	 Y. Pan, G. Dong, and T. Zhang, “Error rate-
based wear-leveling for NAND flash memory
at highly scaled technology nodes,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 21, no. 7, pp. 1350–1354, Jul. 2013.

	[74]	 C. Park, W. Cheon, J. Kang, K. Roh, W. Cho,
and J.-S. Kim, “A reconfigurable FTL (Flash
Translation Layer) architecture for NAND
flash-based applications,” ACM Trans.
Embedded Comput. Syst., vol. 7, no. 4,
pp. 38-1–38-23, Aug. 2008.

	[75]	 V. Prabhakaran, T. L. Rodeheffeer, and L.
Zhou, “Transactional flash,” in Proc. 8th
USENIX Symp. Oper. Syst. Design Implement.
(OSDI), San Diego, CA, USA, Dec. 2008.

	[76]	 Z. Qin, Y. Wang, D. Liu, and Z. Shao, “A two-
level caching mechanism for demand-based
page-level address mapping in NAND flash
memory storage systems,” in Proc. IEEE Real-
Time Embedded Technol. Appl. Symp.,
Apr. 2011, pp. 157–166.

	[77]	 E. Riedel, C. Faloutsos, G. A. Gibson, and D.
Nagle, “Active disks for large-scale data
processing,” Computer, vol. 34, no. 6,
pp. 68–74, Jun. 2001.

	[78]	 O. Rodeh, “B-trees, shadowing, and clones,”
ACM Trans. Storage, vol. 3, no. 4, pp. 2-1–2-27,
Feb. 2008.

	[79]	 M. Rosenblum and J. K. Ousterhout, “The
design and implementation of a log-
structured file system,” ACM Trans. Comput.
Syst., vol. 10, no. 1, pp. 26–52, Jun. 1992.

	[80]	 S. Seshadri et al., “Willow: A user-
programmable SSD,” in Proc. 11th USENIX
Symp. Oper. Syst. Design Implement. (OSDI),
2014, pp. 67–80.

	[81]	 Z. Shen, F. Chen, Y. Jia, and Z. Shao,
“DIDACache: A deep integration of device
and application for flash based key-value
caching,” in Proc. 15th USENIX Conf. File
Storage Technol. (FAST), Santa Clara, CA,
USA, Feb./Mar. 2017.

	[82]	 L. Shi, J. Li, Q. Li, C. J. Xue, C. Yang, and X.
Zhou, “A unified write buffer cache
management scheme for flash memory,”
IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 22, no. 12, pp. 2779–2792,
Dec. 2014.

	[83]	 K. Smith, “Garbage collection,” Flash
Memory Summit, 2011.

	[84]	 K. Smith, “Understanding SSD over-
provisioning,” Flash Memory Summit,
Jan. 2012.

	[85]	 D. Tiwari et al., “Active Flash: Towards
energy-efficient, in-situ data analytics on
extreme-scale machines,” in Proc. 11th
USENIX Conf. File Storage Technol. (FAST),
2013, pp. 119–132.

	[86]	 J. Tjioe, A. Blanco, T. Xie, and Y. Ouyang,
“Making garbage collection wear conscious
for flash SSD,” in Proc. IEEE Int. Conf. Netw.,
Archit. Storage (NAS), Jun. 2012. pp. 114–123.

	[87]	 C. Ungureanu et al., “HydraFS: A high-
throughput file system for the hydrastor
content-addressable storage system,” in Proc.
8th USENIX Conf. File Storage Technol. (FAST),
vol. 10. 2010, pp. 225–239.

 	 [88]	 S. Venkataraman, N. Tolia,
 P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for
non-volatile byte-addressable memory,” in
Proc. 9th USENIX Conf. File Storage Technol.
(FAST), San Jose, CA, USA, Feb. 2011,
pp. 61–75.

 	 [89]	 H. Volos, A. J. Tack, and M. M. Swift,
“Mnemosyne: Lightweight persistent
memory,” in Proc. Archit. Support
Programm. Lang. Oper. Syst. (ASLPOS),
Newport Beach, CA, USA, Mar. 2011,
pp. 91–104.

 	 [90]	 P. Wang et al., “An efficient design and
implementation of LSM-tree based key-
value store on open-channel SSD,” in Proc.
9th Eur. Conf. Comput. Syst. (EuroSys),
Amsterdam, The Netherlands, 2014, p. 16.

 	 [91]	 W. Wang, W. Pan, T. Xie, and D. Zhou,
“How many MLCs should impersonate
SLCs to optimize SSD performance?” in
Proc. Int. Symp. Memory Syst. (MEMSYS),
2016, pp. 238–247.

 	 [92]	 Y. Wang, D. Liu, M. Wang, Z. Qin, Z. Shao,
and Y. Guan, “RNFTL: A reuse-aware
NAND flash translation layer for flash
memory,” in Proc. ACM SIGPLAN/SIGBED
Conf. Lang., Compil., Tools Embedded Syst.,
2010, pp. 163–172.

 	 [93]	 Q. Wei, C. Chen, M. Xue, and J. Yang, “Z-
MAP: A zone-based flash translation layer
with workload classification for solid-state
drive,” ACM Trans. Storage, vol. 11, no. 1,
pp. 4:1–4:33, Feb. 2015.

 	 [94]	 Y.-J. Woo and J.-S. Kim, “Diversifying wear
index for MLC NAND flash memory to
extend the lifetime of SSDs,” in Proc. ACM
Int. Conf. Embedded Softw. (EMSOFT),
Sep. 2013, pp. 6:1–6:10.

 	 [95]	 D. Woodhouse, JFFS: The Journaling Flash
File System, 2001.

