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Abstract

Extension of battery lifetime has always been a major is-
sue for mobile computing. While more and more data are
involved in mobile computing, energy consumption caused
by I/O operations becomes increasingly large. In a per-
vasive computing environment, the requested data can be
stored both on the local disk of a mobile computer by using
the hoarding technique, and on the remote server, where
data are accessible via wireless communication. Based
on the current operational states of local disk (active or
standby), the amount of data to be requested (small or
large), and currently available wireless bandwidth (strong
or weak reception), data access source can be adaptively
selected to achieve maximum energy reduction. To this
end, we propose a profile-based I/O management scheme,
FlexFetch, that is aware of access history and adaptive to
current access environment. Our simulation experiments
driven by real-life traces demonstrate that the scheme can
significantly reduce energy consumption in a mobile com-
puter compared with existing representative schemes.

1 Introduction

An appealing feature of pervasive computing is its ability
to access consistently maintained set of data and programs
anywhere via network connections. Relying on this feature,
people can keep working on their data without disruption
when they move around. In the application of pervasive
computing, a commonly used technique is data hoarding,
where commonly used set of data are replicated on user’s

mobile computer, so that data can be accessed from the
computer’s local disk when the user is on travel or even dis-
connected, and the local data can be kept consistent by a
replication system [11]. When data are available both on
the local disk and on the server via wireless network, an
intuitive choice would be to access the data from the local
disk to save communication cost. However, this choice can
be sub-optimal in terms of energy consumption, which can
be a major concern because mobile devices are constrained
by the limited lifetime of their batteries. The reason of the
sub-optimality is that the hard disk is energy inefficient if
the disk is in the standby state and only a small amount of
data is accessed there.

1.1 Energy Saving Models in the Hard
Disk and Wireless Card

Typically, a hard disk has four power-consumption states
— active, idle, standby, and sleep. A disk carries out its
reading or writing in its active state. In the idle state disk
platters keep spinning with no data transfer. In the standby
state the disk is spun down, disk electronics are partially
un-powered, and disk heads are unloaded or parked. In the
sleep state all the remaining electronics are powered off, and
a hard reset is needed to reactivate the disk. To save energy,
disk is spun down to the standby state if it has been idle for a
threshold period of time, and to service a request it has to be
spun up to the active state. We call the time period between
the disk spin-up and its adjacent spin-down a busy period,
and the time period between the disk spin-down and its ad-
jacent spin-up a quiet period. Because of substantial energy
consumption with disk state changes, the quiet period must



be sufficiently long to justify the energy cost for the disk
spin-down/up. The minimum length of quiet period to pay
off the cost is referred to as the break-even time. That is,
if a disk stays in the standby state for a period of time that
is less than the break-even time, it consumes more energy,
rather than saves energy, by spinning down the disk. If data
requests are always first attempted at the hard disk, quiet
periods can be broken into pieces that are shorter than the
break-even time and render the spin-down energy-saving ef-
forts fruitless, or even harmful. In addition, it can take a
delay of about one second or more for a spun-down laptop
disk to service the first byte of a request [15].

The 802.11 wireless network interface card used in a mo-
bile computer has a power consumption comparable to that
for the hard disk. Compared with disks in terms of the en-
ergy saving model, a wireless card has its unique character-
istics: (1) There are two energy modes: continuously-aware
mode (CAM) and power-saving mode (PSM). In the CAM
mode, the wireless card keeps active with a high power con-
sumption. In the PSM mode, the wireless card turns radio
off and periodically wakes up to check with access point.
Data transmission can be carried out in both CAM and
PSM, but with different latencies and bandwidths. While
there is also time and energy cost for the mode changes,
the cost is smaller than that for the hard disk. For example,
spinning down a Hitachi DK23DA hard disk to the standby
state needs 2.3 seconds and 2.94 joules energy. In contrast,
a Cisco Aironet 350 wireless card takes only 0.41 seconds
to switch from CAM mode to PSM mode with an energy
cost of only 0.53 joules. This characteristic suggests that
wireless connection can be a good choice for data access
when the hard disk is not ready (in the standby mode) or is
not worth being spun up to service only a small amount of
data. (2) Wireless network bandwidth is usually lower than
disk bandwidth. In addition, wireless network bandwidth
may be changing with the variation of reception strength
when user changes the location of his computer. This char-
acteristic suggests that the network is preferred only when a
small amount of data is requested and this amount is related
to the current network bandwidth.

