
Less is More: De-amplifying I/Os for Key-value
Stores with a Log-assisted LSM-tree

Kecheng Huang∗, Zhiping Jia∗, Zhaoyan Shen∗, Zili Shao†, and Feng Chen‡
∗Shandong University, †The Chinese University of Hong Kong, and ‡Louisiana State University

Abstract— In recent years, Log-Structured Merge Tree (LSM-
tree) based key-value stores, such as LevelDB and RocksDB, have
been widely adopted in data center systems. Though optimized
for high-speed write processing, the severe I/O amplification
remains a critical constraint that hinders them from reaching
their maximum performance potential. Unfortunately, this prob-
lem is deeply rooted in the fundamental design of the LSM-
tree structure. A small number of frequently updated key-value
items could quickly pollute the entire tree structure, causing
repeated changes in the structure and quickly amplifying the
amount of disk IOs across the levels in the tree. In this paper,
we present a novel scheme, called Log-assisted LSM-tree (L2SM),
to fundamentally address the long-existing I/O amplification
problem. L2SM adopts a small-size, multi-level log structure to
isolate selected key-value items that have a disruptive effect on
the tree structure, accumulates and absorbs the repeated updates
in a highly efficient manner, and removes obsolete and deleted
key-value items at an early stage. We have prototyped the L2SM
structure based on LevelDB. Our evaluation with the YCSB
benchmark shows promising results by reducing the amount of
disk IOs by up to 40.2%, increasing the throughput by up to
67.4%, and decreasing the average latency by up to 40.1%.

Index Terms—Key-value store, LSM-tree, Bloom filter

I. INTRODUCTION

In today’s data centers, key-value (KV) data stores play a
crucial role in providing high-speed data services for cloud
applications. It is a great challenge to handle a massive amount
of KV operations in a high-speed and efficient way. In the past
decade, we have witnessed a wide-spread adoption of LSM-
tree based KV stores, such as LevelDB [1] and RocksDB [2],
as a popular solution in a real-world deployment [3]–[7].

LSM-tree based KV stores adopt a unique structure, which
is particularly tailored for handling a large volume (billions
or even more) of small KV data items. In LSM-tree, a
basic storage unit, called SSTable, stores KV items sorted
with their keys. The SSTables are organized in a multi-level
structure. Each level maintains a sequence of SSTables with
non-overlapping key ranges. A lower level contains several
times more SSTables (wider) than its adjacent upper level,
forming a tree-like structure. Incoming KV items are placed
on the first level. If the number of SSTables at a level exceeds
a preset threshold, selected SSTables are compacted into the
lower level through merge sort operations. Upon a query
operation, a binary search is performed, level by level (top-
down), until finding the item or returning “not found”.

The LSM-tree brings several important benefits. First, it
converts small, random writes into sequential, append-only

∗ Zhaoyan Shen is the corresponding author.

writes in large chunks, which optimizes I/O speed on disk.
Second, it leverages the sorted data organization to remove
the need for a complex indexing structure, greatly reducing
the memory overhead. Third, it allows obsolete and deleted
KVs to temporarily stay in the tree and remove them later via
a compaction process, which eliminates small in-place writes.

All the above-said advantages make LSM-tree highly op-
timized for write-intensive workloads. However, several crit-
ical limitations inherent in this structure are fundamentally
hindering LSM-tree based KV stores from achieving further
performance improvement and must be addressed.

A. Critical Issues

As a fundamental design, the correct functioning of the
LSM-tree structure relies on the strict ordering of KV items
by their keys. However, enforcing such a strict order is very
costly—each SSTable, and each level of SSTables need to
be frequently reorganized, physically on disk. This process is
highly inefficient due to the severe I/O amplification problem,
which is caused by several intrinsic structural issues.

First, the data storage unit (SSTable) is much larger than the
data operation unit (KV). To meet the requirement of strictly
retaining the sorted and non-overlapping structure, LSM-tree
frequently triggers merge sort operations at the granularity of
SSTables. It means that even a slight change made by one
KV update or insertion could incur a chain of operations to
read, sort, and write a number of large SSTables, which raises
severe I/O amplification problem.

Second, the locality information is lost and ignored in the
data placement. Being sorted solely by the keys, “hot” data and
“cold” data are mixed together within and across SSTables. A
disturbing effect is that a small set of frequently updated KV
data can repeatedly cause slight but heavy-cost changes. Due
to the out-of-place writes, this small set of update-intensive
data can quickly pollute many SSTables, spreading changes
over the same level and involving both hot and cold data.
This further magnifies the amplification effect.

Third, due to the tree-like structure, changes in the top-level
are eventually rolled down to the bottom, level by level. Since
the key range of an SSTable at a higher level often overlaps
with a large number of SSTables at the lower level (multiple
times), more SSTables may involve with merge sort operations,
and the lower the level is, the more wide-spread such an effect
would be. For this reason, the I/O amplification effect is further
deepened and magnified, causing an “avalanche” across the
LSM-tree levels, from top to bottom.

B. Optimizing LSM-tree Structure

The above-said problem, unfortunately, is deeply rooted in
the fundamental design of the LSM-tree structure. As the
KV data store scales up, these issues would become more
prominent with a wider and deeper tree structure. A great
challenge is—how to retain the advantages of the LSM-tree
based structure but avoid its negative effects?

In this paper, we present a highly effective solution, called
Log-assisted LSM-tree (L2SM), to fundamentally address the
above-said issues. We aim to retain all the benefits brought
by the basic LSM-tree structure but remove the detrimental
I/O amplification effect. Our principal idea is to retain the
stableness of LSM-tree to the maximum extent.

In essence, the source of all the previously mentioned
problems is the frequent, disruptive changes to the tree struc-
ture, which forces the involved SSTables to be reorganized
repeatedly. By removing, isolating, and delaying such changes,
we can minimize their impact on the current status and
stabilize the tree structure, which eliminates the root cause
of I/O amplification from the beginning.

L2SM accomplishes this by extending the current LSM-
tree with a separated log structure, called SST-Log. This log
structure serves three important purposes. First, it is used as
a buffer to isolate KV items that receive frequent updates.
Hot KVs are separated from the LSM-tree, protecting the tree
structure from being polluted repeatedly. Second, we identify
and move “sparse” SSTables, which overlap with many SSTa-
bles in the lower level, out of the tree and give them a chance to
be condensed in the log. Moreover, obsolete and deleted KVs
are removed at an early stage, without being rolled down into
lower levels, which avoids unnecessary I/Os and releases the
occupied disk space. Third, the log also delays changes to the
LSM-tree, which creates an opportunity to collapse multiple
structure-impacting changes (e.g., overlapped updates, deletes)
into a fewer number of operations.

All these optimization measures strive to achieve one goal—
remove the operations that could potentially destabilize the
LSM-tree structure as early as possible. In fact, due to the
amplification effect, making such an optimization close to the
source of the problem results in a super-linear reduction of
I/O operations at greater effectiveness.

It is worth mentioning that our work is different from
prior works in that L2SM focuses on addressing the structural
problem of the original LSM-tree by proactively identifying
and isolating the data that disrupts the tree structure in a sepa-
rate log structure, which stabilizes the tree structure, removes
unnecessary changes, and minimizes I/O amplification. Our
contributions in this paper are summarized as follows:

• We introduce a novel Log-assisted LSM-tree to improve
system performance and reduce disk IOs by enhancing
LSM-tree with a small, dedicated log component.

• We design an auto-tuning Hotness Detecting Bitmap
(HotMap) and an SSTable density estimation scheme to
identify KV items that frequently cause small but heavy-
cost changes to the LSM-tree.

• We propose Pseudo Compaction and Aggregated Com-
paction to condense the SSTables in the log and delay
the changes to the LSM-tree.

• We have implemented a full-featured prototype based on
Google’s LevelDB [1] and performed a set of experiments
to demonstrate the effectiveness of L2SM. We have also
released the open-source code of L2SM [8].

The rest of the paper is organized as follows. Section II in-
troduces background and motivation. Section III describes the
design and implementation. Section IV gives the performance
evaluation results. Section V describes the related work. The
final section concludes this paper.

II. BACKGROUND & MOTIVATION

In this section, we introduce the background about LSM-tree
based KV stores and give an example to explain the problem
that motivates this paper.

A. LSM-tree based KV Store

A typical LSM-tree based KV store [9] consists of both
in-memory and on-disk components. A MemTable (memory
table) and an ImmuTable (immutable memory table) are main-
tained in main memory. A set of SSTables (sorted string table)
store KV data persistently on disk and are logically organized
in multiple levels. Except Level 0 (L0), the KV items of a
level are sorted in order of the keys, meaning that the key
ranges of SSTables on the same level are non-overlapping.

