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ABSTRACT  |  In the past decade, flash memory has been in the 

spotlight across a variety of research communities from circuits to 

computer systems, and significant progress has been accomplished. 

This has enabled flash memory to become increasingly pervasive 

across the entire information technology infrastructure, from 

consumer electronics to cloud and supercomputing. This paper 

aims to provide a comprehensive survey on the important 

advancements and milestones in the domains across flash 

translation layer (FTL), operating systems, and applications. As the 

storage device hardware has been quickly commoditized, software 

becomes increasingly important to tap the potential of flash 

memory to its full extent. Therefore, a comprehensive survey with 

a focus on software aspects will be very valuable to the research 

community and industry. It is our hope that this survey paper will 

serve as a good reference for system practitioners and researchers.

KEYWORDS  |  Flash translation layer; nand flash memory; 

software; solid-state storage

I .   IN TRODUCTION

Computer storage systems have been dominated by  
rotating media for decades. In the past ten years, we have 

witnessed a landscape change in storage technologies—Solid- 
state storage, represented by nand flash memory, quickly 
expands its application scope from consumer electronics 
(e.g., cell phones, PDAs, digital cameras) to personal com-
puters, servers, and data center systems [27]. Today, flash 
storage can be found in various computing environments, 
from mobile systems, database, virtualization, Internet ser-
vices to high-performance computing, and many others.

This grand landscape change has created an enormous 
space for innovations and attracted tremendous interest 
from both academia and industry. For example, a sim-
ple search of “flash memory” on Google Scholar returns 
over 2 000 000 results, and the industry has experienced 
a big wave of startups on solid-state data storage (e.g., 
SandForce, Fusion-io, Pure Storage, Kaminario, Nimble 
Storage, to name few). Over the past decade, the research 
community has accomplished significant progress on 
every aspect of flash-based storage devices and systems, 
spanning flash memory circuits, flash memory signal 
processing and error-correction coding (ECC), storage 
device firmware, OS and file systems, and applications. 
These advancements together have brought solid-state 
storage devices and systems into a well-established and 
researched domain with a broader impact in the real 
world. Therefore, it is imperative now to conduct a sur-
vey about the state of the art of this broad domain, which 
could not only provide a comprehensive reference to the 
practitioners but also facilitate future research efforts. 
This survey paper focuses on the software aspect, from 
the software inside storage device up to applications. We 
hope our discussion will serve as a guidance for research-
ers and system practitioners for a quick understanding on 
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the impact of flash memory devices to today’s computing 
systems. This paper will survey the prior research efforts and 
accomplishments in the following two categories.

•	� Software inside storage devices: As illustrated in  
Fig. 1, a solid-state storage device such as solid-state 
drive (SSD) mainly contains a controller and mul-
tiple nand flash memory chips, where the software 
running on the controller is responsible for all the 
intelligence inside the SSD. To simplify the discus-
sion, we call the entire software stack running on the 
controller as the flash translation layer (FTL), which 
provides a set of highly sophisticated mechanisms to 
address the technical limitations of flash memory and 
optimize the device performance. As discussed later, 
major FTL design objectives include 1) managing 
address mapping; 2) reducing write amplification; 3) 
dealing with device wearout; and 4) improving speed 
performance. In this paper, we will discuss represent-
ative studies across all these four aspects.

•	� Software outside storage devices: On top of FTL is the 
application layer. We note that applications here refer 
to a general scope of software, including those running 
at the system level, such as file systems and virtual 
machine hypervisor, rather than being strictly limited 
in “user mode” software. Most flash devices provide 
a backward-compatible block interface to the host, 
which enables a large-scale adoption of flash devices 
in the current computing systems without requiring 
significant software changes. However, fully exploiting 
the great potential and taking advantage of the unique 
properties of flash memory devices often demand 
efforts of removing or closing the so-called “semantic 
gap” between the device and the application, which 
refers to the weak ability for application to pass specific 
requests or hints to the device for high performance 
and high efficiency. A large body of research has been 
performed to optimize applications for flash devices. 
In this paper, we will discuss representative studies in 
three main flash-optimized applications, from caching 
systems, file systems, to database systems.

II .   SOF T WA R E INSIDE SSD

Inside SSD, a collection of sophisticated software compo-
nents run on the SSD controller, which are together respon-
sible for managing flash memory resources, handling flash 
memory operations, optimizing flash performance, and per-
forming routine management and maintenance. This paper 
refers the entire software stack inside SSD as FTL. How well 
FTL is implemented directly determines the overall quality 
of SSD service. This section will discuss the fundamentals of 
the FTL design and survey its state of the art.

A. FTL Design Objectives

We first briefly discuss the major objectives of FTL 
design, for which it is necessary to review the very basic 
device characteristics of nand flash memory. Each nand 
flash memory cell is a floating gate transistor whose thresh-
old voltage can be configured (or programmed) by injecting 
certain amount of charges into the floating gate. Before one 
memory cell can be programmed, it must be erased (i.e., its 
threshold voltage is set to the lowest voltage window). nand 
flash memory is subject to gradual memory cell wearout 
caused by programming/erase (P/E) operations. This leads 
to a P/E cycling endurance limit that continuously degrades 
with technology scaling to increase bit density and further 
reduce the cost.

nand flash memory cells are organized in an array​→​block​
→​page hierarchy, as illustrated in Fig. 2, where one nand 
flash memory array is partitioned into blocks, and each block 
contains a number of pages. Within one nand flash memory 
block, each memory cell string contains a number of flash 
memory cells (typically 64–128), and all the memory cells 
driven by the same wordline are programmed and sensed at 
the same time. All the memory cells within the same block 
must be erased at the same time. Data are programmed and 
fetched in the unit of page, where the page size could range 
from 4 to 32 kB. All the memory blocks share the bitlines 
and an on-chip page buffer that holds the data being pro-
grammed or fetched. In summary, the above description 
identifies the following important characteristics of SSD.

Fig. 1. An illustration of SSD architecture [18].
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•	� Absence of update-in-place feature: SSD cannot 
directly in-place rewrite or update the content of 
one individual flash memory page. Hence, SSD has 
to use the same principle of copy-on-write [78] to 
write any updated content to a new physical flash 
memory page. As a result, address mapping con-
stantly changes, which makes the mapping informa-
tion management a nontrivial task.

•	� Block-based erase: SSD has to erase one entire block, 
which stores hundreds of pages, at a time. Before 
one block is erased, any pages that still contain live 
data must be copied to other locations, leading to 
write amplification.

•	� Device wearout: nand flash memory device storage 
reliability gradually deteriorates, and the wearout 
closely relates the P/E cycling number endured by 
each individual memory block. The overall SSD life-
time is typically defined in terms of total amount of 
data (e.g., hundreds of terabytes) that can be writ-
ten to SSD over the time before SSD can no longer 
ensure its specified storage capacity (e.g., tens  
of gigabytes).

Meanwhile, speed performance is one important met-
ric of SSDs, for which FTL plays a critical role as well. 
Therefore, SSD FTL design essentially centers around the 
following four objectives: 1) managing the address map-
ping at reasonable implementation cost; 2) reducing the 
write amplification; 3) dealing with the device wearout; 
and 4) improving the speed performance. In the remainder 
of this section, we will discuss and survey the FTL design 
techniques from these four aspects. For the reference to the 
readers, Fig. 3 illustrates these four FTL design objectives 
and lists major options for achieving these objectives, which 
will be discussed throughout the remainder of this section.