1.2 Tracking File-access History to Pre-
dict I/O Burst Size

Selecting an appropriate I/O source, either network or
local disk, to service I/O requests based on the current disk
state has been proposed previously. One representative ex-
ample is BlueFS [15]. As a distributed file system, BlueFS
duplicates data across multiple storage devices. For each re-
quest, it selects a target device currently of the lowest access
cost. For example, if the hard disk is in the standby state
and accessing the disk may raise high overhead, BlueFS
would dispatch the request to the wireless network card in

the CAM mode. There are several limitations in the scheme:
(1) tracking recently received requests can only tell which
device should have been used for the optimal energy con-
sumption, but cannot confidently predict how much data
will be accessed in the future. (2) This scheme cannot pre-
dict temporal distribution of files to be requested, including
the distribution of think times between data requests, which
is important because it directly affects energy and time of
servicing the requests. As an example, a sequence of inter-
mittent requests for files are preferred to be serviced through
network because of its low utilization of disk bandwidth and
high energy consumption for disk to stay idle waiting for the
next request to arrive. (3) Without recording and analyz-
ing file access history, BlueFS has to reactively make deci-
sions by evaluating opportunity cost, or the time and energy
wasted by using the current device (e.g., network) instead
of activating the other device (e.g., disk). In our scheme, a
proactive decision about device use is made at a very early
stage to maximize its effectiveness by taking file access his-
tory into account. In fact, due to the stability of a program’s
behavior, the files accessed by a program at different execu-
tion stages as well as their access patterns are well predica-
ble, and such techniques have been successfully applied in
some areas such as prefetching in Web proxies [3].

1.3 Our Solution: Adaptive Selection of
I/O Data Source

To address the aforementioned issues, we proposed
a history-aware and environment-adaptive scheme called
FlexFetch. The scheme tracks and records a program’s file
access history, which is independent of the I/O devices used
or other environment settings such as current wireless band-
width. The recorded file access profile is then used to adap-
tively determine the I/O source to service the requests in
the next run of the program. FlexFetch is also adaptive to
the change of environment, such as a forced disk spin-up
or change of program’s data request patterns by constantly
re-evaluating its decision about I/O data source.

In the next section, we present the detailed scheme de-
sign. In Section 3 we describe the performance evaluation
of FlexFetch with its comparison with the fixed data source
schemes and the scheme adopted by BlueFS. We will briefly
describe additional related work in Section 4. Section 5 con-
cludes the paper.

2 The Design of the FlexFetch Scheme

There are three steps in FlexFetch: (1) profiling the exe-
cution of programs about their I/O and computation behav-
iors, (2) using the profiling information to determine which
data source, disk or network, should be used for current data
requests, and (3) constantly updating a program’s current



execution profile and re-evaluating/adjusting the decision
made in Step (2).

2.1 Profiling Program’s Executions

The purpose of the profiling is to obtain the execution in-
formation that can be used to estimate execution times and
energy costs with different I/O sources. A program execu-
tion alternates between I/O requests and computations. A
program’s life time consists of I/O times and compute times
(or think times). The lengths of think times, as well as their
contribution to the entire program’s execution time and en-
ergy cost are not subject to I/O source. So we focus on
profiling I/O behaviors in a program’s execution. There are
several requirements for the profiling: (1) A profile must
be usable in estimating the I/O service times and energy
costs for various storage devices. This means that the pro-
file should be independent of I/O devices. (2) A profile must
contain data access information that accommodates system
dynamics in the data source evaluation. For example, appli-
cations’ requests for data that are resident in system buffer
cache should not incur accesses to storage devices. (3) A
profile of a program should be divided into multiple periods,
so that the profile for each period can be used separately
to reflect changes from one execution to another execution,
and the decision about I/O data source can be adaptively
adjusted from one period to another period.

In the FlexFetch scheme, we monitor and track file
read/write system calls made by a process, which provides
file path-name, offset, and size of each request. If running a
program involves only one process, we can associate all the
file accesses from the process with the program. If there are
multiple processes created when a program is running (such
as make, which could generate multiple gcc processes con-
currently to build executable), we leverage process group
structure in Linux to associate all the file accesses requested
by processes belonging to the same group with the program.
Though profiling I/O system calls can precisely characterize
applications’ behavior, the profile cannot be directly used
to estimate request service time in real systems. This is
because operating systems usually conduct many optimiza-
tions on the I/O path, and the requests are not necessarily
serviced in their arrival order. For example, most OS ker-
nels prefetch sequential data in files, which helps translate
interleaved accesses into multiple sequential streams [5].
Also, I/O schedulers attempt to re-arrange pending requests
and merge requests for contiguous data blocks to achieve
high throughput [9].

