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Abstract—Bitcoin is the world’s first blockchain-based, peer-to-
peer cryptocurrency system. Being tremendously successful, the
Bitcoin system is designed to support reliable, secure, and trusted
transactions between untrusted peers. Since its release in 2009,
the Bitcoin system has rapidly grown to an unprecedentedly large
scale. However, the real-world behaviors of miners and users in
the system and the efficacy of the original Bitcoin system design
in the field deployment still remain unclear, hindering us from
understanding its internals and developing the next-generation
cryptocurrency system.

In this paper, we study the behaviors of Bitcoin miners and
users and their interactions based on quantitative analysis of more
than nine years of Bitcoin transaction history, from its first release
on January 3rd, 2009 to April 30th, 2018. We have analyzed
over 300 million transaction records to study the transactions’
processing, confirmation, and implementation. We have obtained
several critical findings regarding how the miners and users
exploit the high degree of freedom provided by the Bitcoin
system to achieve their own interests. For example, we find that
miners often attempt to maximize their profits even by sacrificing
system performance; users could try to speed up the transaction
processing by mistakenly trading off security for reduced latency.
Such unexpected behaviors, to some degree, deviate from the
original design purposes of the Bitcoin system and could bring
undesirable consequences. Besides revealing several unexpected
behaviors of the Bitcoin miners and users in the real world, we
have also discussed the associated system implications as well as
optimization opportunities in the future.

I. INTRODUCTION

Bitcoin is the world’s first blockchain-based, peer-to-peer
cryptocurrency system [1]. Since its first release in 2009, the
acceptance of Bitcoin has been dramatically expanding from
a niche community to the general public worldwide. In the
recent years, its peak market capitalization has surpassed $100
billion [2].

Unlike conventional financial systems, which rely on a
trusted third party for financial endorsement and system man-
agement, the Bitcoin system is a peer-to-peer electronic cash
system maintained and used by participants, who play two main
roles—Miners run the nodes that form the Bitcoin network and
work collaboratively to process transactions, which are written
into a publicly shared database, called blockchain; Users submit
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and finalize transactions to make payments. Being designed
to support reliable, secure, and trusted transactions between
untrusted peers, the Bitcoin system provides a high degree
of freedom for the participants, allowing them to prioritize
transaction processing, customize transaction implementation,
determine transaction confirmation, etc. In other words, ex-
cept following several basic system protocols and rules, the
participants in the Bitcoin system have a high degree of
flexibility and freedom to make decisions based on their own
interests. Unfortunately, such “optimizations” could sometimes
be against the original design purposes and cause unexpected
system performance deficiency and even security loopholes, as
we will discuss later in this paper.

Due to its great success, the Bitcoin system and its underly-
ing blockchain technology have raised widespread interests in
both academia [3], [4], [5], [6], [7], [8], [9], [10], [11] and
industry [12], [13], [14], [15], [16]. Some public websites,
online documents, and research papers have introduced the
Bitcoin system to the public [17]. Statistical data are also
reported on Bitcoin usage [18], [19], [20], [21]. Some academic
research has studied the Bitcoin system based on theoretical
models [3], [5], [9], [22]. However, the Bitcoin system is a
large-scale peer-to-peer system composed of over one million
miners and millions of users [23], [24], who work individually
and collaboratively together in a distributed manner. It still
remains a highly interesting but unanswered question—how
these Bitcoin participants behave and interact with each other
in the real-world system deployment?

In this paper, we study the behaviors of Bitcoin miners and
users and particularly investigate the effect of these behaviors
in practice. To achieve this, we conduct a quantitative study on
more than nine years of Bitcoin transaction history (from its
first release on January 3rd, 2009 to April 30th, 2018), which
contains over 300 million transaction records. We analyze the
transaction records in three aspects, i.e., transaction processing,
confirmation, and implementation, which together reflect how
the miners and users use the Bitcoin system to achieve their
interests. It is worth noting that since our purpose is to
investigate how the critical system mechanisms are utilized in
real-world deployment, we mostly focus on the behaviors of



miners and users observed from the system level via statistical
analysis, rather than the behaviors of individual miners and
users.