B. Managing Address Mapping

Storage devices internally manage the data being stored 
on their physical storage media (e.g., platters in HDD and 
flash memory chips in SSD) in the unit of constant-size sec-
tors (e.g., 512 B or 4 kB). Each physical sector is assigned 
with one unique physical block address (PBA). Instead of 
directly exposing the PBAs to external host, storage devices 
expose an array of logical block address (LBA) and inter-
nally manage/maintain an injective mapping between LBA 
and PBA. The reason for introducing such an extra layer 
of address mapping can be multifold and vary among dif-
ferent types of storage devices (e.g., HDD versus SSD). In 
the context of HDD, the primary reason is to facilitate the 
tolerance of defective sectors, which may be caused by disk 
surface scratches, insufficient magnetic coating material, 
and deterioration of magnetic materials. Moreover, regard-
less to their causes, defects in HDDs can be either primary 
defects, which are detected during the HDD manufacturing, 
or grown defects, which gradually develop over the time in 
the field. The internal LBA–PBA mapping makes it possible 
for HDD controller to mask out the PBAs of those defec-
tive sectors while still exposing a continuous storage address 
space to external host.

SSD employs the extra layer of address mapping not only 
for defect tolerance, but also, more importantly, for embrac-
ing unique device characteristics of nand flash memory as 
discussed above. In spite of the seemingly simple task of 
LBA–PBA mapping management, it is far beyond trivial and 

Fig. 2. nand flash memory structure.

Fig. 3.  Illustration of the four FTL design objectives and the major options for achieving these objective.
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involves a large design space. Various mapping strategies 
have been surveyed in [26]. On one side of the design spec-
trum is the so-called block mapping, which simply uses a 
linear LBA–PBA mapping within each flash memory block. 
For example, suppose each memory block stores ​​2​​ m​​ sectors, 
and each LBA contains ​n​ bits expressed as ​[ ​l​n−m​​ , ​l​m​​]​, where ​​
l​n−m​​​ and ​​l​m​​​ are ​(n − m)​-bit and ​m​-bit vectors. Under block 
mapping, the ​​2​​ m​​ LBAs sharing the same ​​l​n−m​​​ are linearly 
mapped to the ​​2​​ m​​ PBAs belonging to the same nand flash 
memory block. Let ​​ℒ​b​​​ denote the set consisting of all the ​​
2​​ n−m​​ different possible values of ​​l​n−m​​​, and ​P​ denote the set 
consisting of all the PBAs. Hence, under block mapping, 
the FTL only needs to manage the ​​ℒ​b​​ → P​ mapping. On the 
other side of the design spectrum is the so-called page map-
ping, which can map one LBA to any PBA. Let ​ℒ​ denote the 
set consisting of all the ​​2​​ n​​ LBAs, then page-mapping FTL has 
to manage the ​ℒ → P​ mapping.

Compared with its page-mapping counterpart, the 
block-mapping FTL manages ​​2​​ m​​ times less mapping entries, 
leading to a much smaller implementation complexity 
(especially when the FTL aims to hold the entire map-
ping table in SRAM or DRAM). Meanwhile, the drawback 
of block mapping is also very clear, i.e., the much worse 
write amplification due to its block-mapping nature, which 
leads to much worse SSD speed performance and lifetime. 
Intuitively, one may expect to achieve a graceful SSD perfor-
mance versus FTL implementation complexity tradeoffs by 
appropriately combining block mapping and page mapping, 
which has been well studied by the research community 
[32], [46], [51], [56], [57], [74], [92], [96]. Regardless of the 
specific design details, most prior work shares the following 
common themes: 1) apply page mapping to a small num-
ber of flash memory blocks and combine it with appropriate 
data write scheduling in order to largely reduce the write 
amplification; and 2) apply block mapping to the bulk of 
flash memory blocks to keep the size of the mapping table 
relatively small. The key challenge is the development of the 
data write scheduling that can best leverage the page map-
ping to reduce the write amplification. In [32] and [96], the 
FTL actively estimates the data hotness by observing the 
workload characteristics, and accordingly decide whether 
the data are written to the block-mapping region or page-
mapping region. The prior work [46], [51], [56], [57], [74], 
[92] focused on using the page-mapping region as the write 
log buffer for the block-mapping region. Data are first writ-
ten to the write log buffer and then migrated to the nor-
mal memory blocks. Such a two-tier structure prevents the 
memory blocks, which are managed by block mapping, from 
being directly exposed to random write, leading to much 
less write amplification.

Since page-mapping FTL manages a large number 
of mapping table entries, its straightforward realization 
demands a large memory (SRAM or DRAM) holding the 
entire mapping table. The rule of thumb is that the size of 
the page-mapping table is roughly 1/1000 of the SSD storage 

capacity, e.g., 1 GB of page-mapping entries for each 1-TB 
storage capacity. Leveraging the runtime workload spatial 
and temporal locality inherent in many real-world applica-
tions, prior research [28], [40], [76], [107] has presented 
solutions that only cache a small subset of the entire page-
mapping table to reduce the memory cost. The key concept 
is essentially the same as the use of translation lookaside 
buffer (TLB) in CPU [31]. For example, Gupta et al.  [28] 
developed a so-called demand-based FTL (DFTL) design 
solution that selectively caches the page-mapping table 
content using the least recently used (LRU) policy. More 
sophisticated and workload-adaptive cache replacement 
policies have been presented in [107].

Regardless of the specific address mapping scheme, 
it is important to guarantee the consistency between the 
mapping information and the data being stored in SSD. 
Because the size of each mapping table entry is much 
smaller than the size of flash memory page, FTL should 
aggregate many updated mapping table entries together 
in SRAM/DRAM before flushing them into flash memory. 
As a result, a sudden power loss could cause the loss of 
the up-to-date mapping information, especially for SSDs 
without internal energy storage devices such as superca-
pacitor. To mitigate this issue, FTL always integrates the 
inverse mapping information into each sector being writ-
ten to the flash memory, i.e., FTL records the correspond-
ing LBA information in the spare space within each flash 
memory physical page. Hence, in the case of mapping table 
corruption/loss, FTL can scan all the flash memory pages 
to reconstruct the mapping table.

C. Reducing Write Amplification

Write amplification occurs when one nand flash mem-
ory block to be erased still contains live data. Inside FTL, 
a process called garbage collection (GC) is responsible for 
choosing the block(s) to be reclaimed/erased and copying 
live data out to other blocks. Generally, to reduce the write 
amplification inside SSD, we have only two options: 1) to 
improve the efficiency of GC, i.e., reduce the amount of live 
data inside memory blocks to be erased; and 2) to reduce 
the intensity of GC process, i.e., reduce the frequency of 
invoking the GC process. Accordingly, all the existing FTL 
design techniques for reducing the write amplification fall 
into the two categories as described through the rest of this 
subsection.