To estimate the service time of I/O requests, we adopt
the concept of I/O burst, in which (1) we assume sequential
data in a file that are requested in the same I/O burst are
accessed in a device’s peak bandwidth, even though these
data may be requested by multiple system calls and these

system calls may be interleaved with other system calls ask-
ing for data in other files. This is the expected consequence
of I/O scheduling and I/O prefetching. (2) the (think) time
gap between any two adjacent read/write system calls in an
I/O burst can be masked by the prefetching I/O time or can
be considered as negligible relative to the I/O cost. So we
do not count small think times in an I/O burst into the to-
tal execution time. To this end, we define an I/O burst as a
sequence of read/write system calls where the think time is
less than the I/O burst threshold. In our experiment we set
the threshold as the disk access time, i.e., the average time
to receive the first byte of a random request on disk. We
conservatively assume that when a think time exceeds the
threshold, the time cannot be masked or neglected, so the
following access belongs to a new I/O burst. Multiple re-
quests that sequentially access the same file are merged into
one request of size up to 128KB, the maximum prefetching
window size in Linux, to simulate the prefetch effects. In
the case of the local disk, we assume that sequential data in
a file are usually contiguously laid out on disk [14]. In the
case of the wireless card, we assume the access bottleneck
is at the wireless connection rather than storage devices at
the server.

2.2 Deciding Data Source based on Profile

By monitoring execution of a program,1 we obtain its
profile including a series of I/O bursts, and think times be-
tween these I/O bursts. To characterize the behaviors of a
long running program in an appropriate granularity, we col-
lect continuous I/O bursts, including think times between
them, whose length just exceeds a pre-determined thresh-
old, say 40 seconds used in our experiments, into an evalu-
ation stage. Profile-based decision about data source can be
made for each stage, which allows the profile accuracy and
decision correctness to be evaluated in a timely manner and
necessary adjustments can be made accordingly. When we
have the profile and the program is to enter its first evalua-
tion stage, we estimate the execution times and energy costs
for the stage assuming disk or network is used, respectively,
to determine I/O data source, using the profile that has been
recorded for the program.

In order to estimate execution times and energy costs for
servicing I/O requests on various data sources, we need to
calculate the length of period of time when a device stays
at each power mode. To this end, we maintain an on-line
simulator for each device to emulate their power saving
policies. Such simulation causes minimal overhead, since
only a small amount of computation is needed in every 40-
second stage.

1It does not matter where the I/O accesses are directed to disk, network,
or both in the execution because we only need to record its read/write sys-
tem calls and lengths of think times.



According to the power saving models as described in
Section 1.1, if the idle period between two consecutive
I/O requests is larger than a time-out threshold, the device
switches from a high-power mode (the active/idle mode for
the disk and the CAM mode for the wireless network card)
to a low-power mode (the standby mode for the disk and
the PSM mode for the wireless network card). For each
request, its service time includes a latency and a transfer
time. The disk latency is calculated using the average seek
and rotation time, and an average network latency is used
for the network card. The transfer time can be derived from
the request size and device bandwidth. If a power mode
transition is involved in servicing a request, the associated
energy and time overhead is counted in the estimation. No-
tice that the mode-switch threshold as well as its time and
energy cost for the network card are smaller than those for
the disk, which makes wireless network a desired alterna-
tive data source in some I/O access patterns. In this way,
we can estimate the execution time Tdisk and the energy
consumption Edisk for accessing data on the disk, and the
execution time Tnetwork and energy consumption Enetwork

for servicing requests from a remote storage server via net-
work.