 	 [96]	 C-H. Wu and T.-W. Kuo, “An adaptive two-
level management for the flash translation
layer in embedded systems,” in Proc. IEEE/
ACM Int. Conf. Comput. Aided Design
(ICCAD), Nov. 2006, pp. 601–606.

 	 [97]	 G. Wu, B. Eckart, and X. He, “BPAC: An
adaptive write buffer management scheme
for flash-based solid state drives,” in Proc.
IEEE Symp. Mass Storage Syst. Technol.
(MSST), May 2010, pp. 1–6.

 	 [98]	 G. Wu and X. He, “​Δ​FTL: Improving SSD
lifetime via exploiting content locality,” in
Proc. ACM Eur. Conf. Comput. Syst.
(EuroSys), 2012, pp. 253–266.

 	 [99]	 M. Wu and W. Zwaenepoel, “eNVy: A
nonvolatile main memory storage system,”
in Proc. 4th Workshop Workstation Oper.
Syst., Oct. 1993, pp. 116–118.

 	[100]	 X. Wu and A. L. Reddy, “SCMFS: A file
system for storage class memory,” in Proc.
Super Comput. (SC), Seattle, WA, Nov. 2011,
p. 39.

	 [101]	 W. Xie, Y. Chen, and P. C. Roth, “Parallel-
DFTL: A flash translation layer that
exploits internal parallelism in solid state
drives,” in Proc. IEEE Int. Conf. Netw.,
Archit. Storage (NAS), Aug. 2016, pp. 1–10.

 	[102]	 F. Yang, K. Dou, S. Chen, M. Hou, J.-U.
Kang, and S. Cho, “Optimizing NoSQL DB
on flash: A case study of RocksDB,” in Proc.
IEEE Int. Conf. Ubiquitous Intell. Comput.,
Aug. 2015, pp. 1062–1069.

 	[103]	 M.-C. Yang, Y.-H. Chang, T.-W. Kuo, and
F.-H. Chen, “Reducing data migration
overheads of flash wear leveling in a

Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE  1665

progressive way,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 24, no. 5,
pp. 1808–1820, May 2016.

	[104]	 M.-C. Yang, Y.-H. Chang, C.-W. Tsao, and
P.-C. Huang, “New ERA: New efficient
reliability-aware wear leveling for
endurance enhancement of flash storage
devices,” in Proc. 50th ACM/EDAC/IEEE
Design Autom. Conf. (DAC), May 2013,
pp. 1–6.

	[105]	 Y. Zhang, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “De-indirection for flash-
based SSDs with nameless writes,” in Proc.
10th USENIX Conf. File Storage Technol.
(FAST), San Jose, CA, USA, Feb. 2012, p. 1.

	[106]	 Y. Zhang, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Removing the costs and
retaining the benefits of flash-based SSD
virtualization with FSDV,” in Proc. 31st Int.
Conf. Massive Storage Syst. Technol.(MSST),
Santa Clara, CA, USA, May 2015, pp. 1–7.

	[107]	 Y. Zhou, F. Wu, P. Huang, X. He, C. Xie,
and J. Zhou, “An efficient page-level FTL to
optimize address translation in flash
memory,” in Proc. Eur. Conf. Comput. Syst.
(EuroSys), 2015, pp. 12:1–12:16.

	[108]	 B. Zhu, K. Li, and H. Patterson, “Avoiding
the disk bottleneck in the data domain
deduplication file system,” in Proc. 6th
USENIX Conf. File Storage Technol. (FAST),
vol. 8. 2008, pp. 1–14.

ABOUT THE AUTHORS

Feng Chen (Member, IEEE) received the Ph.D.

degree in computer science and engineering

from The Ohio State University, Columbus, OH,

USA, in 2010.

He is an Assistant Professor of Computer

Science at Louisiana State University, Baton

Rouge, LA, USA. Before joining LSU, he was a

research scientist at Intel Labs, OR, USA. His

research interests include operating systems, file

and storage systems, and distributed systems.

Prof. Chen is a recipient of the Best Paper Award at the 25th ACM

International Conference on Supercomputing in 2011 and the National

Science Foundation (NSF) Faculty Early Career Development Award

(CAREER) in 2015.

Tong Zhang (Senior Member, IEEE) received the

Ph.D. degree in electrical engineering from the

University of Minnesota, Minneapolis, MN, USA,

in 2002.

Currently, he is a Professor in Electrical,

Computer and Systems Engineering (ECSE)

Department at Rensselaer Polytechnic Institute

(RPI), Troy, NY, USA. He coauthored over 150

refereed papers in the broad areas of memory

circuits and systems, VLSI signal processing, and

computer architecture. He has graduated 15 Ph.D. students.

Prof. Zhang has served as an Associate Editor for the IEEE Transac-

tions on Circuits and SystemsÐPart II: Express Letters, the IEEE Transactions on

Signal Processing, ACM Transactions on Storage, and Journal of Signal
Processing Systems. He was the Technical Program Co-Chair of the 2012

ACM Great Lakes Symposium on VLSI and the 2012 IEEE Workshop on Sig-

nal Processing Systems (SiPS), and the General Co-Chair of the 2013 ACM

Great Lakes Symposium on VLSI.

Xiaodong Zhang (Fellow, IEEE) received the

Ph.D. degree in computer science from the Uni-

versity of Colorado at Boulder, Boulder, CO, USA.

He is the Robert M. Critchfield Professor in

Engineering and Chair of the Computer Science

and Engineering Department at the Ohio State

University, Columbus, OH, USA. His research

interests focus on data management in com-

puter and distributed systems.

Prof. Zhang received the Distinguished Engi-

neering Alumni Award in 2011 from the University of Colorado at Boulder.

He is a Fellow of the Association for Computing Machinery (ACM).