1)  Techniques to Improve the Efficiency of GC: Most 
straightforwardly, one can use the so-called greedy GC pol-
icy [14], which aims to always reclaim the memory block 
that contains the minimal amount of live data among all 
the memory blocks in SSD. Typically, FTL invokes the 
GC process when the number of free memory blocks falls 
below a threshold that is much less than the total number 
of memory blocks. As a result, aiming to find the best candi-
date among all the filled memory blocks, the strictly greedy 



Chen et al . : Sof tware Support Inside and Outside Solid-State Devices for High Per formance and High Ef f iciency

1654  Proceedings of the IEEE | Vol. 105, No. 9, September 2017

GC tends to consume a large number of CPU cycles, espe-
cially for large-capacity SSDs. To reduce the CPU stress, a 
few variations of greedy GC can be deployed, which simply 
chooses the blocks to be reclaimed from a subset of all the 
memory blocks. Notable examples are the age-based greedy 
GC strategies [35], [67] that search for the block with mini-
mal amount of live data only among those blocks that were 
not recently written. Meanwhile, because of the flash mem-
ory wearout caused by P/E cycling, how the memory blocks 
are reclaimed by GC also affects the wearout pace of all the 
memory blocks. In order to maximize the SSD lifetime, all 
the memory blocks should have roughly the same wearout 
pace and approach their end-of-lifetime almost at the same 
time. Nevertheless, since greedy GC does not explicitly take 
into account of flash memory block wearout, it cannot guar-
antee equalized wearout pace among all the memory blocks. 
Reducing write amplification and equalizing flash memory 
wearout could be conflicting at times. Hence, many prior 
efforts focused on developing GC algorithms that cohesively 
consider both write amplification and memory wearout, 
which will be discussed in details in Section II-D.

The efficiency of GC can be significantly improved if the 
FTL can gain certain knowledge about the characteristics 
of the data being stored. The TRIM command [49], [83] 
has been introduced for this purpose. Through the TRIM 
command, file system can notify the FTL about which data 
have been deleted by the file system. Suppose the file sys-
tem writes a sector to the LBA ​​L​i​​​ at the time ​​t​0​​​, which is 
mapped to the PBA ​​P​i​​​ in the FTL mapping table, deletes the 
data from LBA ​​L​i​​​ at the time ​​t​1​​​, and then writes a new sec-
tor to the LBA ​​L​i​​​ later at the time ​​t​2​​​ (where ​​t​0​​  < ​ t​1​​  < ​ t​2​​​). 
Without the TRIM command, the FTL is not aware of the 
deletion operation inside file system at the time ​​t​1​​​, hence 
must treat the data being stored at the PBA ​​P​i​​​ alive until the 
time ​​t​2​​​. As a result, if GC reclaims the block that contains 
the PBA ​​P​i​​​ anytime between time ​​t​1​​​ and ​​t​2​​​, it has to copy the 
data from ​​P​i​​​ to another location. In comparison, with the 
TRIM command, such data copy can be directly obviated, 
leading to reduced write amplification.

The efficiency of GC can be further improved if the FTL 
could write data with similar lifetime into the same memory 
blocks. Nevertheless, it is very difficult, if not impossible, 
for FTL to accurately infer or predict data lifetime on its 
own. Therefore, to enable its practical realization, applica-
tions must convey the data lifetime information to the FTL, 
which of course demands modification and enhancement of 
existing storage I/O interface. Researchers at Samsung have 
recently demonstrated the feasibility by prototyping so-
called multistreamed SSDs [45], [102]. With multistreamed 
SSD, the host can explicitly open different streams through 
the enhanced I/O interface, and write data with similar 
expected lifetime to the same stream. The FTL of multist-
reamed SSDs tries to place data within the same stream onto 
the same memory blocks. Experiments show that such SSDs 
can significantly improve the efficiency of GC.

2) Techniques to Reduce the Intensity of GC Process:  
The intensity of GC process (i.e., how frequently the GC 
process is invoked) is inversely proportional to the amount 
of empty memory blocks inside SSDs. As the most straight-
forward option to reduce the intensity of GC process, over-
provisioning [84] has been pervasively used by commercial 
SSDs. Through overprovisioning, SSDs reserve certain stor-
age space from being exposed to the user, e.g., one SSD 
with 1-TB storage space available to the users may internally 
contain 1.2-TB storage capacity in total, representing 20% 
overprovisioning.

Beyond explicit overprovisioning, FTL can internally 
deploy data reduction techniques (e.g., lossless data com-
pression and data deduplication) to create more empty 
memory blocks for reducing the intensity of GC process. 
This can be considered as opportunistic overprovisioning 
without demanding additional physical flash memory 
devices. Since FTL-based data reduction is completely trans-
parent to the external host, SSDs always expose the same 
storage capacity to the users regardless the efficiency of 
their internal data reduction. Data reduction can be realized 
by either lossless data compression or data deduplication, or 
even their combination. FTL-based lossless data compres-
sion has been first implemented in SandForce1 SSD control-
lers. The biggest challenge of implementing FTL-based com-
pression is to realize a cost-effective address mapping due to 
the variable length of compressed sectors. If we record the 
full location information of each compressed sector (i.e., its 
head location and its length) in the address mapping table, it 
could significantly increase the address mapping table size. 
A hybrid design solution was presented in [23], which sheds 
a light on how SandForce addressed this issue. The key idea 
is to split the full location information of each compressed 
sector between SRAM/DRAM and flash memory. Each 
physical nand flash memory contains a fixed number of ECC 
units (e.g., suppose each ECC unit protects 2 kB, each 16 kB 
flash memory pages contains eight ECC units). Each ECC 
unit is assigned with a unique physical ECC unit address 
(PEUA), similar to the PBA. Given the size of ECC unit, we 
can calculate the maximum number of ECC units over 
which one compressed sector can span, denoted as ​​n​sp​​​. 
Since the size of ECC unit typically ranges between 1 and 4 
kB in commercial SSDs, the value of ​​n​sp​​​ is very small (e.g., 
less than 6). FTL maintains an in-SRAM/DRAM LBA-PEUA 
mapping table, in which each entry contains one PEUA and 
additional ​⌈ ​log​2​​ ​n​sp​​ ⌉​-bit span information. Inside each ECC 
unit on the flash memory, there is a header that stores the 
metadata for recovering the full location information of 
each compressed sector. Such a hybrid design solution can 
support FTL-based data compression with almost the same 
mapping table size as the one without using compression.

Although data deduplication has been well studied (e.g., 
see [11], [60], [87], and [108]), FTL-based data deduplication 

1SandForce Inc. is one of the pioneers on developing commercial 
SSD controllers, which was acquired by LSI Inc. in 2012.
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inside SSDs faces several unique challenges, including  
1) limited computing and memory resources of SSDs; 2) rel-
atively lower redundancy, especially compared with backup 
and archival systems; 3) lack of semantic hints from host file 
systems; and 4) stringent requirement on low performance 
overhead. How to practically address these challenges was 
first studied in [19] and  [29]. For example, Chen et al. [19] 
presented a design framework, referred to as content-aware 
FTL (CAFTL), to comprehensively address these challenges. 
In particular, CAFTL combines both inline and out-of-line 
(also known as postprocessing or out-of-band) deduplica-
tion. Inline deduplication proactively examines the incom-
ing data and cancels duplicate writes before committing a 
write request to flash, while out-of-line deduplication peri-
odically scans the flash memory and coalesces redundant 
data. CAFTL employs a two-level mapping mechanism to 
coalesce redundant data. In order to minimize the perfor-
mance impact caused by computing hash values, CAFTL fur-
ther incorporates a set of acceleration methods to speed up 
fingerprinting. In addition to identical data deduplication, 
Wu and He [98] applies delta compression (or similarity-
based data deduplication) to better exploit the inherent data 
redundancy at the cost of a higher FTL design complexity, 
which could further reduce the intensity of GC process.

D. Dealing With Device Wearout

We can handle the cycling induced device wearout to 
improve the SSD lifetime from two aspects: 1) to equalize the 
device wearout across all the memory blocks/pages through 
wear leveling; and 2) to increase the lifetime of each mem-
ory block/page. This section reviews prior research efforts 
from these two aspects.