Based on our quantitative study, we have obtained several
important findings:

• To incentivize the miners for processing transactions, the
miners are allowed to collect and compete for transaction
fees and mining rewards. Our data analysis shows an
unexpected negative effect—the miners tend to maximize
the obtainable benefits in various means, even at the
cost of transaction processing efficiency. For example,
the current fee-rate-based prioritization policy adopted by
miners is highly biased against low-fee-rate transactions,
which can cause about 15%-16.6% of the coins in the
system to be frozen and not spendable. Even worse, to
win the block competition for obtaining the incentives,
the miners prefer to create a relatively small block, which
not only degrades the already-low transaction processing
performance but also undermines the effort of improving
system performance by increasing the block size limit.

• To guarantee the security of a transaction, users are
recommended to wait for a high number of confirmations
to finalize the transaction. However, we find that at least
55.22% of all the transactions are completed with at most
five confirmations (although the standard recommendation
is six confirmations). More surprisingly, at least 21.27%
of all the transactions are zero-confirmation transactions,
which clearly violate the basic rule for using the Bitcoin
system that a transaction should be finalized with at least
one confirmation. This means that a large percentage of
users are making a risky decision to sacrifice the transact-
ing security to improve transacting speed by shortening
the necessary waiting time for confirmations.

• To enable the customization of peer-to-peer transactions,
the users are provided with a scripting language for trans-
action implementation. Our findings are two-fold. First,
we find that 99.7% of all the transactions are standardized
rather than customized, indicating that most users show
very low interests in, or are simply incapable of customiz-
ing transactions. It means that the need for customizing
transactions in the original Bitcoin system design was
likely to be overrated. Second, and more importantly, we
find that such an unnecessary flexibility for transaction
implementation could even lead to erroneous or harmful
transaction implementation, causing undesirable fund loss
and exposing the system to implementation bugs and
malicious attacks.

These observed behaviors, to some degree, deviate from the
original design purposes of the Bitcoin system and could bring
many unexpected consequences. Our study strongly suggests
that it is the time to revisit many design choices in the
Bitcoin system, especially on the current high level of freedom
provided to the miners and users. We believe that the issues
revealed in this work not only expose many challenges but
also open numerous research opportunities for optimizing the

Fig. 1: An illustration of two Bitcoin transactions TX0 and TX1.
The black circle represents the transaction output that has been
spent, and the white circles represent the unspent transaction
outputs.

system design and implementation of Bitcoin and other similar
cryptocurrency systems.

The rest of the paper is organized as follows. Section II intro-
duces the background. Section III describes our methodology
for data analysis. Section IV to VI present our observations
on transaction processing, confirmation, and implementation.
Section VII discusses the system implications. Section VIII
gives the related work. The final section concludes the paper.

II. BACKGROUND

A. Transaction Implementation

Coin-based transacting model. A Bitcoin transaction rep-
resents the fund transfer between a sender and a receiver. A
transaction contains a list of inputs for the sender to spend
(send) the previously received funds, and a list of outputs for
the receiver to receive funds. Shown in Figure 1 is an illustrative
example of two transactions TX0 and TX1, each having one
input and two outputs. Each output is associated with a value
indicating the amount of fund and a locking script locking the
fund; each input references a previously Unspent Transaction
Output (UTXO) and provides an unlocking script to unlock
and spend the fund. A UTXO is generally called a coin. The
value of a coin is the value associated with the UTXO, and is
measured as BTC. One BTC can be sliced into smaller units,
such as Satoshi (1 BTC = 100 million Satoshis).

Transaction scripts. The Bitcoin system provides a unique
scripting language to implement the locking and unlocking
scripts. The scripting language supports 256 opcodes. Each
opcode is an instruction [25]. A script is composed of a set
of opcodes and the related data. To illustrate the scripting
mechanism, we take a standard transaction type, P2PKH (Pay-
to-Public-Key-Hash), as an example:

P2PKH utilizes the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) [26] based on public/private key pairs. For
receiving the fund, the receiver first generates a pair of pub-
lic/private keys. The public key is hashed into a 160-bit binary
value, pubkey hash, using two cryptographic hash functions
SHA-256 [27] and RIPEMD-160 [28]. The pubkey hash is
further encoded using the BASE58 encoding scheme [29] to
create a human-readable alphanumeric string, called Bitcoin
address. The receiver then sends the Bitcoin address to the
sender.