All KV write operations are first served in the MemTable.
If the MemTable is filled up, its KV items are sorted and
converted to an ImmuTable, which can no longer be updated.
Then, the ImmuTable is appended to L0 as a persistent
SSTable. This process is called Minor Compaction. Thus, the
key ranges of different SSTables in L0 may have overlaps.
If the size of L0 exceeds a preset threshold, a heavy-weight
Major Compaction process is triggered to compact all overlap-
ping SSTables to L1. The major compaction process performs
Merge Sort operations to merge the L0 SSTables with the
SSTables in L1 that have overlapping key ranges. The sorted
KV items are written back to L1 in newly formed SSTables.
Similarly, if the size of L1 or other levels exceeds their size
limit, the major compaction process is triggered to select one
or multiple SSTables for compaction into the adjacent lower
level. In this way, the KV updates are rolled down from the
top to the bottom, level by level.

Query handling in LSM-tree KV stores is simple. To locate
a KV item in the LSM-tree, we start searching from L0 to
the last level. Except for L0, where we need to search all
SSTables due to the possible key-range overlapping, for the
other levels, only one SSTable needs to be searched due
to the sorted structure. Thus, a KV query usually incurs
several SSTable searches. To speed up this query process, each
SSTable maintains a bloom filter to quickly determine whether
a key is possibly in the table or not.

0 12k8k4k
 Time (Sec)

0

100

200

300

400

500

D
is

k
 I

O
 (

G
B

)

ti+1

ti

ti+2

...

...

...

...

...

...

Lk+1

Lk

Lk+1

Lk

Lk+1

Lk

ti+1

ti

ti+2

...

...

...

...

...

...

Lk+1

Lk

Lk+1

Lk

Lk+1

Lk

Fig. 1. An illustration of mainte-
nance overhead in LSM-tree.

Fig. 2. Total disk IOs of differ-
ent levels.

B. Motivation

The unique structure design of LSM-tree makes it highly
efficient for managing a large amount of small KV items.
However, in real workloads, a fast-pace incoming traffic of
random, update-heavy KV requests can quickly pollute the
LSM-tree structure, since the compaction process of LSM-
tree has to maintain sorted, non-overlapping SSTables in each
level, which spreads small, random and repeatedly updated
entries down to lower levels. In LSM-tree, the deeper the level
is, the heavier and more frequently the merge sort operations
would be triggered. It forces the system to repeatedly undergo
intensive, time-consuming maintenance operations, incurring
huge I/O overheads.

We show a simple example in Figure 1 to illustrate the
expensive maintenance cost. Assume two LSM-tree levels,
Levelk (denoted as Lk) and Levelk+1 (denoted as Lk+1). At
time ti, ti+1 and ti+2, Lk is filled up and demands to compact
one SSTable down to Lk+1. The selected SSTable overlaps
with four SSTables at Lk+1. Thus, a merge sort operation
involving five SSTables has to be performed each time. In
total, there are 15 SSTables involved.

Specifically, due to the tree-like structure, the size of each
level increases exponentially, from top to bottom. Compacting
a victim SSTable at Lk would involve multiple times more
SSTables (four SSTables in this example) at a lower level,
Lk+1, causing an amplification effect. Even worse, due to the
locality in real workloads, the three victim SSTables selected
at Lk (each selected at time ti, ti+1, and ti+2) are very likely
to have overlaps (e.g., a few hot KV items could be repeatedly
updated and pollute a range of KVs.). The amplification effect
is further magnified over time.

To illustrate this effect, we have performed a preliminary
test on LevelDB [1]. We randomly insert 80 million KV items
to the data store. The size of each KV item is set as 1KB.
The detailed experimental setup can be found in Section IV.
Figure 2 shows the amount of disk IOs involved at each level
along the time. We can see that, at each level, the disk IO
amount increases with the arrivals of incoming requests, which
is as expected. The amount of disk IOs of L0 increases at a
rate nearly identical to the incoming requests. This is because
the KV items buffered in memory are directly flushed into L0
as SSTables and the KV items of different SSTables in L0 are
not sorted. Thus, there is almost no maintenance overhead in
L0. However, as the level gets deeper, the growth rate of disk
IO amount also increases. In other words, the lower the level
is, the more disk IOs are involved, at an accelerating pace.

Write Read

Storage Tier

Processing Tier

LSM-tree SST-Log
...

...

L0

L1

L2

L3

L4

Immutable
Memtable

Aggregated Cmpt

Pseudo Cmpt

Minor Cmpt

L2SM IndexMemtable

Fig. 3. Overview of L2SM architecture.
Thus, it is more severely impacted by the amplification effect.
At the end of the test, the maintenance I/O overhead of L3 is
up to 5 times as large as the amount of the incoming requests.
This example vividly shows the I/O amplification over levels.

III. L2SM DESIGN

We propose a highly efficient solution, called Log-assisted
LSM-tree (L2SM), to fundamentally address the critical I/O
amplification challenge. In this section, we will first give an
overview of the proposed architecture, and then present the
design details of each component.

A. Architecture Overview

A key design goal of L2SM is to retain the benefits
of the LSM-tree structure, but remove the detrimental I/O
amplification effect. L2SM accomplishes this by extending
the core LSM-tree structure with a set of highly optimized
mechanisms.

As illustrated in Figure 3, L2SM maintains KV data in
both memory and disk storage. (1) In-memory structures:
Similar to the classic LSM-tree, L2SM retains the two in-
memory structures of LSM-tree, MemTable and ImmuTable, as
a staging buffer to organize small, random KV items into large,
sequential I/Os. (2) On-disk structures: Unlike the classic
LSM-tree, data on the disk storage is divided into two parts,
LSM-tree and SST-Log, respectively. The tree part functions
similarly to the traditional LSM-tree. A critical change is the
addition of the SST-Log part. SST-Log is a multi-level struc-
ture designed for achieving the key purpose—absorbing the
operations that destabilize the LSM-tree structure. Except for
L0 and the last level, each level of SST-Log aligns horizontally
with the corresponding tree level, and also contains a list of
SSTables. The purpose is to make the log absorb the most
frequent and disruptive changes, protecting the tree in a stable
status with minimal updates.

Data flow in the L2SM structure is as follows. (1) Incoming
KV items are first packed into the MemTable and then con-
verted to the ImmuTable. Next, the Minor Compaction (MC)
process merges the ImmuTable into L0 as a persistent SSTable.
(2) When the number of SSTables of any level exceeds the
size limit, we monitor and identify the SSTables that could
potentially impact the tree structure, such as those with a
sparse or hot key range. A Pseudo Compaction (PC) process
moves the selected SSTables into the same level’s SST-Log,
which is managed by a Log Metadata Manager. Note that PC
does not incur any physical I/O but only updates the metadata
structures. (3) If the size of an SST-Log level exceeds its limit,

an Aggregated Compaction (AC) process selects and evicts
victim SSTables from the log and merges with the overlapped
SSTables at the lower level of the tree. Hence, in L2SM, a
KV item first moves horizontally from the tree to the log, and
then moves back and vertically down to the tree, and so on.
This process repeats and the log filters the disruptive updates
out of the tree, level by level.

B. LSM-Tree and SST-Log

In L2SM, KV data are stored persistently in either the LSM-
tree or the SST-Log. The two areas are logically separated by
maintaining each level’s log in a preset size proportional to
the same level of the tree. The two service processes, PC and
AC, are periodically activated to maintain the target sizes. In
our prototype, the total size of all SST-Logs is set to no more
than 10% of the LSM-tree. We will discuss the effect of SST-
Log size in Section III-B2.

1) LSM-tree: In L2SM, the LSM-tree part is designed to
mostly maintain KV data that are rarely updated and have
dense key coverage. The management in L2SM is similar to
the traditional LSM-tree design the following differences.

First, in the original LSM-tree, the compaction process at
each level merges SSTables into the next level, always in the
top-down manner. In L2SM, the compaction process splits into
two: the PC process moves SSTables horizontally from the tree
to the log at the same level; the AC process merges SSTables
from the log down into the lower level of the tree.

Second, the compaction process in the original LSM-tree
selects SSTable for compaction based on the key-range order.
In contrast, the PC and AC processes select SSTables based
on their properties (hotness and density).

Third, the LSM-tree usually selects one SSTable for com-
paction into the lower level each time. The AC in L2SM
usually selects multiple SSTables from the log for creating
a denser structure and better I/O performance.

2) SST-Log: SST-Log, a multi-level log structure, is main-
tained as an extension to the LSM-tree. SST-Log serves four
main purposes: (1) It provides an isolated space to separate
the “hot” (frequently updated) data, which repeatedly pollutes
the structure, out of the tree. (2) It provides a buffer zone to
identify and condense the “sparse” SSTables, which contain
a few keys covering a wide range, before merging them into
the tree. (3) It delays and mitigates disruptive operations, e.g.,
accumulating multiple updates into one. (4) It allows us to
remove the obsolete and deleted data out of the tree early.