1) Wear Leveling: To maximize the lifetime of SSD, one 
would expect that the reliability of all the memory blocks 
should degrade to the point beyond the ECC tolerance 
almost the same time. The process of leveling (or equaliz-
ing) the reliability of all the memory blocks is called wear 
leveling. Ideally, wear leveling aims to schedule the usage 
of memory blocks in such a way that all the memory blocks 
maintain the same data storage reliability throughout the 
SSD lifetime. As one of the most critical components in 
FTL, wear leveling has been very well studied (e.g., see [13], 
[14], [21], [33], [50], [69], [86], [99], and [103]) and sur-
veyed in [10] and [26].

Since wear leveling and GC schedule the usage of mem-
ory blocks with different objectives (i.e., equalizing the 
memory block reliability versus reducing the write ampli-
fication), their integration and interaction could largely 
affect the overall quality and complexity of FTL. The design 
schemes, which more cohesively consider the wear lev-
eling and GC, are called static wear leveling. In particular, 
static wear leveling aims to equalize the wearout across all 
the memory blocks through proactively moving cold data 
from less worn out blocks to more worn out blocks. In com-
parison, the so-called dynamic wear leveling represents 

loose coupling between wear leveling and GC, i.e., GC first 
reclaims/erases memory blocks based upon the write ampli-
fication efficiency, then wear leveling chooses which mem-
ory blocks to use. As a result, memory blocks storing cold 
data are worn out slowly relative to other blocks. Assuming 
a 20%:80% ratio of dynamic data versus static data in one 
SSD, all the data write traffic is accommodated by 20% of 
flash memory blocks under dynamic wear-leveling. In com-
parison, static wear-leveling utilizes all the flash memory 
blocks to absorb the write traffic. As a result, when using 
dynamic wear leveling, 20% of flash memory blocks will 
be worn out much more quickly, leading to five times less 
lifetime than the case of using static wear leveling. A large  
variety of specific wear-leveling algorithms has been 
reported in the open literature  [13], [14], [21], [33], [50], 
[69], [86], [99], [103]).

Because the reliability of memory blocks monotonically 
degrades with the P/E cycling, most prior work on wear lev-
eling uses the P/E cycling number as the reliability metric, 
i.e., they aim to equalize the P/E cycling number across all 
the memory blocks. Nevertheless, due to the inevitable fab-
rication process variation (especially under highly scaled 
technology nodes), different memory blocks could exhibit 
different storage reliability even under the same P/E cycling 
number, particularly among memory blocks in different 
flash memory chips. Therefore, memory block could have 
(largely) different levels of P/E cycling endurance. As a 
result, simply using P/E cycling number as the equalization 
target could lead to suboptimal wear leveling. A few recent 
works [41], [73], [94], [104] investigated the design of wear 
leveling that explicitly embraces such interblock P/E cycling 
endurance variation. Pan et al.  [73] and Yang et al.  [104] 
proposed wear-leveling algorithms that directly track and 
use the runtime bit error statistics of memory block as the 
equalization target. Woo and Kim [94] presented design 
schemes that combine the bit error statistics and other flash 
memory operational characteristics such as programming 
latency to more accurately quantify the reliability of mem-
ory blocks. A so-called wear-unleveling solution is presented 
in [41] that exploits the wearout pace variation at the page 
level instead of block level to further improve the overall 
SSD lifetime.

2) Improving Memory Block/Page Lifetime: An effective 
option for improving the endurance of each memory block/
page is to deploy more powerful ECC such as low-density 
parity-check (LDPC) codes. Since the ECC module in SSD 
is largely independent from FTL and has been discussed in 
other papers in this special issue, we will not discuss it in 
this paper. Beyond using more powerful ECC to increase the 
lifetime of individual memory pages, one may recycle worn 
out memory blocks/pages by leveraging certain flash memory 
device characteristics. For example, motivated by the intra-
page reliability variation (e.g., different segments within 
the same physical page may exhibit noticeably different reli-
ability), Lin and Hsieh [61] developed a half-level-cell (HLC) 
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scheme that logically combines segments from two worn out 
physical pages to form a new usable logic page. Leveraging the 
self-recovery effect of flash memory cells, a recovery-aware 
throttling technique was presented in [53] to enhance FTL 
for improving flash memory lifetime. Motivated by the obser-
vation that slowing down the erase process at a lower erase 
voltage could significantly reduce the cycling-induced device 
damage, Jeong et al. [39] presented an FTL design strategy 
that can enhance flash memory cycling endurance with mini-
mal impact on system speed performance by dynamically 
adjusting the memory block erase voltage/latency.

The cycling-induced physical damage also depends on 
the data content being programmed into memory cells. 
Hence, it is desirable to transform or manipulate the 
data content in a damage-aware manner, which however 
demands extra storage space to enable data content trans-
formation. Li et al. [59] proposed to apply data compression 
approach to create extra space for enabling damage-aware 
data content transformation. A set of mathematical formu-
lations have been further derived in [59] that can quanti-
tatively estimate flash memory physical damage reduction 
gained by the proposed design strategies for various com-
pression schemes.

E. Improving Speed Performance

FTL can improve SSD speed performance from three 
aspects: 1) better utilization of internal hardware paral-
lelism at the channel, package, die, and/or plane level;  
2) exploring the high-speed performance of the flash mem-
ory pages operating in the SLC mode; and 3) intra-SSD write 
buffering. The importance of exploiting and utilizing SSD 
internal hardware parallelism has been well demonstrated 
[15], [16], [36]. Appropriate LBA–PBA mapping and request 
scheduling are critical for better utilizing SSD internal par-
allelism. A variety of techniques (e.g., see [30], [44], [55], 
[65], [93], and [101]) have been developed to improve the 
SSD speed performance by enhancing the address mapping 
and/or request scheduling. A common theme is for FTL 
to on-the-fly infer the access characteristics of data being 
stored and utilize such inferred information to guide the 
address mapping and request scheduling.

The second option aims to leverage the fact that SLC 
flash memory sustains a much higher write/read speed than 
its MLC/TLC counterparts. It is well known that the same 
physical nand flash memory blocks can operate in either 
SLC, MLC, or TLC mode with different tradeoffs among 
speed, density, and reliability. Leveraging this feature, 
researchers have developed design techniques (e.g., see 
[12], [38], and [70]–[71]) that enhance FTL to improve the 
overall SSD speed performance. The underlying rationale is 
that, if FTL configures a certain portion of MLC/TLC flash 
memory to operate in SLC mode and uses the SLC region to 
handle most data access traffic, the overall SSD speed per-
formance could significantly improve. In spite of the simple 

concept, its practical realization may not be trivial and could 
noticeably complicate the FTL implementation, especially 
for FTL that aims to dynamically conthe SLC and MLC/TLC 
partition during the runtime. Wang et al. [91] studied the 
optimal SLC versus MLC capacity ratio and implemented an 
FTL that can dynamically adjust the SLC versus MLC capac-
ity ratio according to runtime workload characteristics.

Write buffering has been widely used in SSDs to 
improve the overall speed performance. Current commer-
cial SSD controllers use either embedded SRAM or stan-
dalone DRAM as write buffers. Most SSDs acknowledge 
the completion of write operation to the host as soon as 
the incoming data reach the write buffer (i.e., before the 
data are eventually written to flash memory), even for syn-
chronous write requests. To mitigate the volatile nature of 
SRAM and DRAM, most SSDs (and all the enterprise-grade 
SSDs) integrate a supercapacitor to prevent data loss in the 
case of sudden power loss. The size of write buffer is limited 
by the energy storage capacity of supercapacitors. Kim and 
Kang [48] presented a technique that applies delta encoding 
to enable the use of large write buffer with a small superca-
pacitor. Prior works [34], [37], [42], [82], [97] have devel-
oped various write buffer management algorithms that can 
further effectively leverage the write buffer to improve SSD 
speed performance.