FlexFetch optimizes energy usage for I/O operations by
treating equally the I/O energy cost and performance and
obeying a user-specified maximum tolerable I/O perfor-
mance loss rate. A threshold loss rate of m% means that
FlexFetch will not switch to the other I/O data source by
saving x% energy consumption but extending I/O execu-
tion time by n% if x < n or n > m. Asking for user to
provide this kind of preference, such as loss rate, is com-
mon in today’s battery-powered system, such as the “Power
manager” in the IBM ThinkPad laptop. Using the estimated
energy cost, execution time, and the user-specified perfor-
mance loss rate, we summarize the rules determining I/O
data source for an evaluation stage as follows:

1. If Tdisk < Tnetwork and Edisk < Enetwork, choose
the local disk as data source;

2. If Tnetwork < Tdisk and Enetwork < Edisk, choose
the wireless network as data source;

3. If Enetwork < Edisk and (Edisk −
Enetwork)/Edisk >= (Tnetwork − Tdisk)/Tdisk

and (Tnetwork − Tdisk)/Tdisk < loss rate, choose
the network as data source; otherwise, choose the disk.

2.3 Adapting to System Dynamics

When we have a profile of a program’s prior execution
and use the profile to determine the I/O data source for the
program’s current execution, there could be some dynamics
that are involved in the on-going execution and make the

initial decision about data source sub-optimal. These dy-
namics could occur in several scenarios, such as when the
recorded profile does not reflect current execution behav-
iors, requested data hit in the system buffer cache and are
not accessed from storage devices, wireless network band-
width changes due to factors such as change of device loca-
tion, and disk is spun up by other programs when network
is selected. FlexFetch has been designed to adaptively ac-
commodate these dynamics.

2.3.1 Re-evaluating I/O Data Source Decision

While an I/O data source is used in an evaluation stage ac-
cording to the decision made based on the old profile, a new
profile is being generated for the current execution. To de-
termine whether the initial decision is still valid, we need
to compare the (partial) profile that is being generated with
the old profile. An intuitive way of the comparison is to try
to match, between these two profiles, the files requested in
each I/O burst and the length of think time between two ad-
jacent I/O bursts, and then use the result to decide if the cur-
rent data source should be kept. However, an exact match
of the two profiles is not directly relevant to the validity of
the decision. From one run to another run of a program,
the data it processes might be different, and the distribution
of data requests and think times might be changing, more
or less. However, this may not necessarily invalidate the
decision made by using the rule presented in Section 2.2.
Our method is to replace the corresponding portion of the
old profile with the current partial profile and use the as-
sembled profile to run the rule. Specifically, we monitor the
amount of data that have been requested in the current run.
Whenever the amount just exceeds the amount of data re-
quested in the first N I/O bursts, we use the new profile for
this run to replace the N I/O bursts in the old profile and
re-evaluate the rule using the assembled profile to decide if
the data source should be changed. In this way, in the cur-
rent run of a program, its initial behaviors are examined in a
bigger history picture, and as time goes on, the current be-
haviors will have more weight in the re-evaluation. Finally,
the new profile will be recorded to replace the old profile
for future use at the end of this run.

To further reduce the interference from invalid profile,
we conduct a periodical evaluation of the effectiveness of a
profile-based decision at the end of each evaluation stage. If
the energy cost incurred by choosing an I/O device based on
the profile is larger than a scheme that chooses the alterna-
tive data source, then disk or network, whichever was more
energy efficient, will be used in the next stage, disregarding
the profile of the next stage. Only when the profile for the
previous stage is proven more effective is the profile used
for the next stage.



2.3.2 Reflecting Effect of System Buffer Cache

We know that I/O requests from applications are first at-
tempted in the system buffer cache and only misses in the
buffer incur accesses to storage devices. Because we record
I/O system calls in the profile, the profile might overesti-
mate the I/O requests if many requested data can be found
in the buffer. To mitigate the cache effect, at the beginning
of each evaluation stage we check the file data recorded in
the history profile for the stage with the current cache con-
tent in memory, and remove the requests on data that are
resident in the cache. The remaining requests are then used
to evaluate the I/O data source.

2.3.3 Taking Advantage of a Spun-up Disk

Disk is a shared device and can be spun up by other pro-
grams requesting local data that are stored only on the disk
or (periodic) system write-back. While disk is spun up and
being kept in the active/idle states by other programs or sys-
tem’s activities, it is almost free to access data from the disk
for a program that has selected the network. For this reason,
we monitor the requests not from the profiled programs and
see if their intervals are less than the disk spin-down thresh-
old time. If true, which means that the disk will not be spun
down anyhow, requests from the program can then use the
disk as free riders.