The basic structure of SST-Log is shown in Figure 3. Except
for L0 and the last level, a linked list of SSTables, called
a log, is maintained for each level. The log organizes the
SSTables that are selected and moved from the same level
of the tree in a unidirectional manner. That means, once
an SSTable is moved from the tree into the log, it either
stays in the log or is further merged by AC down into
the lower level of the tree, but it never moves back to the
same level of the tree. It guarantees that the most recent
version can always be found if following the right order (e.g.,
Treen → Logn → Treen+1 → Logn+1...).

Unlike at a tree level, the SSTables in a log may have
overlapped key ranges. Multiple versions of the same KV
items could co-exist simultaneously in a log. When looking
for a KV item, all the SSTables whose key ranges cover
the target key need to be searched. In contrast, in LSM-
tree, the SSTables of a level are sorted by their keys and
strictly non-overlapping (a key only appears in one SSTable).
Allowing such overlapping is essential in L2SM, since the log
is designed to absorb and accumulate multiple updates, which
can be collapsed into one in the AC process. To accelerate the
in-log search, we use Bloom Filters for quick filtering. More
details will be discussed in Section III-D.
Determining the log size. SST-Log is a multi-level structure.
The size (i.e., the number of SSTables) of each level’s log has
a limit. A naı̈ve solution is to set the log sizes of different
levels to the same, or the same percentage proportional to the
tree size. Both solutions are sub-optimal for two reasons.

First, the log of each level serves as a buffer, which filters
hot and sparse SSTables out of the tree. Due to the filtering
effect, the lower the tree level is, the colder and the denser
the SSTables are. It means that maintaining a large log may
become unnecessary for lower levels. Second, due to the
pyramid-like shape of the LSM-tree, the lower levels contain
more SSTables than the upper levels, so maintaining the same
size or percentage would be either too large or too small.

We design a scheme, called Inverse Proportional Log Size,
to determine the log size of each level. It works as follows.
The log size of a level is proportional to the size of the same
level in the tree. From the top-level down, the log-to-tree ratio
(proportion) of each level decreases, meaning that an upper
level has a larger ratio while a lower level has a smaller ratio.

Assume ω is a preset percentage (e.g., 10%) of the entire
SST-Log size to the LSM-tree size with h levels, and λ
is the log-to-tree size ratio of the first level. For a given
m (L0 size) and g (increasing rate of levels for the LSM-
tree), we can calculate the value of λ to meet the require-

ment
h−2∑
j=1

m× g j ×λ j < (
h−1∑
i=0

m× g i)× ω. Note that due to the

pyramid-like shape of the tree structure, the decreasing ratio
unnecessarily means that the log size decreases. For example,
if a tree has 10 SSTables at L2, the log size of L2 is 5 SSTables
(50%), and the tree has 20 SSTables at L3, the log size of L3
could still be 5 SSTables (25%). When the number of SSTables
exceeds the log size limit, AC is activated to select and merge
SSTables down to the next level.

C. Hotness and Density

To mitigate the disruptive interference to the LSM-tree
structure, we need to identify the frequently updated and the
sparse SSTables, and isolate them in the SST-Log part to
stabilize the LSM-tree structure.

We use two metrics, hotness and density, to quantitatively
measure the properties of an SSTable. hotness measures how
frequently the KV items of an SSTable are updated. density
measures how large the key range of an SSTable covers and
impacts. The two metrics together describe the severity of

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

0

0

0 0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0 0 0 0 1 0 0 0 0

0 1 1 0 1 0 0 0 1B[0]

B[1]

B[2]

B[m-1]

H1[X1] H2[X1] H3[X1] H1[X2] H2[X2] H3[X2]

X1

X2

...

...

Fig. 4. An illustration of the HotMap scheme.
the potential disruptive interference that could be caused by
holding the KV items in the LSM-tree. The former describes
the temporal property (frequency), and the latter describes the
spatial property (breadth).

1) Hotness of SSTables: L2SM maintains a Hotness De-
tecting Bitmap (HotMap) to quantitatively measure the hotness
of an SSTable. HotMap is a global, in-memory data structure
consisting of multiple layers of bloom filters [10].
Bloom Filter. A bloom filter is an array of P bits, which
are initialized to 0. A set of K hash functions (e.g., Mur-
murHash [11] with K seeds) are used to determine the
corresponding K bits in the bit array. Upon an update to a
key x, the k-th hash function Hk(x) is computed and points
to a bit in the array, which is set to 1. All K bits are set in
such a way. Upon a query for a key, if all the K corresponding
bits are found set, it indicates that the key has been updated.

Note that a bloom filter may have false positive but never
have false negative. To control the false positive rate, a bloom
filter of P bits is expected to record at most N unique keys
(a.k.a. the capacity of the bloom filter) with a low false-
positive rate. The capacity N is designated when the bloom
filter is created. More details can be found in prior work [12].
Hotness Detecting Bitmap. We use multiple layers of bloom
filters to record an abstract history of key updates. As shown
in Figure 4, an M -layer HotMap is composed of M aligned
bloom filters. The i-th update to a KV item sets the corre-
sponding bits in the i-th bloom filter. Thus, a M -layer HotMap
can record up to M updates for any given KV item. We do
not further differentiate updates over M times. If m bloom
filters indicate that a KV item is updated, we can determine
that the KV item has been updated for no less than m times.
By calculating the number of positive responses by HotMap
layers, we can determine the relative hotness of a key. As
shown in the figure, the number of updates of key X1 is m
and the number of updates of key X2 is 2.
Hotness value calculation. An SSTable’s hotness is deter-
mined by its contained keys. The hotness value of an SSTable
is calculated as

∑m−1
i=1 (xi × 2i), where xi is the number of

keys in the SSTable that are indicated positive in the i-th bloom
filter (i.e., the number of keys being updated for i times).
Note that an exponential function is adopted to assign different
weights to different bloom filter layers, because we desire to
identify SSTables that contain frequently updated hot keys,
rather than many warm keys. In other words, the higher the
layer is, the more vital it is.
Configuring HotMap. The effectiveness of the HotMap is
determined by two important parameters, M and P . A critical
challenge is how to determine a proper configuration for the
two parameters, and how to retain their effectiveness and adapt

L1

L2

L3

L4

L5

L1

L2

L3

L4

L5

L1

L2

L3

L4

L5

L1'

L2'

L3'

L4'

L5*

L1'

L2'

L3'

L4'

L5*

L1'

L2'

L3'

L4'

L5*

Without

Tuning

With

Tuning

(a) (b) (c)

Fig. 5. An illustration of HotMap auto-tuning.
to the workloads during runtime.
• Configuring M . M , the number of HotMap Layers, deter-
mines how many updates we can use to differentiate hot and
cold keys. A large M means a more accurate HotMap but
also higher memory overhead. We use a simple method to set
M . For a given workload with r requests to access n unique
keys, the average number of requests being received by a key is
τ = r/n, and we use M = dr/ne to set the number of layers.
The rationale is simple—if a KV item has been updated more
frequently than the average, it is considered as a hot item, and
there is no need to further track its exact number of updates;
otherwise, it is regarded as a cold item (below average). The
τ is about 4.54 in a Skewed Zipfian distribution, and 2.32 in
a Scrambled Zipfian distribution. Thus, in our prototype, we
set M to 5 layers, which is more than sufficient.
• Configuring P . P , the bit array size, determines the
effectiveness of a bloom filter. With a small bit array size (a
small P), the bloom filter would suffer a high false-positive
rate. Let ρ represent the ratio of hot keys (being updated more
than τ times) to all the unique keys in a workload. Assume
N unique keys in total and K hash functions used in the
bloom filter, according to prior study on bloom filters [12],
the bit array size should be set as P = K×N

ln 2 . In a Skewed
Zipfian distribution, ρ is 6.5%, and 5% in Scrambled Zipfian
distribution. According to the unique keys in our workloads,
our prototype sets P to 4 million bits initially.
• Auto-tuning HotMap. As time elapses, the HotMap will
be gradually filled up, eventually losing the ability of reliably
differentiating hot and cold keys. Thus an important task is to
ensure the HotMap to be adaptive to the workloads and to be
continuously effective during runtime.

To retain a low false-positive rate, we need to expand and
update the HotMap periodically. A simple method is to keep
track of the first (top) bloom filter, which records the oldest KV
updates. If the first bloom filter is approaching to its capacity
limit (a.k.a., having received N unique keys), we retire this
(oldest) bloom filter by resetting all its bits to 0, enlarge its
capacity by 10% and rotate it to the bottom layer; the second
bloom filter, in turn, becomes the new top bloom filter. Thus,
the HotMap size can be expanded.