III .   SOF T WA R E OU TSIDE SSD

Application software has been heavily tuned and optimized 
for underlying disk storage for decades. While migrating to 
flash storage, application software designers need to address 
three critical challenges for a successful adoption of such an 
unconventional technology into the existing I/O stack.

•	� Challenge #1: The high cost and relatively small 
capacity of flash devices limit the affordability. 
When commercial flash SSDs initially emerged in 
the storage market, a significant obstacle for a large-
scale adoption of flash storage devices was their 
high cost and relatively small capacity, compared 
to magnetic disk drives. A critical research issue is 
how to achieve high cost- and performance-efficient 
operations. Thus, building hybrid storage and lev-
eraging flash SSDs as caching media has been an 
important research direction at the software level. 
In this section, we will discuss several such repre-
sentative work [17], [63], [81].

•	� Challenge #2: Flash memory has more distinct 
properties than rotating media. As a semiconduc-
tor device, flash memory is fundamentally different 
from magnetic disks. On one hand, flash memory 
has several unique technical advantages, such as 
high random read speed [16] and rich internal par-
allelism [18]. On the other hand, flash memory also 
has several significant constraints, such as the high-
overhead garbage collection and device lifetime 
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issues. How to exploit the benefits and mitigate 
the problems is important and challenging. A large 
body of prior research has studied these aspects in 
various systems, such as databases [62], [75] and file  
systems [43], [47], [52].

•	� Challenge #3: The block interface raises an infor-
mation barrier between applications and storage. 
On one hand, the standard LBA interface allows 
the legacy software systems to easily migrate to 
flash storage without any change. On the other 
hand, this interface creates a huge semantic gap and 
greatly limits the capability of exploiting the seman-
tic knowledge at the application level and the rich 
hardware resources at the device level. In this sec-
tion, we will select and discuss several efforts made 
to address this issue [43], [63], [62], [75], [81].

In this section, we select three key software applications 
of flash storage in practical systems, namely caching sys-
tems, file systems, and database systems, and we discuss sev-
eral representative works in each of them. We hope through 
these discussions we can gain insight from these prior stud-
ies on how to efficiently adopt flash memory technology in 
application software.

A. Caching Systems

Flash memory has been considered as an ideal media for 
caching—its speed, capacity, and price fall nicely between 
traditional disk drives and DRAM memory [58]. Prior stud-
ies have discussed flash-based caching at different levels, 
from operating system kernels, virtual machine hypervisors, 
to applications. Here we discuss three representative ones.

1) Block-Level Caching: A natural consideration is to add 
flash-based caching layer at the block level. Hystor [17] is 
a kernel-level hybrid block storage solution that integrates 
flash memory and conventional disk drives together. Hystor 
regards compatibility as the top design priority. Similar to 
redundant array of independent disks (RAID), Hystor pro-
vides a virtual block device to the upper level components 
and hides the complex internals from users. So users can use 
the hybrid device as any directly attached disk drive, such as 
creating partitions and making file systems. Internally, the 
Hystor driver runs as an operating system kernel module, 
tracks I/O accesses during runtime, and decides the data 
placement in either the flash SSD or the disk drive. The 
caching and data placement decisions are completely based 
on the I/O accesses observed at the block level, which is sim-
ply a stream of LBAs.

The key challenge that Hystor addresses is to identify 
the blocks that are most appropriate for caching. A naïve 
consideration is to directly use standard caching policies, 
such as the well-known least recently used (LRU) replace-
ment algorithm. However, on flash memory, the “value” of 
a block for caching is determined not only by locality but 
also access pattern. For example, randomly accessed data 

are considered more valuable for caching than sequentially 
accessed data, since the former incur higher latencies on 
disk. Thus, Hystor attempts to cache data that can bring 
the most benefit, randomly and frequently accessed data. 
To identify such blocks during runtime, Hystor maintains a 
data structure, called block table, which is akin to the page 
table in memory management. By traversing the block table, 
Hystor can quickly find the hottest region, the hottest sub-
region, and the hottest block for caching. Eventually, Hystor 
splits I/O traffic into different devices based on their access 
patterns—small and random I/O requests are served from 
the flash SSD; large and sequential I/O requests are served 
from the disk drive.

Industry has also made efforts in flash caching. For 
example, Apple has released a hybrid drive product, called 
Fusion Drive [8], which has been influenced by Hystor and 
combines a hard drive with an nand flash SSD. Microsoft 
Windows Vista includes a feature called ReadyBoost [68] 
to use flash devices, such as flash thumb drives, as memory 
extension and disk cache. Intel Turbo Memory (ITM) [66] 
uses a PCI-Express based flash device and a special driver to 
cache small request data and buffer dirty data. These indus-
trial solutions share a similar principle, using the high-speed 
flash memory device to accelerate storage I/O.

2) VM-Level Caching: As a middle layer residing 
between the host hardware and guest operating systems, vir-
tual machine (VM) is required to deliver high performance, 
maximize resource utilization, and also provide system 
isolation. S-CAVE [63] is a hypervisor-based flash caching 
solution for virtual machine environment. In S-CAVE, the 
caching decision is made at the hypervisor level, based on its 
global view of the entire system and all guest VMs. S-CAVE 
maintains a cache monitor for each VM and a cache space 
allocator to collect and analyze cache usage information 
from all VMs to make a global caching decision. Essentially 
S-CAVE measures the working-set size of each VM during 
runtime, and according to the trend of hit ratio and working-
set size, S-CAVE can decide whether increase or decrease 
the cache allocation. During this process, each guest VM 
does not directly involve in caching decision, and the hyper-
visor makes a global decision based on the observed behav-
iors of all guest VMs.

To some extent, S-CAVE adopts a relatively conserva-
tive approach by respecting the existing interface, similar to 
Hystor, and attempts to contain changes at the hypervisor 
level and avoid leaving burdens to the upper-level compo-
nents. Such a design choice is understandable, since avoid-
ing penetrative changes to guest VM is highly desirable for 
virtualization environment.

3) Application-Level Caching: Flash devices are also 
highly desirable to application-level cache systems. In-flash 
key-value cache systems (e.g., Facebook’s McDipper [5] 
and Twitter’s Fatcache [6]) are becoming popular recently. 
Such application-level cache systems adopt a Memcached-
like mechanism to manage key-value data: The flash space 
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is sliced into fixed-sized slabs. Each slab is further divided 
into fixed-sized  slots, or chunks, each of which is used for 
storing a key/value pair. A hash mapping table is maintained 
in memory to map a hashed key to the slab that contains 
the corresponding key/value item. Clients use get, set, and 
delete operations to read, write, and remove a specified 
key/value pair. A garbage collection (GC) procedure rou-
tinely runs to reclaim the space of the obsolete and deleted  
key-value items by examining slabs in a certain manner 
(e.g., FIFO).

Such a scheme raises several unique issues as it runs on 
flash SSDs.

1) � Redundant mapping table: The FTL in the device 
firmware maintains a mapping structure to trans-
late logical block addresses to physical flash memory 
pages, and similarly, the key-value cache running at 
the application level also maintains an in-memory 
hash table to map the hashed key to the correspond-
ing slab block in flash.