After receiving the address, the sender decodes it to regen-
erate the 160-bit pubkey hash using the BASE58 decoding



scheme [29]. The sender embeds pubkey hash in the locking
script to lock the fund as a coin. The locking script is as follows:
OP_DUP OP_HASH160 <pubkey hash> OP_EQUALITY

OP_CHECKSIG

The above locking script requires the receiver to provide an
unlocking script to unlock and spend the coin. The unlocking
script contains two elements:
<sig> <pubkey>

The provided public key <pubkey> is valid only if its hash
is equal to <pubkey hash>. The provided signature <sig>
is derived from the receiver’s private key, and its validity can
be verified by using the public key <pubkey>. The unlocking
script is valid only if both the public key and the signature
are valid. When processing a transaction, the miners verify the
validity of spending a coin based on the locking and unlocking
scripts, which are combined and executed in a stacked-based
manner [30].

In addition to P2PKH, the Bitcoin system supports sev-
eral other standard transactions [30], such as P2PK, P2SH,
OP Multisig, and OP RETURN. Users can also customize the
implementation of transaction scripts.

Transaction fee. A transaction fee is the difference between
the value of the coins being sent and the value of the coins being
received, which is a reward to incentivize miners to process user
transactions. In Figure 1, for example, the fee for TX1 is the
difference between the value of output0 of TX0 and the sum
of the value of output0 and output1 of TX1. A user can
specify the fee for processing a transaction.

B. Transaction Processing

Miners are responsible for transaction processing: each miner
runs a node to process transactions and maintain transaction
records (i.e., the ledger).

The longest-chain protocol. The miners process and group
transactions into blocks, which are stored in a distributed
database, called blockchain. Blocks in the blockchain are or-
ganized as a singly linked list, each block (except the first
one) containing the cryptographic hash of its previous block.
Block conflicts happen when two blocks are linked to the
same previous block within a short time period (1 minute). To
address such conflicts, the Bitcoin system adopts the longest-
chain protocol. It temporarily reserves all the conflicting blocks,
forming different branches, and the newly generated blocks
can be added to any branch. Only the blocks of the longest
branch are finally kept and the other blocks are dropped.
Figure 2 shows an illustrative example: a branch appears after
Block 1 since both Block 2 and Block 2’ are pointing
to Block 1. In this example, if the chain of blocks 0 ← 1
← 2’ ← 3 is finally the longest chain, Block 2 is dropped.

Incentives. To incentivize the miners, the system allows
them to obtain incentives, which include the transaction fees
and mining reward. The transaction fees are charged from user
transactions, and the mining reward is endowed by the system,
which is initially 50 BTCs and halved every 210,000 blocks.
The miner who creates the block that is finally kept in the

Fig. 2: An illustration of block conflicts.

blockchain receives all the incentives, and the other miners
get none. Since these incentives are of high economic values
(1 Bitcoin equals about $8,000 as of May 2019), the miners
tend to optimize their mining strategy to maximize the received
financial benefits, often disregarding the potential performance
and security implications to the whole Bitcoin system.

C. Transaction Confirmation

Double spending. When a block is dropped due to block
conflicts, all the transactions included in the dropped blocks are
reversed. This potentially results in a double spending problem.
Let us consider a simple scenario:

At the time Block 1, a consumer purchases a product from
a vendor and pays the fund to the vendor with a transaction TX
spending a coin C. After observing that TX has been included in
Block 2, the vendor confirms with the consumer that the fund
is received and sends the product to the consumer. However,
if a block conflict shown in Figure 2 happens and Block 2
including TX is dropped, a double spending problem could
happen. Since the transaction is revoked, the vendor loses the
product without receiving the payment; the consumer gets the
product without paying anything and can spend C again.

Besides accidental block conflicts, attackers may intention-
ally launch a block race for the purpose of dropping the blocks
created by honest miners [7], [8], [9], [31], causing the related
transactions to be reversed and exacerbates the double spending
problem further.

The number of confirmations. To address this problem, the
receiver has to wait for a certain number of confirmations before
confirming with the sender that the fund has been received.
A transaction initially has zero confirmation when submitted.
After it is included in a block (e.g., Block 2’), it has one
confirmation. Each time when a subsequent block is added
to the longest chain containing Block 2’, the number of
confirmations of the transaction is incremented by one. In
Figure 2, for example, the transactions in Block 1 have three
confirmations while the transactions in Block 3 have only
one confirmation.