This simple solution has two potential problems. First, the
HotMap size may keep growing quickly. Second, adjacent
layers may receive the same number of keys, thus cannot
provide enough information for us to differentiate hot and
cold keys. To handle these two issues, we propose an Online
Adaptive Auto-tuning scheme to automatically adjust the M
bloom filter arrays.

Several scenarios would trigger the tuning scheme to adjust
the array size. As shown in Figure 5, if the first (top) bloom

filter is approaching to its capacity limit, which indicates that
the HotMap is too small to reliably serve the purpose with
a low false-positive rate, we retire this layer. When retiring
this layer, we further check its following layer. If the size of
the following layer is consumed more than 20%, we enlarge
the size of the top bloom filter by 10%, reset all its bits to
0, and rotate it to the bottom layer, as shown in Figure 5(a);
Otherwise, if the following layer is consumed less than 20%,
to save space, we directly make the size of the top bloom
filter the same as the current bottom layer, reset all its bits to
0, and rotate it to the bottom layer, as shown in Figure 5(b).
The rationale is that if the second layer does not receive many
keys, it is very likely that most keys are cold (updated only
once) and the working set is not growing, thus the current
HotMap size is sufficient.

Suppose the top bloom filter is large enough to contain
all unique writes, if the unique keys accepted by any two
adjacent layers are too close (e.g., the difference of accepted
insertions between two layers is less than 10%, and each layer
occupies more than 20% of the layer size), it means that the
two adjacent layers are similar, which happens when the set
of keys is repeatedly updated. Thus we may remove one layer
to retain the effectiveness of the HotMap. In this case, we
also retire the top filter layer by resetting and rotating it to the
bottom layer, as shown in Figure 5(c). The size of the rotated
layer equals the size of the current bottom layer.

The purpose of the above-said mechanism is to ensure
that the multiple layers of the HotMap are able to adapt to
workload changes, and also provide enough information for
us to differentiate hot and cold keys. In Section IV, we run
a set of workloads with various distributions to evaluate the
effectiveness of this scheme.
Overhead. Maintaining and updating the HotMap would in-
cur additional memory and computational cost. The memory
overhead is relatively small, with M × P bits in total. For
typical workloads, M is 5 and P is 4 million, the overhead is
roughly 2.5 MB. For different workloads, the HotMap ranges
from 2.5 million to 40 million bytes.

The hash functions also incur extra computational overhead.
Ideally, upon each key update, the HotMap should be updated,
involving K hash-function calculations. To avoid the exces-
sively high computational burden, we only update the HotMap
when the KV items are compacted from L0 to L1. This is
for two purposes. First, it avoids introducing a perceivable
delay for each in-memory update in MemTable (the critical
path). Since we only perform hash calculations when slow
compaction I/Os happens, the delay is made asynchronous
and negligible. Second, we should note that our purpose
is to roughly differentiate the relative hotness, rather than
accurately count the number of updates. Losing some accuracy
would not incur significant differences, but brings significant
speedup. Although we may miss some KV updates in memory,
this optimization is acceptable because the updates happened
in memory would not incur extra disk IOs anyway.

2) Density of SSTables: Density is another important fac-
tor affecting the tree structure. A dense SSTable has a large

number of KV items concentrated in one small range, which
potentially overlaps with fewer SSTables of the lower level,
and during the compaction, fewer SSTables would be involved
in merge sort. Thus, it is desirable to isolate sparse SSTables
in the log, leaving more dense SSTables in LSM-tree.

In L2SM, SSTables are of the same size (in most cases)
and the KV items in an SSTable are sorted. We use the ratio
of the number of KV items to the key range of an SSTable to
indicate its density as follows.

An SSTable’s key range is the difference between the first
key and the last key within the SSTable. In real workloads,
however, keys can be in different forms, such as a string of
a fixed length (e.g., 16 bytes) or a random number. Thus, we
cannot directly perform numeric subtraction between different
keys. We simplify this procedure by converting the keys into
a 128-bit binary value. For example, a string character is
converted into its ASCII value. Then, we compare the two
128-bit binary values (the first and the last keys), bit by bit,
to find the highest bit that differs in the two keys. Assuming
the highest bit that differs is the i-th bit, the key range of
this SSTable can be roughly estimated as 2i. If the SSTable
contains k KV items, its density is calculated as k/2i. To
simplify the calculation, we use the logarithm as the density
value of the SSTable, which is lg (k/2i) = lg k − i. In this
work, we also use its inversion, S = i− lg k, to describe the
sparseness of an SSTable, as an alternative way to denote its
density. For an SSTable, once it is created, its sparseness value
S can be calculated. The larger the S is, the more lower-level
SSTables would be involved in compaction.

As described above, the hotness and density (sparseness)
values quantitatively represent the potential disruptive impact
that maintaining an SSTable in LSM-tree could make. The
pseudo compaction and aggregated compaction process lever-
age the two values to determine which SSTables should be
held in the tree or isolated in the log.

D. Pseudo Compaction

At each level of the L2SM structure, Pseudo Compaction
(PC) is responsible for extracting selected SSTables from
the LSM-tree into the SST-Log. According to the property
(hotness and density) of SSTables, PC can easily identify the
“hot” and “sparse” SSTables, which would severely affect the
stability of the tree structure, and isolate them in the log area,
thus mitigating the I/O amplification effect.

In the traditional LSM-tree design, when the number of
SSTables on a tree level exceeds a limit, the compaction
process is activated to merge a number of SSTables into the
lower level. In L2SM, PC is also triggered when a tree level is
full, but the selected SSTables are moved horizontally into the
same-level log without any change, involving no merge sort
operations or any disk IOs.
Victim SSTables. To identify the best SSTables to move into
the log, we use a Combined Weight to consider both hotness
and density to quantitatively determine the SSTable’s value
of being held in SST-Log. Given an SSTable i, assume its
hotness is Hi and sparseness is Si, we use a weighted function

Wi = α×Hi+(1−α)×Si to calculate a combined value, where
α is a preset weight parameter (0.5 in default).

For hotness H , the larger the hotter; for sparseness S, the
larger the sparser. To calculate the combined weight of an
SSTable, both S and H need to be first normalized to the
same scale, 0− 1. The normalization is as follows.

When PC happens, we record the maximum hotness Hmax

and the minimum hotness Hmin of all the under-checking
SSTables. Thus, the normalized hotness of SSTable i can
be expressed as Hi

Hmax−Hmin
. Similarly, for sparseness, when

PC happens, we record the maximum sparseness Smax and
the minimum sparseness Smin of all the under-checking
SSTables. Si can be normalized as Si

Smax−Smin
. Therefore, the

combined weight Wi for an SSTable can be calculated by
Wi = α× Hi

Hmax−Hmin
+ (1− α)× Si

Smax−Smin
.

When a tree level is filled up, PC moves the SSTables to the
log, in the order of their combined weights from high to low.
The SSTable with the highest combined weight is selected
first and detached from the LSM-tree, and moved into the
log structure. Note that this only involves metadata updates
(several linked list operations) without physical data movement
on disk; merge sort operations are not needed either. SSTables
moved to the log are organized in a linked list. This process
repeats until the number of SSTables is below the limit.
Miscellaneous issues. Compared with the LSM-tree levels, a
major difference in the SST-Log is that the SSTables in one log
level are not sorted and the key ranges of different SSTables
may have overlaps. This has two effects.

First, we cannot simply use a binary search to only access
one SSTable to search for a target key. We need to search
all the SSTables whose key ranges covering the target key,
involving multiple disk IOs. To accelerate the query process,
we maintain in-memory bloom filters for SSTables in the log.
Upon a query, we first find SSTables having the related key
ranges. Then we use the bloom filter to quickly locate the
SSTables that may contain the target key, and finally perform
the in-SSTable lookup.

Second, we may have multiple versions of the same KV
item at one level. Since the SSTables in the log also maintain
the related metadata that can indicate their freshness, L2SM
always begins the search from the newest SSTable that possi-
bly contains the target key. Once the target key is found, we
stop the search process and return the item without further
searching in the other SSTables. This minimizes the involved
I/Os and also guarantees the correctness.