When multiple programs concurrently issue I/O re-
quests, FlexFetch merges these programs’ profiles and
forms evaluation stage on the aggregate profile to estimate
the execution time and energy cost for the programs.

2.3.4 A Summary of the FlexFetch Scheme

In summary, for saving energy in mobile computing,
FlexFetch is designed to proactively select the least costly
data source to service applications’ requests. To achieve this
goal, FlexFetch profiles the device-independent behaviors
of applications by tracking I/O-related system calls. The
profile is then used to compare energy costs with differ-
ent I/O devices in each evaluation stage. In addition, being
adaptive to run-time dynamics, FlexFetch adopts a mecha-
nism to re-evaluate the effectiveness of its decision and pro-
gressively update the profile on the fly.

3 Performance Evaluation

3.1 Experimental Settings

We built a simulator that is driven by real-life appli-
cations’ execution traces to evaluate the performance of
FlexFetch. It simulates the management of two storage de-
vices (hard disk and wireless interface card) and the buffer

cache in the memory. The simulator emulates the poli-
cies used for Linux buffer cache management, including the
2Q-like page replacement algorithm, the two-window read-
ahead policy that prefetches up to 32 pages, the C-SCAN
I/O request scheduling mechanism, and the asynchronous
write-back scheme. We also simulate the policies adopted
in the Linux laptop mode [1], such as eager writing back
dirty blocks to active disks and delaying write-back to disks
in the standby mode.

Pactive Active Power 2.0W
Pidle Idle Power 1.6W

Pstandby Standby Power 0.15W
Espinup Spin up Energy 5.0J

Espindown Spin down Energy 2.94J
Tspinup Spin up Time 1.6sec

Tspindown Spin down Time 2.3sec

Table 1. The energy consumption parameters
for the Hitachi-DK23DA hard disk drive

The disk simulated in our experiment is the Hitachi-
DK23DA hard disk [8]. It has a 30GB capacity, 4200 RPM,
and 35MB/second peak bandwidth. Its average seek time
is 13ms, and its average rotation time is 7ms. Its energy-
related parameters are listed in Table 1. The timeout thresh-
old for disk spin-down is set as 20 seconds, the default value
used in the Linux laptop mode.

The simulated wireless network interface card (WNIC)
is the Cisco Aironet350 with a bandwidth of 11Mbps [4].
The card adopts an adaptive dynamic power management
mechanism. It switches to the PSM mode from the CAM
mode when WNIC has been idle for more than 800msec,
and it switches back to the CAM mode if more than one
packet is ready on the access point. Its power consumption
parameters are shown in Table 2.

PSM(idle/recv/send) 0.39W /1.42W /2.48W
CAM(idle/recv/send) 1.41W /2.61W /3.69W

CAM to PSM(Delay/Energy) 0.41sec/0.53J
PSM to CAM(Delay/Energy) 0.40sec/0.51J

Table 2. The energy consumption parameters
of the Cisco Aironet 350 wireless card

In addition to FlexFetch, we also simulated the pol-
icy adopted in BlueFS as it shares the same goal with
FlexFetch. Also, we compare FlexFetch with the policies
where only disk or WNIC is used, respectively. In the ex-
periments about FlexFetch and BlueFS, we set maximum
tolerable performance loss rate as 25%. The minimal size
to form an evaluation stage is set as 40 seconds. In experi-
ments, we assume that data sets of workloads are available
on both local hard disk and remote server and synced, ex-
cept as stated otherwise.



3.2 Traces Collection

Name Description # File Size(MB)
Thunderbird an email client 283 188.1

make building Linux kernel 2579 72.5
grep a text search tool 1332 50.4
xmms a mp3 player 116 47.9

mplayer a movie player 121 136.3
Acroread a PDF file reader 10 200.0

Table 3. Trace description

We modified the strace utility in Linux to collect traces
to drive our simulator. The modified strace tool can inter-
cept system calls related to file operations, such as open(),
close(), read(), write(), lseek(), etc. For each system call,
we collect the following information: pid, file descriptor,
inode number, offset, size, type, timestamp, and duration.
The blocks of the traced files are sequentially mapped to
the local hard disk with a small random distance between
files to simulate a real layout of files on the disk. We col-
lected traces of six representative applications in a mobile
computing environment, as listed in Table 3.