Obviously, a block that has more subsequent blocks is more
likely to be kept in the longest chain, thus demanding a high
number of confirmations is effective to reduce the probability
of a successful double spending attack. Based on the estimation
given by Satoshi Nakamoto’s white paper [1], when the attacker
has 10% of the hashrate of the system, increasing the number of
confirmations from 1 to 6 can reduce the probability of double
spending from 20.5% to 0.024%. However, since it takes about
10 minutes to generate a block on average in the Bitcoin system,



a large number of confirmations requires a long waiting time for
finalizing the transaction. As a rule of thumb, six-confirmation
is commonly considered to be a standard choice (i.e., about
1 hour for completing a transaction).

III. METHODOLOGY

A. Data Collection and Processing

Our analysis is based on the Bitcoin ledger data, which is
publicly available. To retrieve the ledger data, a straightforward
method is to run a full Bitcoin client and synchronize with its
peers. The ledger data can also be downloaded from public
websites [32] and forums of the Bitcoin community [33]. As
for data parsing, many Bitcoin clients [34] and websites [17],
[35], [36] provide APIs for users to query transaction details. In
this paper, we analyze the ledger which contains the transaction
history from January 3rd, 2009 to April 30th, 2018, including
520,683 blocks and 313,586,424 transactions. For convenience,
we use the APIs provided by blockchain.info [35], [37], which
is one of the most popular public websites for providing data
analysis of the Bitcoin ledger data. Besides the basic APIs
provided by the website, we have also developed homemade
tools to parse the ledger (e.g., decoding the transaction scripts)
and conduct quantitative analysis.

B. Time Scale for Data Analysis

To study the effect of the critical mechanisms of the Bitcoin
system over time, an important issue is the time scale for
analysis. In the Bitcoin ledger data, the only physical time
information is the timestamps included in each block to indicate
the block generation time in the UNIX format [38]. Due to
clock drift or timestamp hacking [39], the timestamps declared
by miners may be inaccurate. The accepted timestamps are
limited in a certain range, i.e., larger than the median timestamp
of previous 11 blocks and smaller than the network-adjusted
time plus two hours. Thus, a reported timestamp could deviate
from the real block generation time for about two hours [40].
To offset the effects of such a time variance in our study, we
take one month as the basic time unit for data analysis.

IV. PROCESSING EFFICIENCY

To incentivize the miners for processing transactions, the
system allows the miners to collect the incentives, including
transaction fees and mining rewards (see Section II-B). Our
study reveals that the policy and strategy taken by the miners
only focus on maximizing their benefits and can even degrade
the already-low system performance. In this section, we present
our findings on the observed behavior of miners.

A. Fee-rate-based Prioritization Policy

Observation #1: The miners adopt a fee-rate-based policy
to prioritize transaction processing, which is biased against
low-fee-rate transactions and may freeze small-value coins
and degrade processing performance.

Transaction fees are an important incentive provided by the
Bitcoin system for miners to process transactions. Currently, the

miners adopt a fee-rate-based prioritization policy: The fee rate
of a transaction refers to the transaction fee per size unit (i.e.,
per Byte). The miners prioritize transaction processing based
on fee rates rather than the absolute value of transaction fees,
because the block size is limited. First choosing the transactions
that pay a higher fee rate for processing allows the miners to
collect a higher total amount of fees from generating a block,
which maximizes their financial gains. Such a prioritization
policy benefits the miners, but is biased against low-fee-rate
transactions.

A low fee rate affects the chance of a transaction to be
processed timely. Figure 3 shows the 1st, 50th, and 99th
percentiles of transaction fee rates (in Satoshis per Byte) from
2012 to 2018. Transactions in earlier years are not included
here, because most of them are coinbase transactions with
zero transaction fees. Since the miners prioritize transaction
processing based on fee rates, the priority for a transaction to
be processed is inversely proportional to the percentile of its fee
rate among all the transactions. For example, if a transaction
is only willing to pay a low fee rate (e.g., the bottom 1%), it
is very likely to be processed behind 99% of the transactions.
Figure 3 shows that the transaction fee rates fluctuate over time.
The top 1% pays over 100 times higher than the bottom 1%.
In particular, the bottom 1% transaction fee rates have recently
reduced to about 1 Satoshi per Byte, compared to over 45
Satoshis per Byte in 2017. This low rate is already close to
the minimum fee rate (1 Satoshis per Byte) set by default at
the release of Bitcoin Core 0.15 [41]. We also find that a few
transactions paying lower than the minimum fee rate have still
been processed. These transactions may have been created by
a miner, or been processed by the miner who neglected to set
the minimum fee rate.