2) � Redundant GC procedures: The FTL implements a 
device-level GC to recycle the invalidated flash pages 
before erasing the entire flash erase block, and the 
key-value cache also has a GC procedure to reclaim 
the invalidated key-value slots in a slab.

3) � Over-overprovisioning: Modern flash SSDs often 
reserve a large over-provisioning space (OPS), typi-
cally 20%–30% of flash space. Such a large amount 
of reserved flash memory is a hidden and unusable 
space from the perspective of users. Since key-value 
caches are often read intensive [9], such a large OPS 
becomes an expensive overkill.

DIDACache [81] addresses these issues by deeply inte-
grating device and application together, which allows the 
application-level key-value cache manager to directly drive 
the low-level flash memory operations. In this solution, the 
device is only responsible for minimum hardware-level func-
tions, such as scheduling and operating flash memory com-
mands. Other functions that are traditionally handled at the 
FTL level, such as device-level buffering, FTL-level mapping, 
wear leveling, garbage collection, are moved to the upper lay-
ers. An intermediate library layer is responsible for bad block 
management, translates slabs to flash blocks, and provides an 
API interface to the key-value cache system. The key-value 
cache manager sees and directly manages the flash space, 
such as mapping the hashed key to the physical location in 
flash, arranging data layout to exploit the internal parallel-
ism, recycling obsolete key-value items and determining a 
proper OPS space based on workload demands, etc.

Hystor, S-CAVE, and DIDACache represent three dif-
ferent approaches for flash-based caching. Hystor is a very 
general-purpose caching scheme and its optimization goal 
is to maximize the flash space utilization while still retain-
ing the highest backward compatibility by hiding all details 
from applications at the block level. S-CAVE leverages its 
domain knowledge at the VM hypervisor level. It requires a 

change in the hypervisor but the caching details are hidden 
from the guest VMs, which exploits certain level of seman-
tic knowledge but is still unaware of semantic details of 
applications. DIDACache represents a more recent trend in 
flash-optimized applications [72], [90], [105]–[106]—break 
the traditionally strictly defined interface, open the under-
lying device details to applications, and exploit the seman-
tic knowledge available at the application level and also the 
device-level knowledge about the flash memory media. A 
great deal of application- and device-specific knowledge can 
be utilized, but the tradeoff is its limited applicable scope 
and the dependence on special hardware support.

B. File Systems

Designing a flash file system is nontrivial, since it needs 
to consider several important hardware properties of flash 
memory, such as the read/write disparity, slow random 
writes, and wearout problem, just to name a few. Traditional 
file systems are heavily optimized and tuned for rotating 
media. Switching to flash storage thus has incited a lot of 
studies in file systems. Here we discuss three representative 
ones.

1) File System for Flash Memory: As early as in 1995, 
Kawaguchi et al. presented a design of flash-memory-
based file system [47]. Many elements in this paper have 
influenced the design of modern FTLs and flash-based file 
systems. For example, in order to create sequential writes 
on flash, the file system adopts a structure similar to log-
structured file system [79]. The data are appended to the 
tail of the log-like structure. A translation table (i.e., map-
ping table) is maintained to map a block number to a flash 
address. Upon a read, the translation table is looked up to 
locate the corresponding location in flash memory. Upon a 
write, a new flash page is allocated and the data are written, 
the original flash page is simply marked as invalid, and the 
mapping table is updated to point to the new location. A 
cleaner (i.e., garbage collector) is triggered when the num-
ber of available flash memory blocks drops to a low level. 
The cleaner selects a flash block as a victim, in which the 
valid pages are first copied to a new location and then the 
entire block is erased.

As a pioneering work, this paper outlines several impor-
tant components for flash-based file systems, such as the 
log-like structure, the logical-to-physical mapping table, the 
periodic garbage collection, etc. All are essential to optimiz-
ing flash storage and can be found in today’s FTLs and flash-
based file systems, such as YAFFS [64] and JFFS2 [95].

2) Direct File System (DFS): DFS [43] is designed for 
Fusion-io’s ioDrive [1]. Without being constrained by the 
traditional disk interface (e.g., SATA and SCSI), such PCI-
E-based flash devices can not only provide high performance 
but also allow more direct control over the flash hardware. 
Leveraging the flexible PCI-E interface, DFS divides the 
flash management and file system functions among hard-
ware, device driver, and file system in a new way.
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The core part is virtualized flash storage layer (VFSL), 
an intermediate layer running as a device driver in OS ker-
nel between the device and the file system. VFSL provides 
a large virtualized block address space and implements core 
FTL functions, such as block abstraction, logical-to-physical 
translation, space allocation and reclamation, garbage col-
lection, wear leveling, etc. Accordingly, the device firmware 
is simplified, and so is the file system. For example, VFSL 
provides a huge 64-b virtual block address space, which is 
orders of magnitude larger than actual physical flash space. 
The file system, DFS, can take advantage of the huge virtual 
address space by directly placing file system objects (files) 
sparsely and contiguously, as single logical extents, in the 
logical space. This greatly simplifies the file system design 
by leaving the complicated allocation and reclamation work 
to VFSL. Other complex issues, such as crash recovery, 
buffer cache designs, can also be handled by leveraging the 
capability of VFSL.

Compared to Kawaguchi’s design, DFS simplifies the file 
system and device firmware design. However, since most 
flash-related management logic is moved into the device 
driver level, a special device hardware and a custom file sys-
tem are needed, which limits its applicable scope.

3) Flash-Friendly File System (F2FS): A more recent 
work that has been practically used in production systems is 
F2FS [52] developed by Samsung. Unlike Kawaguchi’s early 
work, which was designed for managing raw flash memory, 
F2FS is designed for modern flash devices, such as eMMC 
and SSD. Unlike raw flash memory, these devices are already 
equipped with a sophisticated FTL to handle flash-specific 
operations at the firmware level, such as address transla-
tion, wear leveling, garbage collection, etc. Therefore, F2FS 
can be freed from directly handling the low-level technical 
constraints of flash memory and can focus more on creat-
ing a “flash friendly” I/O patterns to indirectly influence the 
performance.

F2FS does not strictly follow the requirement of flash 
memory for sequential writes, although it still attempts 
to organize sequential write patterns. In F2FS, the stor-
age space is sliced into multiple zones, which is divided 
into sections and further into segments. Data are written 
in segments in a log-like manner, similar to log-structured 
file system [79] and Kawaguchi’s solution [47]. However, 
in certain cases, it allows in-place writes. For example, 
F2FS has a special logging scheme, called threaded logging. 
Normal logging policy always writes data sequentially into 
clean segments, and when running out of space, the clean-
ing procedure copies valid blocks out and reclaims the space 
occupied by invalidated blocks. Such a process removes ran-
dom writes but the cleaning is time consuming. Threaded 
logging, in contrast, directly writes data to the “holes” (i.e., 
the invalidated blocks) in the dirty segments. Allowing 
such in-place writes would create flash-unfriendly random 
writes but lowers the cleaning overhead. F2FS dynamically 
switches between the two policies depending on the system 

status by examining if the system is under high pressure of 
clean segments or not.