E. Aggregated Compaction

Aggregated Compaction (AC) is responsible for reclaiming
the log space. It attempts to retain the most structure-impactful
SSTables in the log, and return the cold and dense SSTables
back to the lower level of the tree. When AC happens, we
need to particularly consider the following issues.
• Maintaining the query correctness. A key may have multiple
versions of value data existing in the log. It is desirable
to accumulate and collapse these multiple versions into one
before merging into the lower level. However, this process may

2

1 3

14

19 29

6

5 12

8

10 20

29

11 30

23

33 35

2

1 3

14

19 29

6

5 12

8

10 20

29

11 30

23

33 35

Logi-1

6
5 12

8
10 20

14
19 29

29
11 30

Step 3

Step 1

Step 2 Logi-1

Logi-1

Treei

Treei

Fig. 6. An example for aggregated compaction.
not be able to be completed at one time (in order to avoid the
high overhead). Thus, we must ensure that the same-key data
are evicted/merged in a strict chronological order. In other
words, the lower-level tree should never contain data newer
than the upper-level log.
• Considering both density and hotness. AC needs to consider
both hotness and density of an SSTable to determine whether
to continue holding it in the log or not. An extremely sparse
or extremely hot SSTable should continue to remain in the
log. We need to have a balanced way to integrate both
considerations when choosing SSTables for eviction.
• Controlling the involved I/Os. When merging an SSTable
from the log back to the tree, multiple SSTables in the lower-
level tree could be involved (due to the spanning structure). A
sparse SSTable may incur a merge sort operation involving a
large number of SSTables. To control the cost of such I/Os, we
need to estimate the number of involved SSTables and ensure
the incurred I/Os under a reasonable level.
• Removing deleted and obsolete data. Deleted and obsolete
data could also appear in the log. Such data should be removed
during AC, rather than drained down to the lower level, thus
mitigating the unnecessary I/Os at an early stage.
Compaction process. When the log exceeds its size limit,
AC is triggered to return the cold and dense SSTables back
to the tree, while keeping the hot and sparse SSTables in the
log. To determine the SSTables for eviction, we calculate the
combined weight of hotness and density W of all the SSTables
in the log (see Section III-D).

The whole process is as follows: (1) Find the coldest-densest
“seed” SSTable that has the smallest W and use this “seed”
to recursively find all the SSTables in the log that have key
range overlapping with it. Sort all the SSTables based on their
version order. (2) Based on the SSTables from Step 1, starting
from the oldest SSTable, put it into the victim Compaction
Set (CS), find the lower-level SSTables in the tree that have
overlapping key ranges with SSTables in CS and put them
into the victim Involved Set (IS). (3) Repeat Step 2 until all
the SSTables found in Step 1 are placed in the CS or the
ratio of SSTables in the IS and CS is larger than a predefined
value (configured as an empirical value 10 to control IO
amplification caused by AC). (4) Finally, start real merge sort.
Starting from the oldest one first, collapse the SSTables and
remove all deleted and obsolete KV items. Then the keys are
merged with the overlapping SSTables on the lower tree level,
and finally we insert the generated new SSTables into the lower
tree level, which completes the AC process.

Figure 6 provides an example to illustrate how AC works.
The number in a block indicates its chronological order (the

smaller the older). Suppose there are six SSTables in log
and SSTable 8 with key range “10-20” is the coldest-densest
seed. There are three SSTables (6, 14, and 29) overlapping
with it. According to the working process of AC, the victim
CS includes three SSTables (14, 6, and 8) in the first batch.
Although 29 also overlaps with the seed, it is set aside first,
since it exceeds the IO limit. Finally, the three SSTables (6, 8,
and 14) are compacted with the SSTables that have key range
overlaps in the lower tree level.

The aforementioned design brings several benefits. First, we
can control the involved SSTables in each compaction process,
avoiding the high I/O impact. Second, the old-version data
are always drained downstream to the next level before the
new version, which guarantees the correctness. Third, multiple
overlapping SSTables in the log are merged first. The deleted
and obsolete data are removed first, which reduces the amount
of KVs before merging with the lower-level SSTables. Finally,
both hot and sparse SSTables are safely maintained in the log,
ensuring the efficacy of the log structure.

IV. PERFORMANCE EVALUATION

In this section, we first introduce our L2SM prototype
system and then present and analyze the experimental results.

A. Experimental Setup

We have prototyped L2SM based on Google’s LevelDB [1]
by adding about 2,000 lines of code. The added code is
mainly in db_impl.cc and version_set.cc, which are
for compaction management and version control, respectively.

To improve the read performance, L2SM maintains addi-
tional bloom filters in memory. The original LevelDB main-
tains a bloom filter on disk for each SSTable, which is loaded
into memory when needed. For a fair comparison, in this
work, we implemented a version of LevelDB that also uses
in-memory bloom filters. We denote the stock LevelDB as
“OriLevelDB”, and the enhanced LevelDB as “LevelDB”.
For each implementation, we configure the SSTable size to
5 MB. The capacity growth factor of adjacent levels is 10.
Other parameters are configured using the default values of
the original LevelDB.

Our experiments are conducted on a workstation, which
features an Intel i7-8700 3.2GHz processor, 32GB memory,
and a 500GB SSD. For the software, we use Ubuntu 18.04 LTS
with Linux Kernel 4.15 and Ext4 file system. For the bench-
mark, we have extended the standard db_bench tool with
the Yahoo! Cloud Serving Benchmark (YCSB) suite [13], in
which the workload generator is wrapped as a class named
generator. Workloads with three different types of dis-
tributions, namely Skewed Latest Zipfian, Scrambled Zipfian,
and Random, are tested for the evaluation. Each distribution
provides a set of workloads with different combinations of KV
operations. These distributions can be accessed through API
functions, sk_zip, scr_zip and normal_ran.

B. Overall Performance

We first compare the overall performance of the proposed
L2SM and LevelDB in terms of throughput (Thousand Opera-
tions per Second, a.k.a. KOPS) and average latency. In this set
of experiments, we first randomly load 50 million KV items
and then issue 50 million mixed KV read/write requests with
different distributions to the KV store. The size of KV items
varies from 256B to 1KB.

Figure 7(a) presents the evaluation results of workloads with
the Skewed Latest Zipfian distribution. The horizontal axis
represents the Read:Write ratios (from 0:1 to 9:1) of each
workload. The left and right vertical axes show the throughput
and latency, respectively.

As shown, L2SM outperforms LevelDB in both throughput
and latency across the board. When the Read:Write ratio is
0:1 (write-only), L2SM achieves a throughput of 29.3 KOPS,
which is 67.4% higher than that of LevelDB (17.5 KOPS). The
throughput gain is mainly due to the collaboration of the pro-
posed PC and the AC. During the working process, PC selects
KV items that seriously pollute the LSM-tree and AC moves
others to the lower tree level. Thus, the maintenance overhead
is significantly mitigated. With the increment of read requests,
the performance gain of L2SM over LevelDB decreases. In
particular, when the Read:Write ratio of the workloads are 1:9,
3:7, 5:5, 7:3 and 9:1, the relative performance improvement
decreases to 59.5%, 41%, 32.5%, 28.4% and 8.7%, respec-
tively. This is as expected, since the optimization strategies
mainly focus on writing process. Actually, for read operations,
in addition to searching the LSM-tree, L2SM also needs to
search the SST-Log. This extra search process would introduce
overhead as analyzed later in Section IV-D. Meanwhile, we
should note that L2SM still maintains a higher throughput
than LevelDB even for very read-intensive workloads. This
also indicates the effectiveness of our proposed optimizations
like the in-memory bloom filters.

The average latencies of L2SM and LevelDB with different
workloads show a similar trend. When there are only write
requests in the workload (Read:Write ratio is 0:1), the average
request latency of L2SM is 34.11 µs, which is 40.1% lower
than that of LevelDB. As the ratio of read request increases,
the relative latency improvement decreases. For the workloads
with Read:Write ratio being 1:9, 3:7, 5:5, 7:3, and 9:1, the
latency improvements of L2SM over LevelDB are 37.3%,
29.1%, 24.6%, 22.1%, and 8%, respectively.

We further evaluate L2SM with the workloads of the
Scrambled Zipfian and the Random distributions. The results
are shown in Figures 7(b) and (c).The similar trend can
be observed. L2SM achieves higher improvement for both
throughput and latency with write-intensive workloads. For
workloads of the Scrambled Zipfian distribution, the highest
performance gain of L2SM over LevelDB are 46.3% and
31.3% for throughput and latency, respectively. For workloads
of the Random distribution, the highest performance gains of
L2SM over LevelDB are 29.6% and 22.9% for throughput and
latency, respectively. Note that the performance improvement

2
9

.3
1

3
4

.7
1

3
9

.4
4

4
9

.6
8

8
6

.9
0 1
8

2
.8

7

34.11
28.81 25.35

20.13
11.51

5.47

0 : 1 1 : 9 3 : 7 5 : 5 7 : 3 9 : 1
0

50

200

250
T

h
ro

u
g
h

p
u

t
(K

O
P

S
)

 LevelDB

 L2SM

0

50

(a) Skewed Latest Zipfian (b) Scrambled Zipfian (c) Random

1
9

.8
9

2
2

.6
2

2
8

.2
9 3
8

.1
0

6
0

.4
2 1
0

0
.7

3

50.28
44.21

35.35
26.25

16.55

9.93

0 : 1 1 : 9 3 : 7 5 : 5 7 : 3 9 : 1
0

20

40

100

120

140

160

 LevelDB

 L2SM

0

50

1
1

.3
9

1
1

.5
0

1
3

.7
5

1
5

.3
9 2

1
.3

0 3
4

.2
9

87.81

86.96
72.73

64.99

46.94
29.16

0 : 1 1 : 9 3 : 7 5 : 5 7 : 3 9 : 1
0

10

20

40

50

60
 LevelDB

 L2SM

0

50

100

L
a
te

n
cy

 (
u

s)

Read : Write Ratio Read : Write Ratio Read : Write Ratio

Fig. 7. Throughput and latency for workloads with different Read:Write ratios.