3.3 Experiment Results

Compared with accessing local hard disk, the perfor-
mance and energy cost of accessing a remote storage via
wireless card are sensitive to the networking environment.
For example, the bandwidth of WNIC highly relies on the
radio quality, which could be affected by many factors, such
as distance and physical geometry. The 802.11b standard
supports four bandwidths: 1Mbps, 2Mbps, 5.5Mbps, and
11Mbps, depending on the quality of radio signals. More-
over, the latency for accessing remote storage via WNIC is
not constant, as it may be affected by many factors, such as
server load and network congestion. Thus, accessing data
via WNIC may experience significant change of latency and
bandwidth, while accessing local hard disk has a constant
performance. We present experiment results with various
WNIC bandwidths and latencies. We vary the WNIC la-
tency with a fixed 11Mbps bandwidth and vary the WNIC
bandwidth with a fixed 1msec latency. Four policies are
simulated: FlexFetch, the policy adopted by BlueFS (de-
noted as BlueFS), using the hard disk only (denoted as Disk-
only), and using remote storage via WNIC only (denoted as
WNIC-only).

3.3.1 A Programming Scenario: grep and make

This workload simulates a typical programming scenario,
where a kernel programmer first searches the Linux source
code using grep and then builds a kernel binary using make.
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Figure 1. grep+make: Energy consumptions
with various WNIC bandwidths and latencies

Figure 1(a) shows the energy consumption with various
WNIC latencies. With a zero latency to access the remote
storage via WNIC, Disk-only consumes 1743J energy, while
WNIC-only requires 1634J. This is because of expensive
head positioning operation in the hard disk. In this work-
load, make requests a large number of small files, where
each request can incur a substantial latency and energy cost
on the disk. So WNIC with a low latency is more cost
effective than the hard disk. BlueFS consumes 2179J en-
ergy. In contrast FlexFetch consumes only 1522J, which is
even less than that for WNIC-only. The difference of en-
ergy consumption between BlueFS and FlexFetch is due to
the mixed access patterns exhibited in the workload. In this
experiment, a large number of small files are first accessed
in a very short period (grep), and then the Linux kernel is
built (make), which takes several minutes. FlexFetch iden-
tifies different access patterns to select energy-efficient de-
vices accordingly. Specifically, at the beginning FlexFetch
spins up the hard disk to service the data set of grep, as the
hard disk can complete the whole operation in a few sec-
onds with small energy consumption. The data set of make
is then mainly serviced by the WNIC, which is energy ef-
ficient for non-bursty workloads. BlueFS, however, has no
knowledge of future accesses and solely relies on the recent
history of data accesses and current storage device status
to make a choice, which makes it lack a long-term view
of energy consumption caused by different workload access
patterns. As a result, it keeps switching between the hard
disk and the remote storage, which incurs significant energy
consumption for both devices.

With the increase of WNIC latency, the energy con-
sumption of WNIC-only quickly increases and exceeds that
of Disk-only. Meanwhile, BlueFS reduces its energy con-
sumption by dispatching most of the requests to the hard
disk, which now has not only comparable latency but
also much higher bandwidth (35MB/s) than the WNIC
(11Mb/s). Similarly, FlexFetch responds to the change of
energy efficiency caused by the increased WNIC latency
by issuing more requests to the hard disk, which makes its
curve increasingly close to the curve of Disk-only.



Figure1(b) shows the energy consumptions with the vari-
ation of the WNIC bandwidth. WNIC-only is very sen-
sitive to the bandwidth, as the I/O service time is highly
dependent on the bandwidth. FlexFetch benefits from the
increased WNIC bandwidth, which gives FlexFetch more
flexibility to choose between the two devices and use WNIC
to escape from the high cost involved in small file access on
disk when it deems profitable. BlueFS is not sensitive to the
change of bandwidth, as it selects device based on the cur-
rent status of devices and accumulated opportunity costs.