A severe consequence of the fee-rate-based prioritization
policy is that some small-value coins may be “frozen”, i.e.,
never have a chance to be spent. This is because a coin may
carry a small value that cannot pay off the transaction fee to
spend itself. To understand such an effect, we create a simple
model to determine the size of the transaction spending one
coin, as follows.

Since a transaction contains a list of inputs and a list of
outputs, we can model a transaction as x-y, in which x
denotes the number of its inputs and y denotes the number
of its outputs. From the perspective of coin generation and
spending, the model x-y means that the transaction spends
x coins and generates y coins (Figure 4 shows the distribution
of transactions using the x-y model). Based on the transaction
model, we find by curve fitting that the transaction size (in
Bytes) can be modeled with a two-dimensional linear function
in terms of its number of inputs and outputs: f(x, y) =
153.4×x+34×y+49.5, in which x denotes the number of the
inputs, and y denotes the number of the outputs. The coefficient
of determination of the curve fitting (i.e., R2) is 0.91, which
indicates that our model has a good fit. Since spending one coin
is most likely to involve one input and at most three outputs
(see percentages of transactions in models 1-1, 1-2, and 1-3
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in Figure 4), based on our transaction size model, the size of
a transaction spending one coin is between 237 Bytes and 305
Bytes.

We further calculate the transaction fees for spending a coin
by using the transaction fee rates as of April 2018, as shown
in Figure 5. If using the minimum fee rate set by Bitcoin
Core 0.15 [41], i.e., 1 Satoshi per Byte, the corresponding
transaction fee would be 237 to 305 Satoshis. In Figure 6,

we show the CDF of the values of coins. About 2.97% of the
coins have a value less than 237 Satoshis, and 3.06% of the
coin values are below 305 Satoshis. If using the 50th percentile
(i.e., the median) of the fee rates, 9.35 Satoshis per Byte, as a
reference, 15%-16.6% of the coins cannot afford the processing
fee. It is worth noting that a competitive fee rate may be much
higher than the median of the fee rates. For example, setting
the fee rate to the 80th percentile of all the fee rates, i.e., 40



Satoshis per Byte, can gain a processing priority higher than
80% of the transactions (see Figure 5). However, 30%-35.8%
coins cannot afford such a high fee, as shown in Figure 6.

In short, the current fee-rate-based prioritization policy taken
by the miners is unfriendly to small-value coins, since they may
even not afford the transaction fees for spending themselves.
Even worse, a non-trivial portion of coins cannot afford the
minimum fee rate. These coins, in effect, will be “frozen”,
either being not spendable or having to wait for an excessively
long time to be processed. Another side effect of the frozen
coins is that such coins are not spendable but still reside in the
UTXO set (i.e., the database used in the Bitcoin system for coin
management), which may slow down the database accesses and
potentially reduce the transaction processing speed.

B. Competition-driven Packing Strategy

Observation #2: To win the block competition for incen-
tives, the miners prefer to group a relatively small number
of transactions into a block, which further undermines the
transaction processing speed.

In the Bitcoin system, a block is the basic unit for processing
transactions. The miners verify and group the transactions into
blocks and solve a cryptographic puzzle called Proof-of-Work
(PoW) [1] to gain the right of adding the block to the blockchain
and obtaining the incentives.

The transaction processing speed is largely determined by
two block-based system protocols: block generation rate and
block size limit. Since the block generation rate is controlled
to be 10 minutes per block on average by the system, the block
size becomes a critical factor that determines the transaction
processing performance of the system. Bitcoin Core [34] ex-
plicitly set the block size limit to 1 MB in 2013.

To improve transaction processing performance of the sys-
tem, a soft fork, SegWit (Segregated Witness), was activated
on August 23rd, 2017. It separates the witness data (transaction
signatures) from the block, which allows to bypass the 1 MB
size limit and virtually enlarges the maximum block size to
4 MB [42].

However, according to the transaction history, we find that
increasing the block size limit does not necessarily increase
actual block sizes. Shown in Figure 7 is the percentage of
the blocks larger than 1 MB in all blocks. Interestingly, in
the first six months after the SegWit protocol was activated in
August 2017, the ratio of large blocks increased from 2.8% to
97%; however, after reaching the peak, the ratio dropped in the
following four months from 97% to 43.4%. Not as expected,
the SegWit protocol did not increase the actual block size—the
average block size dropped to 0.73 MB in April 2018, which is
even lower than the average block size in July 2017 (0.88 MB)
as shown in Figure 8, the month before the activation of the
SegWit protocol.