(a) Skewed Latest Zipfian

0

30k

60k

90k

C
o
m

p
a
ct

io
n

 F
il

es

 LevelDB L2SM

0

5k

10k

4.05 3.65 3.03 1.91 1.13

46.6
39.3 34.3

27.1
17.3 10.1

Read : Write Ratio

5.52

3
.1

6

3
.1

3

3
.1

3
.0

4

3
.2

9

3
.4

6

131.43 99.13 82.6 58.75 37.2

22.24

0 : 1 1 : 9 3 : 7 5 : 5 7 : 3 9 : 1
0

2

4

6

8

W
ri

te
 A

m
p

li
fi

ca
ti

o
n

0

150

0

30k

60k

90k

120k

150k

 LevelDB L2SM

0

5k

10k

7.93 6.67 5.26
3.79 2.74 1.8

62.8 57.7
45.1

31.1 24.9
15.2

3
.1

2

3
.1

8

3
.2

3
.2

2

3
.6

3 4
.3

9

192.3 168.99
124.58 99.7

56.64

39.62

0 : 1 1 : 9 3 : 7 5 : 5 7 : 3 9 : 1
0

2

4

6

8

0

200

(b) Scrambled Zipfian
Read : Write Ratio

0

50k

100k

150k

200k

 LevelDB L2SM

0

10k

20k

N
u

m
.
o
f

co
m

p
a

ct
io

n

13.27
9.58 7.52 5.63

2.81

57.1
38.5 30.4

74.2

113.2

11.75

103.1

(c) Random
Read : Write Ratio

3
.3

7

3
.4

5

3
.3

6

3
.4

3

3
.9

3

4
.6

5

318 306.83
245.47

172.33
97.3

65.29

0 : 1 1 : 9 3 : 7 5 : 5 7 : 3 9 : 1
0

2

4

6

8

10

0

300

T
o
ta

l
W

ri
te

 (
G

B
)

Fig. 8. Occurrences of compaction, involved files, write amplification and total writes for workloads with different Read:Write ratios.

(a) Skewed Latest Zipfian (b) Scrambled Zipfian (c) Random
Requests

12.34
11.39 11.87 11.46

10.35

81.04
87.81 84.25 87.26

96.57

40M 50M 60M 70M 80M
0

5

10

15

20

25 LevelDB L2SM

0

50

100

L
a

te
n

c
y

 (
u

s)

27.90 29.31 28.13 27.64 26.55

35.84 34.11 35.54 36.17 37.67

40M 50M 60M 70M 80M
0

15

30

45

T
h

r
o

u
g

h
p

u
t

(K
O

P
S

) LevelDB L2SM

0

50

100

20.65 19.89 20.49
22.33

20.64

48.61 49.36 49.74 45.18 47.77

40M 50M 60M 70M 80M
0

10

20

30

 LevelDB L2SM

0

50

100

Requests Requests
Time (Sec)

S
to

r
a

g
e
 U

s
a
g
e
 (

G
B

)

40

40

Time (Sec)

S
to

r
a

g
e
 U

s
a
g
e
 (

G
B

)

40

40
Scrambled Zipfian Workload

Random Workload

Fig. 9. Performance for workloads with different numbers of requests. Fig. 10. Storage usage overhead.

is the lowest for the workloads with the Random distribution.
This is because the Random distribution workloads have the
weakest access locality and receive the least benefits.

C. Compaction Effect

The write amplifications (WAs) of these two platforms
under different workloads are shown in Figure 8. We can
observe that for different workloads, the WAs of LevelDB
range from 3.19 to 5.18. However, the WAs of the proposed
L2SM design is much lower, ranging from 3.04 to 4.65. For
the write-only workload (the Read:Write ratio is 0:1) of the
Skewed Latest distribution, L2SM achieves the highest WA
improvement, which is 27.8%. With a read-intensive workload
(the Read:Write ratio is 9:1) of the Random distribution, L2SM
has the lowest WA improvement, which is 17.8%. Based on
the result, we can conclude that the proposed L2SM design
effectively reduces the KV store maintenance overhead.

Figure 8 also gives the occurrences of compaction and
involved files of L2SM and LevelDB with different workloads.
In L2SM, by isolating those update-intensive and sparse items
in the SST-Log, the occurrences of compaction are reduced
remarkably. With the write-only workload (Read:Write = 0:1)

of the Skewed Latest Zipfian distribution, L2SM triggers 5,523
compactions, which is 45.4% lower than that of LevelDB.
The SSTables involved in these compaction operations also
decrease from 79,382 to 46,654, which is 41.2% lower.
When the ratio of read requests increases to 90%, L2SM can
still reduce the occurrences of compaction and the involved
SSTables by 25.6% and 17.6%, respectively. For the mixed
workloads of the Scrambled Zipfian distribution, L2SM also
reduces the occurrences of compaction by 16.8%–42.1%, and
the number of involved SSTables by 17.9%–37.5%, compared
with LevelDB. Even for the Random workload, which carries
fewer hot keys with a weak locality, L2SM still reduces
the number of compaction operations by 16.7%–39.4%, and
involved SSTables by 18.2%–25.8%, compared to LevelDB.

We further measure the total number of disk IOs of the two
designs with different workloads. For the write-only workload,
the size of the incoming KV items is about 25 GB. For
the workloads of the Random distribution, the total disk IO
amount of LevelDB is nearly 398 GB, which is 16.76 times
larger than the original input. For L2SM, in contrast, the total
disk IO amount is about 318 GB, which is 20.1% lower than
that of LevelDB. The workloads of the Random distribution

(a) Read performance and memory usage (b) Range query performance

7460

3140.7

4744.8

7240.7

LevelD
B

L2SM
_0

L2SM
_1

L2SM
_2

0

4k

8k

12k

T
h

ro
u

g
h

p
u

t
(K

O
P

S
)

 Throughput

 CPU usage

73%-102%

82%-110%

125%-146%

106%-243%

C
P

U
 u

sa
g
e

(%
)

125.89
100.10

73.51

7.94 9.99
13.60

278.90 313.50

493.01

0

40

80

120

160

T
h

ro
u

g
h

p
u

t

(K
O

P
S

)

 L2SM LevelDB OriLevelDB

0

10

20

30

L
a
te

n
cy

(u
s)

SkewedZipf ScrambleZipf Random
0

200

400

600

M
em

o
ry

 U
sa

g
e

 (
M

B
)

Fig. 11. Lookup and Scan performance.
suffer the highest total disk IO. This is because the random
requests have weak data locality, which would incur higher
maintenance overhead and achieve less benefit. Meanwhile,
L2SM still reduces the most total disk IO amount with the
workload of the Skewed Latest Zipfian distribution, which is
40.2% lower than that of LevelDB (219.8GB).

D. Read Limitation

Read. Figure 11(a) depicts the read performance and the
relevant memory usage of different workloads between Lev-
elDB and L2SM. Specifically, L2SM provides roughly the
same throughput and latency as LevelDB. The throughput of
L2SM is inferior to LevelDB by 0.55%–2.82%. The same
situation occurs in latency, where L2SM is 0.65%–3.40%
slower than LevelDB. As for memory usage, L2SM needs
7.5% to 11.3% more memory space than LevelDB to maintain
the bloom filters for SSTables in the log. Compared with the
“OriLevelDB” (with on-disk bloom filters), both L2SM and
LevelDB show great enhancement on latency and throughput
ranging from 44.5%–54.9% and 86.2%–128.3%, respectively.
The cost is that more memory space is needed to maintain
their bloom filters (61%–123%, compared to OriLevelDB).

Range Query. To evaluate the performance of range query,
we use the YCSB benchmark to first issue 50 million KV pairs
to populate the database, and then perform 10 million range
query requests. The size of these KV pairs varies from 256B
to 1KB. The results are shown in Figure 11(b). L2SM BL
denotes the results of L2SM without any optimization for
range queries; L2SM O denotes the design that organizes the
SSTables in each SST-Log in an ordered manner; L2SM OP
denotes the design that also uses the parallelized search
method to perform range queries with two threads. As shown,
compared with LevelDB, L2SM without any optimization
suffers 57.9% throughput reduction for range queries. Orga-
nizing the SSTable in a sorted manner accelerates the pro-
cess, which alleviates the performance degradation to 36.4%,
compared with LevelDB. Parallelizing the search operations
further improves the throughput and almost completely hides
the performance loss (only 2.9%). Since more threads are
involved, the CPU consumption of L2SM OP is higher than
the stock L2SM.