3.3.2 A Media Streaming Scenario: mplayer

In this workload, a user uses mplayer to play a movie, which
continuously accesses large movie files. As shown in Fig-
ure 2(a), the energy consumption for FlexFetch is almost
the same as that for WNIC-only. Mplayer continuously ac-
cesses data, but only a small amount of data at a time, which
makes it energy inefficient to use the hard disk. Using the
profile of mplayer, FlexFetch can recognize the fact by esti-
mating and comparing energy consumptions for the WNIC
and the disk. BlueFS, however, can only see a recent his-
tory. BlueFS first issues requests to WNIC, as spinning up
the hard disk incurs substantial energy overhead. However,
when it sees more requests, it issues a ‘ghost-hint’ to the
hard disk with a hope that servicing the following requests
via an active disk could reduce energy consumption. Unfor-
tunately, the following I/O requests are sparsely distributed
— an access pattern that makes accessing the disk energy
inefficient. Moreover, as BlueFS occasionally accesses data
through WNIC, its energy consumption is even higher than
Disk-only.
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Figure 2. mplayer: Energy consumptions with
various WNIC bandwidths and latencies

Figure 2(b) demonstrates that FlexFetch can adaptively
select a proper device. With a large WNIC bandwidth, say
5.5Mbps, FlexFetch accesses data via WNIC and achieves
an energy consumption similar to that of WNIC-only. For
WNIC with a bandwidth lower than 2Mbps, FlexFetch
switches to the local hard disk, which is more efficient than
a low-bandwidth WNIC, and consumes the amount of en-
ergy that is comparable to that for Disk-only and up to 45%
less than that for WNIC-only.

3.3.3 An Email Search Scenario: Thunderbird

Thunderbird is a widely used email client application,
which stores user’s email in several large email files. It
first reads several emails one after another with consider-
able think time in between, and then quickly searches the
entire email files to locate user-specified emails.
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Figure 3. Thunderbird: Energy consumptions
with various WNIC bandwidths and latencies

As shown in Figure 3(a), Disk-only consumes a consid-
erable amount of energy, as servicing the small requests for
initial several emails from the hard disk is energy inefficient.
For WNIC with latency over 15msec, WNIC-only consumes
even more energy than Disk-only, since the I/O latency be-
comes a dominant factor. FlexFetch consumes 17% less en-
ergy than BlueFS for most of WNIC latencies we examined.
This is because FlexFetch dispatches the small requests at
the beginning of the workload to WNIC, while the bursty
search operations are then carried out at the high-bandwidth
disk. Also, both FlexFetch and BlueFS are not sensitive to
the change of WNIC bandwidth, since the amount of data
serviced by the WNIC accounts for a small portion of the
entire workload.

3.3.4 A Scenario with Forced Disk Spin-up: grep,
make, and xmms

As we have discussed, a disk can be spun up for reasons be-
yond FlexFetch can predict in advance. One example is that
some data may exist only on a particular storage device,
which means the device has to be activated to service re-
quests for the data. To test the effectiveness of FlexFetch in
this situation, we adopt the workload that was used to repre-
sent programming scenario (grep+make). Concurrently, the
user runs xmms to listen to MP3 music whose files are stored
only on the local hard disk. The experiment results are
shown in Figure 4. To emphasize the ability of FlexFetch
to adapt to dynamics, we show the results of a FlexFetch
alternative that does not have the capability to adapt to the
run-time dynamics and denote it as FlexFetch-static.

Solely based on the profile of make, FlexFetch would be-
have similarly to what it did as described in Section 3.3.1,
where FlexFetch serviced most requests from the remote
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Figure 4. grep+make / xmms: Energy consump-
tions with various WNIC bandwidths and la-
tencies

storage via WNIC. However, in this experiment the con-
currently running xmms keeps accessing the hard disk to
make the disk stay in the active/idle states. FlexFetch ob-
serves the forced spin-up and responds by switching the
data source to the local disk based on measured actual en-
ergy consumption. As shown in Figure 4(a), with a network
latency less than 9msec, FlexFetch substantially avoids the
high energy cost with FlexFetch-static, which lacks ability
to recognize the run-time dynamics. Similar performance
trend can also be observed in Figure 4(b) for different net-
work bandwidths. With the increase of WNIC latency, both
FlexFetch-static and FlexFetch choose the hard disk as the
I/O device, so their curves merge eventually.