That is because a large block size limit simply allows the
miners to create a large block, but this is not mandatory. The
miners can make free decisions whether to process transactions

and how many transactions to be grouped in one block. Due
to the longest-chain protocol, only the miners whose blocks
are finally kept in the blockchain can obtain the incentives,
while the others get none. Such a “winner-takes-all” rewarding
mechanism drives the miners to take a strategy of generating a
block quickly rather than organizing a large block each time.
Since it takes a longer time to process more transactions and to
broadcast a larger block over the network, generating a larger
block comes with a higher risk of losing the competition for a
miner to successfully merge the produced block into the main
blockchain. From the miners’ perspective, in order to win an
edge in the competition, they tend to process less transactions
and generate a smaller block quickly.

Therefore, the processing strategy taken by the miners are
highly profit-driven, which not only degrades the already-low
transaction processing performance, but also limits the efficacy
of improving the transaction processing performance by setting
a large block size limit.

C. Summary and Remarks

The policy and strategy taken by miners reflect that the min-
ers are rational and profit-driven. To maximize their economic
gains, they prefer to process the transactions that pay the highest
fee rates and tend to quickly organize a relatively small number
of transactions into a block to win the competition. This is the
basic rationale behind the success of the Bitcoin system, but
as a peer-to-peer distributed system, it inevitably degrades the
already-low system performance and may impede the evolution
of the Bitcoin system towards being a more efficient system.
This would also further lead to other issues. For example, if the
Bitcoin system’s transaction processing performance remains
low, it would force the users to make risky decisions to trade
security for speed, as we will see in Section V.

V. TRANSACTION CONFIRMATION

Due to the longest-chain protocol, the latest several blocks
added to the blockchain may be dropped, and the transactions
included in those blocks may be reversed. To avoid the double
spending problem, the Bitcoin system recommends users to
finalize a transaction after waiting for a certain number of
confirmations (see Section II-C). In this section, we estimate
the number of transaction confirmations determined by users in
practice, and present the related observations.

A. Estimation and Classification

Since the number of confirmations to finalize a transaction is
solely determined by the sender and receiver and is transparent
to others, we cannot directly obtain the accurate number of
confirmations by simply parsing the ledger data. To address
this challenge, we propose a method to determine the maximum
number of confirmations that a transaction could receive (i.e.,
the upper bound) based on the fact that a coin can only be spent
after the transaction generating that coin has been confirmed
and finalized. The methodology is described as below:

Assuming that a transaction generating n coins C0, C1, ...,
Cn−1 of which m coins are spent, the transaction is included in
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Block G, and the transactions spending the coins are included
in Blocks B0, B1, ..., Bm−1, respectively, the earliest time that
the receiver spends the coins is S = min(B0, B1, ..., Bm−1).
Since the receiver can only spend the funds after confirming
with the sender for receiving the funds, the latest time that the
receiver confirms the completion of the transaction would be at
Block S. Hence the maximum number of confirmations being
possibly received is Nconf = S − G. A special case is that a
block contains both the transactions generating and spending
a coin. In this case, Nconf = 0, meaning that the receiver
finalizes the transaction with zero confirmation. Such a zero-
confirmation transaction violates the basic rule for using the
Bitcoin system that a transaction should be finalized with at
least one confirmation. In reality, however, we have observed
a non-trivial amount of zero-confirmation transactions (See
Section V-B).

We should note that if all the coins generated by a trans-
action are not spent (i.e., m = 0), we cannot determine the
upper bound of the number of received confirmations for the
transaction. However, such transactions account for less than
1% of all the transactions we have analyzed.

Figure 9 shows the Probability Density Function (PDF) of
the estimated maximum number of confirmations that could
be received (the upper bound), in which the probability is the
ratio of the transactions receiving a certain estimated number
of confirmations in all transactions. The PDF is heavy-tailed,
following a negative exponential distribution. Obviously, the
numbers of confirmations scatter in a wide range (from 0 to
more than 0.4 million).

This PDF, to some extent, reflects the randomness of users’
trading behaviors. In order to uncover meaningful information
from the distribution, we classify the estimated number of
transaction confirmations by dividing the range of the numbers
into 10 levels based on two rules:

We first select the empirically critical numbers of confir-
mations as the boundary of several levels. For example, six is
the standard number of confirmations. Some users may directly
adopt the number of required confirmations (e.g., 1 or 3) set by

some Bitcoin wallets as the minimum number of confirmations.
Some Bitcoin exchanges, such as Coinbase, require three con-
firmations [43], and some Bitcoin merchants, such as BitPay,
require at least one confirmation [44].