E. Scalability

To evaluate the scalability of L2SM, we measure the L2SM
performance with an increasing number of requests. Same

as the above experiments, 50 million KV items are loaded
into L2SM first. Figure 9 shows the performance in terms
of throughput and latency. When the number of requests
increases from 40 million to 80 million, L2SM shows no
obvious performance degradation compared with LevelDB.
The relative throughput improvement over LevelDB is retained
at 60.4%–65.2% for the Skewed Latest Zipfian, 47.4%–50.1%
for the Scrambled Zipfian, and 24.2%–29.1% for the Random
distribution. The latency also shows a stable improvement,
37.5%—39.1% for the Skewed Latest Zipfian, 31.5%–33%
for the Scrambled Zipfian, and 20.2%–22.2% for the Random
distributions. As for total I/O amount, L2SM saves disk IO
at the rate of 41.1%–43% for the Skewed Latest Zipfian,
30%–32.1% for the Scrambled Zipfian, and 21.8%–24.1% in
the Random. These results show that L2SM scales well for
handling a large amount of KV requests.

F. Comparison with RocksDB and PebblesDB

We further compare the performance of L2SM with two
representative, the state-of-the-art LSM-tree based KV stores,
RocksDB [2] and PebblesDB [14]. When comparing with
PebblesDB, we increase the log-to-tree ratio from 10% to 50%.
Note that the space overhead of PebblesDB over LevelDB is
about 200%. The other parameters of L2SM are the same as in
Section IV-A. We use the workloads described in Section IV-B
to evaluate the performance of the three KV stores.

Figure 12 shows the system latency, throughput, total write,
and disk usage comparisons of L2SM with RocksDB and
PebblesDB under workloads with the Skewed Zipfian, Scram-
bled Zipfian, Random, and Uniform distributions. As shown,
L2SM outperforms RocksDB across the board. For latency,
the improvement of L2SM over RocksDB ranges from 34.9%
to 61.1%; for throughput, the improvement is 55.6%−159.5%;
for disk IO, L2SM reduces disk writes by up to 69.8%.

Similar trends can be observed when comparing L2SM
with PebblesDB. Although L2SM uses much less extra disk
space, L2SM outperforms PebblesDB in all the workloads
except the Uniform distribution. With the Skewed Zipfian
workload, L2SM receives the highest performance gain, 17.9%
and 14.4% in terms of throughput and latency, respectively.
With the Random workload, L2SM outperforms PebblesDB
by 9.9% and 7.3% for throughput and latency, respectively.
The overall disk IO saving of L2SM over PebblesDB ranges
from 15% to 26.5% in the three workloads.

We have also evaluated the tail latencies for the Skewed
Zipfian workload running with the three KV stores. L2SM’s
99th percentile tail latency is 0.03% and 0.18% lower than
PebblesDB and RocksDB, respectively, which means that
L2SM’s tail latency remains at a low level with substantially
improved throughput.

Our test with the Uniform distribution simulates an append-
mostly workload, which has more than 60% of KVs never
being updated and 30% being updated only once in a uniform,
random manner. Even for such a challenging workload, L2SM
incurs minimal overhead. L2SM shows only 1.4%, 2.5%, and
1.7% performance loss in terms of throughput, latency, and

2
2
.7 3
0
.0

8

3
9
.4

9 5
3
.6

7

44.45

33.98

25.32
18.83

0

30

60

90
L

a
te

n
cy

 (
u

s)

 L2SM PebblesDB RocksDB

Skewed Zipf Scrambled

Zipf

Normal

Random

Uniform
0

20

40

T
h

ro
u

g
h

p
u

t
(K

O
P

S
)

9
4
.5

1

1
2
4
.7 1
8
5
.4

7

2
6
1
.0

3

1
7
.9

8

1
9
.1

4

2
5
.2 3

1
.9

8

0

100

200

300

400

T
o

ta
l

W
ri

te
 (

G
B

)

 L2SM PebblesDB RocksDB

Skewed Zipf Scrambled Zipf Normal Random Uniform
0

10

20

30

40

D
is

k
 S

iz
e

(G
B

)

Scambled Zipf Random Scambled Zipf Random

(b) Compaction effect comparison(a) General performance comparison

Fig. 12. Performance and I/O comparison with PebblesDB and RocksDB.
disk IO, respectively, compared to PebblesDB. Compared to
RocksDB, L2SM outperforms it in all workloads.

In terms of disk space consumption, both L2SM and Peb-
blesDB need extra space to maintain the SST-Log structure and
the Fragmented-LSM-tree structure, respectively. As shown
in Figure 12(b), compared to PebblesDB, L2SM saves up
to 26.3% disk space. Compared to RocksDB, PebblesDB
consumes 50.2% to 74.3% more disk space, while L2SM
needs only 28.4% to 48.7% extra space.

G. Overhead Analysis

Storage overhead. For storage space, the log at each level
of L2SM structure demands more disk space. As described in
Section III-B, when determining the log size of each layer, we
have a preset space threshold of SST-Log, which is less than
10% of the original LSM-tree. Thus, the extra storage space
is less than 10%. We have run different workloads with the
Random and Zipfian distributions and recorded the occupied
storage of LevelDB and L2SM. Figure 10 shows the storage
status of these implementations along the execution process.
As expected, for both workloads, the storage requirement of
L2SM is larger than LevelDB. For workload of the Scrambled
Zipfian distribution, the storage space overhead of L2SM
ranges from 4.3% to 9.2%. For the Random distribution, the
storage space overhead ranges from 4.2% to 8.7%.

Memory overhead. The memory overhead of L2SM is
mainly due to the in-memory bloom filters for SSTables and
the HotMap. L2SM maintains in-memory bloom filters to
improve read performance. Figure 11(a) provides the memory
consumption of these three implementations under different
workloads. As shown in the figure, the original LSM-tree
(OriLevelDB) requires the least memory, and L2SM requires
slightly more memory than LevelDB. Under different work-
loads, the memory overhead ranges from 3.2% to 11.3%,
compared to LevelDB. The overhead mainly comes from the
bloom filters for SSTables in the log and the in-memory
HotMap maintained by L2SM.

V. RELATED WORK

In recent years, many optimizations for LSM-tree based key
value stores have been proposed [14]–[21].

Handling write amplification. PebblesDB [14] builds a
key-value store using a fragmented log-structured merge tree
to combine the design ideas from skip lists and LSM-tree.
It relaxes the requirement of maintaining non-overlapping
key ranges at each level and introduces guards to avoid
rewriting data in the same level, which reduces compaction

cost. However, the coarse-grained data structure of PebblesDB
incurs severe storage space overhead as evaluated in the
experiments. LWC-store [15] uses a partitioning method to
vertically group entries and defines lightweight compaction
by only merging metadata to decrease write amplification.
LSM-trie [16] conducts an LSM-based and prefix-style hash
index for managing massive small key-value pairs. It proposes
a partitioned tiering method to reduce write amplification.
dCompaction [17] defines virtual SSTable and virtual merge
to delay the required compaction for lowering the overall
compaction overhead. Unlike these schemes, L2SM tries to
retain the tree structure and only uses a small SST-Log as an
extension to store selected KV items.

Key & Value separation. WiscKey [22] reduces com-
paction IOs by separating the keys from the values and only
manages the keys and metadata in the LSM-tree, through
which the cost of write operations can be greatly decreased.
Based on that, HashKV [23] further optimizes the value
management using a hash-based structure to improve the read
performance. These KV separation-based schemes could bring
heavy garbage collection burden and the space efficiency may
also be influenced by the value space management.

Hot & Cold separation. TRIAD [24] allows cold entries
to enter the LSM-tree by holding hot entries in memory.
However, the small Memtable size refrains the scope of
hotness detection and its efficacy. Anti-caching [25] maintains
an in-memory LRU chain to separate hot and cold records.
Hot records are added to the tail of the chain and cold
records are evicted to disks. Siberia [26] logs the access
timestamps of all records and analyzes the log offline to
predict the hot records. Then hot data is kept in memory
and cold data is moved to disk. Funke et al. [27] proposes
a hardware-assisted monitoring component, which uses the
CPU’s Memory-Management Unit to separate hot and cold
tuples in HyPer. Cold tuples are further compressed and
stored in virtual memory pages. These hot/cold data separation
techniques work on individual data records and are used for
the purpose of improving read/write performance. In contrast,
L2SM uses a mechanism, called HotMap, to separate hot and
cold SSTables and aims to minimize I/O amplification.