3.3.5 A Scenario about Invalid Profile: Acroread

A profile of one execution of a program can be substan-
tially different from that of another execution, which is the
case especially for interactive applications. To test how this
would affect the effectiveness of FlexFetch for energy sav-
ing, we designed a workload in which a user searches multi-
ple keywords in several 20MB PDF files continuously with
a 10 seconds interval using Acroread. However, the pro-
file previously collected is about an execution of Acroread
where a set of 2MB PDF files are read with an interval of
25 seconds, which is longer than the disk time-out.
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Figure 5. Acroread: Energy consumptions with
various WNIC bandwidths and latencies

At the beginning of this workload FlexFetch uses the
out-of-date profile and chooses WNIC as the I/O device,
while the hard disk is more energy efficient for servicing the
bursty workload in the current execution. At the end of the
first stage, FlexFetch evaluates how much energy could be
consumed by using a different I/O device based on the I/O
requests observed during the previous stage. By comparing
the actual energy consumptions, FlexFetch realizes that the
decision made based on the profile is incorrect. So it adopts
the device that consumed less energy during the previous
stage, the hard disk, as the data source for the next stage.
As shown in Figure 5(a), for a network latency of 10msec
FlexFetch consumes around 371J energy, which is 36% less
than that for FlexFetch-static (574J). However, FlexFetch
consumes around 15% more energy than BlueFS. This is
because FlexFetch has to spend at least one stage to exam-
ine actual energy costs and correct its prior decision.

4 Additional Related Work

There have been extensive research work on reducing en-
ergy consumption for I/O data access on disk, wireless net-
work, and both, in mobile computing.

Regarding disk energy saving, some work focuses on
the selection of disk spin-down timeout threshold, which
could be a fixed time period [6], or be adaptively adjusted
at run-time [7]. These schemes passively monitor disk I/O
operations without extending disk idle time. Other work
customizes system or application software for disk energy-
saving [16, 17]. The proposed scheme in [16] uses aggres-
sive prefetching to create more busty disk accesses for long
disk idle periods. This scheme needs to carefully decide
the timing to carry out prefetching, how much and which
data should be prefetched, and which data should be re-
placed. The scheme requires an intensive change of mem-
ory management in operating systems. There are schemes
that use flash memory to further improve the effectiveness
of caching and prefetching for disk energy saving [2, 13].
Our FlexFetch scheme is not involved in the system buffer
cache management, so it can be implemented in the exist-
ing system in a non-intrusive manner. Moreover, FlexFetch
treats the cached data and prefetch requests, either from ap-
plications or from systems, as part of the environment it ac-
commodates, and is complementary to system-level energy-
saving schemes.

Regarding energy-saving for wireless communication in
mobile computers, Jung and Vaidya propose a power con-
trol MAC protocol for Ad Hoc networks [10] that allows
nodes to vary transmit power level on a per-packet basis.
In [12], Lufei and Shi propose to use energy as a QoS metric
for application level protocol adaptation, which considers
only the wireless network energy consumption and neglects
the disk energy consumption.



Kuenning and Popek concern with the the mobile com-
puting in the absence of a network, or disconnected opera-
tions [11]. They propose a scheme that observes user’s be-
haviors and file accesses and predicts future needs, so that
it can choose which files should be hoarded. Their exper-
iments demonstrate that the scheme can hoard entire user
working set with a high confidence using a semantic clus-
tering technique, so that most of data that are needed in the
mobile computing are resident in the local disk as well as on
the server. The observation that user behavior and file ac-
cess pattern are well predictable supports the use of profile-
based approach in energy saving.

5 Conclusions and Future Work

Energy consumption remains a pressing issue in mobile
computing, where on-demand data could be available in
both local hard disk and remote storage via wireless net-
work. In this paper, we propose an effective power-saving
scheme, FlexFetch, to save energy by adaptively selecting
the most cost-efficient data source for various workloads.
By considering both I/O devices’ characteristics and run-
time dynamics, FlexFetch estimates and compares energy
consumption of various data sources and redirects I/O re-
quests to the least costly data source. Our experiments
based on trace-driven simulations show that FlexFetch can
achieve significant energy saving, compared to existing
energy-saving schemes that use the local disk only or that
select data source solely based on recently serviced re-
quests.

There are several limitations in our work that are to be
addressed in the future. First, in an environment where
there are non-profiled programs running, the energy saving
effort of FlexFetch for profiled programs could be foiled
by unexpected I/O requests. In this work, we assume that
usually a fixed set of programs are used in a personal mo-
bile computer. Second, current evaluation is based on trace-
driven simulation. An implementation of a FlexFetch pro-
totype would reveal more insights on issues such as time,
space, and energy overhead of applying the scheme. Third,
in this work, we assume that the synchronization issue is
taken care of by other system component, such as a hoard-
ing system [11]. We leaves it as a future work to study how
synchronization would affect the performance of FlexFetch.
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