Another design consideration in F2FS is to purposefully 
exploit the rich internal parallelism resources in modern 
flash devices. For example, F2FS maintains multiple active 
log segments simultaneously and appends data and meta-
data to different segments based on the update frequency. 
So the multiple logs can work simultaneously and the hot 
and cold data can be physically separated on the flash media. 
In particular, F2FS classifies node and data blocks into three 
temperature levels (hot, warm, and cold). For example, 
direct node blocks are considered hotter than indirect node 
blocks, and directory blocks are considered hotter than file 
blocks. In total, six logs are maintained, three logs (hot, 
cold, and warm) for node blocks and the other three logs 
for data blocks. Since the six active logs can run simultane-
ously, the internal parallelism of modern flash devices can 
be effectively exploited.

If we compare the three file systems above, they all 
take many key design elements from log-structured file 
system [79] for flash management, such as the log-struc-
tured write, periodic garbage collection, etc. The distinction 
is where these functions are implemented. Kawaguchi’s 
solution directly manages raw flash memory and thus most 
functions are implemented in the file system level; DFS 
moves much of the flash management into the virtualized 
flash storage layer at the device driver level; F2FS is built on 
the strength of modern flash devices and relies on a highly 
sophisticated FTL at the device firmware level. These are 
three representative approaches with different emphasis on 
interoperability and efficiency.

C. Database Systems

Database system is a typical data-intensive application. 
High-speed flash storage provides a long-awaited stor-
age technology that could significantly enhance the data 
retrieval speed for database applications. However, success-
fully adopting flash into databases is nontrivial. An impor-
tant research issue is how to leverage the rich semantic 
knowledge of databases (e.g., access patterns of data, specific 
requests for storage management and accesses) and how to 
exploit the unique properties of flash devices to effectively 
serve various database operations. Here we discuss two rep-
resentative work.

1) Hybrid-Storage-Based Database (hStorage-DB): Flash 
storage is desirable to database designers and users because 
of its high speed. However, building the entire database on 
flash is excessively expensive. For this reason, a hybrid stor-
age that integrates both high-speed flash devices and large-
capacity disk drives becomes a practically appealing choice.

A straightforward hybrid solution is to directly use 
a hybrid storage, such as Hystor [17], and run database 
systems atop. Such an approach relies on the underlying 
hybrid storage to identify hot data and cache them in the 
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flash devices. For databases, this solution is suboptimal. 
First, completely relying on observing I/O patterns at the 
storage level takes a long ramp-up time to recognize hot 
data and is difficult to make a timely caching decision. 
Second, and more importantly, the rich semantic knowl-
edge available at the database level cannot be exploited, 
not to mention that many semantic information is impor-
tant but not necessarily related to locality, such as the data 
lifetime information.

hStorage-DB [62] is designed to exploit the database-
level knowledge while still retaining minimal changes to the 
existing block interface. The key idea of hStorage-DB is to 
pass semantic hints to the hybrid storage. In current data-
base, the storage manager simply translates a data request 
into a storage I/O request. In hStorage-DB, the I/O requests 
are first classified into various predefined classes, and each 
I/O request is associated with a class ID. The class ID and 
the request are sent together down to the storage layer. At 
the hybrid storage layer, each class is linked to a quality of 
services (QoS) policy, which defines the caching policy. 
Upon receiving an I/O request, the storage layer uses the 
class ID as an index to locate the corresponding policy and 
enforces it in the cache management. Fig. 4 illustrates this 
process.

An example is how the temporary data are handled in 
hStorage-DB. In databases, some queries can generate tem-
porary data, which are written into storage, consumed, and 
then deleted. Due to its weak locality and short lifetime, such 
temporary data are a challenge for traditional locality-based 
caching schemes. In hStorage-DB, when the temporary data 
are generated, the data are assigned the highest priority to 
stay in the cache, so the following data consumption opera-
tions can be satisfied in the high-speed flash cache; after the 
data are consumed and not useful any more, the database 
labels the data as low value for caching, and the cache man-
ager can quickly evict the data. In this way, the underlying 
cache manager can be aware of the temporary data lifetime 
and make a proper caching decision rather than blindly  
follow the standard locality principle, such as LRU.

hStorage-DB represents a “baby-step” strategy in the 
database domain: use a hinting approach to allow semantic 
information flow between the two layers, and in the mean-
time, avoid radical changes to the standard interface.

2) Transactional Processing on Flash Storage: A 
more aggressive approach is to tightly connect database 
requirements to flash storage properties. An example of 
such efforts is Transactional Flash (TxFlash) [75]. TxFlash 
aims to provide new abstractions to better utilize the unique 
properties of flash memory for device-level transaction sup-
port. By providing a transactional construct to allow users 
to perform atomic writes to flash, TxFlash helps reduce the 
complexity of upper level components, such as databases 
and file systems.

A TxFlash device is composed of commodity flash pack-
ages. Besides the block interface, TxFlash also exports a 
transaction interface, WriteAtomic and Abort. This inter-
face allows an application to specify a set of page writes in 
one transaction. The device ensures either all or none of the 
pages to be written and also guarantees the isolation between 
transactions and allows to abort uncommitted ones.

The design of TxFlash directly takes advantage of several 
inherent structural properties of flash SSDs, which make 
them effective to support transactions natively. For example, 
the FTL uses copy-on-write (COW) and a log-like method to 
handle writes. So the “out-of-place writes” requirement by 
flash memory ensures that write operations in a transaction 
could be undone if uncommitted. In TxFlash, it leverages 
the indirection provided by the mapping table to remap 
the logical pages to the new locations when a transaction 
is committed. Also, in recovery process, TxFlash can iden-
tify the old version and uncommitted intention records and 
directly garbage collect them. Thus, the implementation of 
supporting transactions in TxFlash is tightly integrated with 
the flash SSD internals, rather than a simple change to the 
interface.

Comparing hStorage-DB and TxFlash, we can find 
that database systems with rich semantic knowledge can 
benefit greatly from a close interaction with the storage 
layer but the cost is the increased complexity and the loss 
of generality. hStorage-DB attempts to achieve a balance 
between efficiency and compatibility by passing a small 
amount of semantic hints; TxFlash deeply exploits various 
flash-only features, such as its COW nature, fast random 
reads, and internal parallelism. In essence, this is simply a 
design choice, and we believe both solutions well illustrate 
how challenging it is to fully exploit this new technology 
efficiently.

I V.   THE DI V ISION OF SOF T WA R E

An important factor contributing to the huge success of 
modern flash devices is the backward-compatible block 
interface, which allows users to quickly adopt such a 
new technology without changing any applications.  Fig. 4. An illustration of passing database hints to hybrid storage.
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The associated cost, however, is the straight division of  
software at two separate layers, inside and outside the 
device. As flash technologies further advance, especially the 
adoption of more flexible hardware interface (e.g., PCI-E), a 
quickly growing effort in industry and academia is to remove 
the constraint of the current strictly defined block inter-
face to create opportunities for fully exploiting the device  
potential and satisfying the application needs.

Recently, there have been two sets of such research 
efforts made on different directions. One direction is to 
move certain computing functions from the application 
level down to the device level, represented by Active Flash 
[85] and Willow [80] ; the other is to expose the device-level 
details and move low-level device control and functions to 
the upper level, represented by software-defined flash [72], 
[81], [90] and application-managed flash [54].

A. Moving Functions From Applications to Device

Active Flash [85] is designed for data analysis for high-
performance computing (HPC) applications. Traditional 
data analysis in HPC often demands a large amount of data 
movement from the storage system to the computing sys-
tem, which raises not only performance but also power 
concerns. Active Flash adopts a concept similar to Active 
Disk [7], [77]. It tries to exploit the computing capabilities 
of low-power multicore storage controllers on flash devices 
by carrying certain analysis tasks directly on the device, 
which avoids transferring large amount of data across the 
device/host interface and consuming host-side computing 
resources. Willow [80] is a similar but more general-pur-
pose solution. Willow provides a programmable interface 
to allow ordinary programmers to extend the SSD func-
tionality through a mechanism based on remote procedure 
call (RPC). Willow potentially can satisfy a broad scope of 
applications that desire to directly offload customized data 
processing on device, such as Atomic Writes, through the 
programmable interface.