Performance optimization. Many prior optimization so-
lutions [28]–[31] aim to directly enhance the performance
of LSM-tree based data stores. Monkey [30] identifies the
important tuning knobs and environmental parameters that
determine the worst-case performance and further models the
worst-case lookup and update costs. Its goal is to provide
maximum throughput under uniformly random workloads, and
for other workloads, it tries to achieve maximum lower-bound
throughput. L2SM, in comparison, aims to solve the write
amplification issues caused by the structural problem rooted
in the LSM-tree itself. By delaying the deletion of invalid
data components, LSbM-tree [32] improves the hit ratio of
LSM-tree data in the OS page cache. ElasticBF [33] adopts a
dynamic bloom filter adjustment policy to tune the false pos-
itive rate based on the hotness and access frequency of keys.
VT-Tree [34] modifies the merge operation using a stitching

method to avoid page rewriting caused by independent seg-
ments whose range is not overlapped with other segments.
NoveLSM [35] is a customized implementation of LSM-
trees on NVM. Its write operations achieve a steady speed
using NVM-based memory. LOCS [36] optimizes LSM-tree
performance for SSDs through Open-Channel SSDs. SSTables
in LOCS can be accessed in parallel by rearranging SSTables
with different ranges into different channels. Unlike these prior
works, L2SM aims to maintain the stability of the LSM-tree
structure by identifying and isolating the KV items that disrupt
the tree structure in a separate log structure. Many techniques
mentioned above are orthogonal to our work and they can
complement each other in optimizing LSM-tree based key-
value stores.

VI. CONCLUSION

In this paper, we present a novel LSM-tree based structure,
called L2SM, to address the I/O amplification problem. L2SM
achieves its design goal by introducing a special SST-Log
structure to isolate hot and sparse SSTables from the LSM-
tree, a Pseudo Compaction and an Aggregated Compaction
process to absorb high-cost updates in the log. We have built
a prototype based on LevelDB. Our experimental results show
that L2SM can achieve significant improvement.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive
comments and feedback. The work described in this pa-
per is partially supported by the grants from the National
Science Foundation for Young Scientists of China (Grant
No.61902218), and the Research Grants Council of the Hong
Kong Special Administrative Region, China (GRF 15273616,
GRF 15206617, GRF 15224918).

REFERENCES

[1] LevelDB. https://github.com/google/leveldb.
[2] RocksDB. https://github.com/facebook/rocksdb.
[3] Cassandra. https://github.com/apache/cassandra.
[4] HBase. https://github.com/apache/hbase.
[5] MongoDB. https://github.com/mongodb/mongo.
[6] C. Luo and M. J. Carey, “Efficient Data Ingestion and Query Processing

for LSM-Based Storage Systems,” Proceedings of the VLDB Endow-
ment, vol. 12, no. 5, pp. 531–543, 2019.

[7] S. Alsubaiee, A. Behm, V. R. Borkar, Z. Heilbron, Y. Kim, M. J.
Carey, M. Dreseler, and C. Li, “Storage Management in AsterixDB,”
Proceedings of the VLDB Endowment, vol. 7, no. 10, pp. 841–852, 2014.

[8] L2SM Store. https://github.com/ericaloha/L2SM.
[9] A. Petrov, “Database Internals: A Deep Dive into How Distributed Data

Systems Work,” O’Reilly Media, Inc, 2019.
[10] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable

Errors,” Communications of the ACM (CACM), vol. 13, no. 7, pp. 422–
426, 1970.

[11] MurmurHash. https://sites.google.com/site/murmurhash/.
[12] A. Z. Broder and M. Mitzenmacher, “Network Applications of Bloom

Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2003.

[13] YCSB. https://github.com/brianfrankcooper/YCSB.
[14] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham, “PebblesDB:

Building Key-Value Stores using Fragmented Log-Structured Merge
Trees,” in ACM Symposium on Operating Systems Principles (SOSP),
2017.

[15] T. Yao, J. Wan, P. Huang, X. He, Q. Gui, F. Wu, and C. Xie, “A Light-
weight Compaction Tree to Reduce I/O Amplification toward Efficient
Key-Value Stores,” in IEEE Mass Storage Systems and Technologies
(MSST), 2017.

[16] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “LSM-trie: An LSM-tree-based
Ultra-Large Key-Value Store for Small Data Items,” in USENIX Annual
Technical Conference (ATC), 2015.

[17] F. Pan, Y. Yue, and J. Xiong, “dCompaction: Speeding up Compaction of
the LSM-Tree via Delayed Compaction,” Journal of Computer Science
and Technology (JCST), vol. 32, no. 1, pp. 41–54, 2017.

[18] F. Mei, Q. Cao, H. Jiang, and J. Li, “SifrDB: A Unified Solution
for Write-Optimized Key-Value Stores in Large Datacenter,” in ACM
Symposium on Cloud Computing (SoCC), 2018.

[19] A. Papagiannis, G. Saloustros, P. González-Férez, and A. Bilas, “An
Efficient Memory-Mapped Key-Value Store for Flash Storage,” in ACM
Symposium on Cloud Computing (SoCC), 2018.

[20] L. Wu, W. Lin, X. Xiao, and Y. Xu, “LSII: An Indexing Structure
for Exact Real-time Search on Microblogs,” in IEEE International
Conference on Data Engineering (ICDE), 2013.

[21] O. Balmau, R. Guerraoui, V. Trigonakis, and I. Zablotchi, “FloDB:
Unlocking Memory in Persistent Key-Value Stores,” in ACM European
Conference on Computer Systems (EuroSys), 2017.

[22] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“WiscKey: Separating Keys from Values in SSD-conscious Storage,” in
USENIX Conference on File and Storage Technologies (FAST), 2016.

[23] H. H. W. Chan, Y. Li, P. P. C. Lee, and Y. Xu, “HashKV: Enabling
Efficient Updates in KV Storage via Hashing,” in USENIX Annual
Technical Conference (ATC), 2018.

[24] O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan,
A. Arora, K. Gupta, and P. Konka, “TRIAD: Creating Synergies Between
Memory, Disk and Log in Log Structured Key-Value Stores,” in USENIX
Annual Technical Conference (ATC), 2017.

[25] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. B. Zdonik,
“Anti-Caching: A New Approach to Database Management System
Architecture,” Proceedings of the VLDB Endowment, vol. 6, no. 14,
pp. 1942–1953, 2013.

[26] J. J. Levandoski, P. Larson, and R. Stoica, “Identifying Hot and Cold
Data in Main-Memory Databases,” in IEEE International Conference on
Data Engineering (ICDE), 2013.

[27] F. Funke, A. Kemper, and T. Neumann, “Compacting Transactional
Data in Hybrid OLTP & OLAP Databases,” Proceedings of the VLDB
Endowment, vol. 5, no. 11, pp. 1424–1435, 2012.

[28] F. Mei, Q. Cao, H. Jiang, and L. Tian, “LSM-Tree Managed Storage for
Large-Scale Key-Value Store,” in ACM Symposium on Cloud Computing
(SoCC), 2017.

[29] H. Lim, D. G. Andersen, and M. Kaminsky, “Towards Accurate and
Fast Evaluation of Multi-Stage Log-structured Designs,” in USENIX
Conference on File and Storage Technologies (FAST), 2016.

[30] N. Dayan, M. Athanassoulis, and S. Idreos, “Monkey: Optimal Navi-
gable Key-Value Store,” in ACM Conference on Management of Data
(SIGMOD), 2017.

[31] K. Ren, Q. Zheng, J. Arulraj, and G. Gibson, “SlimDB: A Space-
Efficient Key-Value Storage Engine For Semi-Sorted Data,” Proceedings
of the VLDB Endowment, vol. 10, no. 13, pp. 2037–2048, 2017.

[32] D. Teng, L. Guo, R. Lee, F. Chen, S. Ma, Y. Zhang, and X. Zhang,
“LSbM-tree: Re-Enabling Buffer Caching in Data Management for
Mixed Reads and Writes,” in IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), 2017.

[33] Y. Li, C. Tian, F. Guo, C. Li, and Y. Xu, “ElasticBF: Elastic Bloom Filter
with Hotness Awareness for Boosting Read Performance in Large Key-
Value Stores,” in USENIX Annual Technical Conference (ATC), 2019.

[34] P. Shetty, R. P. Spillane, R. Malpani, B. Andrews, J. Seyster, and
E. Zadok, “Building Workload-Independent Storage With VT-trees,” in
USENIX Conference on File and Storage Technologies (FAST), 2013.

[35] S. Kannan, N. Bhat, A. Gavrilovska, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Redesigning LSMs for Nonvolatile Memory with
NoveLSM,” in USENIX Annual Technical Conference (ATC), 2018.

[36] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong,
“An Efficient Design and Implementation of LSM-tree based Key-
Value Store on Open-Channel SSD,” in ACM European Conference on
Computer Systems (EuroSys), 2014.