Both Active Flash and Willow essentially move certain 
functions from applications down to the device level. Such a 
“fat-device-thin-application” approach can bring three ben-
efits. First, the abundant device resources can be better uti-
lized. Second, large amount of cross-interface data transfer 
can be avoided. Third, applications can be made simpler and 
better modularized. In many cases, such an approach can 
lead to promising results for applications that can offload 
certain data processing, such as Nameless Writes [105].

B. Moving Functions From Device to Applications

Another technical trend is happening in the opposite 
direction [54], [72], [81], [90]. These studies take a “thin-
device-fat-application” approach—the device exposes cer-
tain device-level information to the upper level applications 
and allows applications to directly see and carry out certain 

functions that originally belong to the device. In other 
words, move certain parts of the FTL software outside of the 
device and let applications directly handle them.

As an early effort, Ouyang et al. presented a scheme 
called software-defined flash (SDF) [72], which is designed 
for web-scale storage to maximize the bandwidth and usa-
ble capacity for a large-scale deployment of flash storage 
in data centers. SDF consists of the hardware part, which 
is based on a customized FPGA controller, and a software 
layer, which provides applications with accesses to low-
level flash memory resources. SDF takes a minimal hard-
ware design, including only features and functions that are 
absolutely necessary for the target application environ-
ment. For example, unlike many commercial SSD prod-
ucts, SDF hardware does not provide parity-based protec-
tion on device but uses software-managed data replication. 
Also, the SDF device exposes an asymmetric operation 
interface to the software, page-based read and block-based 
write, which eliminates the small write problem (all writes 
are in large erase blocks). SDF also unlocks erase opera-
tions to applications, which allows applications to directly 
implement garbage collection and schedule long-latency 
block erase operations. In SDF, the host software has a 
direct view and control over flash channels for exploiting 
internal parallelism resources inside the SSD. Each chan-
nel is presented to the application layer as an independ-
ent block device, which allows applications to decide data 
placement, I/O scheduling, parallelization, etc. Based on 
the same platform, Wang et al. further presented an LSM-
tree based key-value store, called LOCS [90]. As discussed 
earlier, DIDACache [81] takes a similar principle for flash 
based key-value caching. Another similar effort toward the 
same direction is application-managed flash (AMF) [54]. 
Similar to SDF, AMF moves selected functions of flash 
management from the device level to the application level. 
AMF offers an append-only block interface to applications, 
which simplifies the device-level management. For exam-
ple, the remapping and garbage collection can be moved 
out of the device, and the device-level complexity is signifi-
cantly reduced and only focuses on core functions, such 
as bad block management and wear leveling. Applications, 
especially those that already employ append-only writes, 
such as log-structured file systems and LSM-tree-based 
databases, can easily adopt and benefit from such an 
architecture.

Though different, all these efforts attempt to reconsider 
a proper division of software functions inside and outside 
the device. These research studies are essentially driven by 
two facts. First, the flash device’s capability, both comput-
ing and storage, is quickly growing and more abundant than 
ever. Second, the applications desire to gain more resources 
and controls on hardware for performance, power, and 
other reasons. As a result, the above-said research efforts in 
two distinct directions all attempt to remove the intermedi-
ate layers out from the I/O path, either bringing computing 
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components of applications closer to the hardware or open-
ing the hardware controls to the application. A result of such 
efforts is more tightly integrated applications with devices 
[81], [106], [105].

On one hand, we are highly optimistic with such 
research attempts and strongly believe that they represent 
the future of flash storage and could deeply change the com-
puting storage system. On the other hand, we should also 
note that when we approach to the goal of closing the gap 
between the two layers, we are not only tightening the con-
nection between applications and devices but also making 
an increasingly blurrier boundary between the two—either 
making a special device for the application or making a spe-
cial application for the device. As researchers and practi-
tioners, we still need to consider how to retain a reasonable 
abstraction and balance between efficiency and interoper-
ability, which will still remain a challenging research issue 
in the future.

V.  CONCLUSION A ND PROSPECTS

This paper surveys the progress over the past decade on the 
development of software stacks inside and outside SSDs. 
Software inside SSDs is designed and optimized center-
ing around four objectives, including managing address 
mapping, reducing write amplification, embracing device 
wearout, and improving speed performance. We have 
accordingly discussed major design options and discussed 
representative prior work under these four categories. We 
have also surveyed recent advancement on rethinking the 
design of high-level software stacks to best embrace and 
exploit SSDs. We have discussed prior work in three particu-
lar domains, including caching, file system, and databases. 
As SSDs are quickly becoming commodity products, we 
expect that future innovations will more and more center 
around those high-level software stacks. It is our hope that 
this survey paper will serve as a comprehensive reference 
for academic researchers and industrial practitioners to 
continue to advance this exciting and broad domain in the  
big data era.

Beyond nand flash, a recent technology breakthrough is 
nonvolatile memory (NVM), represented by phase change 
memory (PCM) and spin-transfer-torque RAM (STT-RAM). 
NVM is interesting, because it carries a combination of 
properties of both memory and storage—it provides near-
memory access speed, DRAM-like byte addressability, and 

storage-like persistence. In other words, NVM draws a 
blurry line between volatile memory and persistent storage. 
A fundamental question is how to integrate such an uncon-
ventional technology into our existing I/O stack. A natu-
ral consideration is to insert NVM as a new caching layer 
between DRAM and nand flash. For example, leveraging 
the byte addressability, we may directly integrate NVM and 
DRAM together and expose a huge unified memory space 
to accommodate memory-intensive workloads. Similarly, 
leveraging its persistence property, NVM can be integrated 
into the storage system as an on-device cache (or buffer) or 
can be directly used as a high-speed block device, such as 
PMBD [20]. Such an approach is conservative but demands 
little change to the existing system and application designs. 
To fully exploit the NVM properties, more aggressive 
approaches can be adopted. An example is NVM-based file 
systems, such as BPFS [24], PMFS [25], and SCMFS [100]. 
These file systems are designed with special consideration 
on the unique properties of NVM. For example, PMFS sup-
ports direct memory mapping of file data to process address 
space without extra memory copy. An even more aggressive 
approach is to directly open persistence and byte address-
ability properties to applications, which allows program-
mers to make certain in-memory structures/objects persis-
tent. However, this implies nontrivial burden to application 
developers, especially on handling data integrity issues upon 
system failures. Prior studies, such as Mnemosyne [89], 
CDDCS [88], and NV-heap [22], all try to provide a pro-
gramming interface to help programmers.

As a disruptive technology, NVM could change many 
aspects of system and application designs along with other 
emerging technologies, such as NVM-Express [2], CAPI 
[3], NVLink [4], etc. The experience that we learned 
through adopting nand flash in the past decade can also 
shed a light on a smooth transition to NVM in the future: 
When integrating an unconventional technology into the 
existing stack, we must carefully balance between two 
equally important goals, fully exploiting the new technol-
ogy’s potential and minimizing disruptions to the current 
ecosystem. Though challenging, we are optimistic that this 
process will open numerous research opportunities for 
researchers and practitioners.� 
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