We further estimate the waiting time caused by the required
numbers of confirmations and divide the range of waiting
time by using the traditional banking systems as a reference.
For example, the international wire transfer generally takes
about 3 days to 7 days. Considering that the average time
for generating one block (i.e., the average time for waiting for
one confirmation) is 10 minutes, such a range corresponds to
432 to 1,008 confirmations. Similarly, a domestic wire transfer
can generally be completed within one day, corresponding
to 144 confirmations. The rest of the range of the required
confirmations is divided based on the waiting time in hours
(i.e., 2 hours, 6 hours, and 12 hours).

It is worth noting that this classification is based on the
estimated upper bound. It does not aim to make an accurate
evaluation, but helps us uncover certain meaningful information
that can reflect users’ preferences on transacting security and
efficiency, which will be discussed in the next section (See
Section V-B).

B. Distribution of Confirmation Levels

Observation #3: The majority of the users set a small
number of confirmations to accelerate the process of trans-
action finalization, and surprisingly, at least 21.27% of all
the transactions are zero-confirmation transactions.

Based on our estimation and classification of the number
of confirmations, we have several important findings. Table I
shows the ranges and percentages of different levels, and
Figure 10 shows the number of the transactions of different
levels over time.

First, at least 55.22% of all the transactions are completed
with at most five confirmations (from L0 to L2, see Table I).
This means that although the recommended and standard setting
is 6 confirmations, a large number of users still prefer to set a
smaller confirmation number at the cost of transaction security.

Meanwhile, at least 86.2% of all the transactions (from L0
to L6) are completed within 144 confirmations and at least
94.7% of all the transactions (from L0 to L8) within 1,008
confirmations (see Table I). In traditional banking systems, the
transaction waiting time for domestic wire transfer is about 1
day (144 confirmations) and for international wire transfer is 7
days (1,008 confirmations). This distribution means that most
users do not want to wait for a longer time to complete the
transaction on the Bitcoin system than on traditional banking
systems, which may also explain why more than half of the
transactions are completed with fewer confirmations being
received than the standard setting.

A surprising finding is that at least 21.27% of all the
transactions are zero-confirmation transactions (L0, see Table I).
This violates the fundamental rule for trading on the Bitcoin
system—at least one confirmation should be received to make
sure that the transaction has been verified by the miners and



Level Confirmation
Num. Range Waiting Time Percentage

(%)
L0 0 < 10 min 21.27
L1 [1, 2] 10 min ∼ 30 min 22.68
L2 [3, 5] 30 min ∼ 1 hour 11.27
L3 [6, 11] 1 hour ∼ 2 hours 11.14
L4 [12, 35] 2 hours ∼ 6 hours 10.40
L5 [36, 71] 6 hours ∼ 12 hours 4.82
L6 [72, 143] 12 hours ∼ 1 day 4.60
L7 [144, 431] 1 day ∼ 3 days 5.35
L8 [432, 1,007] 3 days ∼ 1 week 3.18
L9 [1,008, ∼) > 1 week 5.29

TABLE I: Classification of confirmation numbers.
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Fig. 10: Breakdown of transactions over time.
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Fig. 11: Percentage of zero-confirmation transactions.

written to the blockchain. Zero-confirmation transactions are
not confirmed, being rather vulnerable to attacks.

We initially expected that the zero-confirmation transactions
were carried out for transferring a small amount of funds,
especially in the early years when the exchange rate between
BTCs and USDs was low. However, as shown in Figure 10,
though fluctuating over time, the number of zero-confirmation
transactions (L0) remains high. We also investigate the value
of the funds transferred with zero-confirmation transactions
in BTCs and USDs, respectively (the realtime exchange rate
between BTCs and USDs is cited from a popular website
monitoring the BTC market [45]). One may expect that such
unsecure transactions are only used for transacting a small
amount of funds. However, we find that the value of the
transferred funds of a single transaction can be as high as
0.45 million BTCs or 334 million USDs. This is out of our
expectation.

To understand the reason behind creating such high-risk
transactions, we further investigate the Bitcoin addresses of
the coins spent and generated in the zero-confirmation trans-
actions. We find that about 36.7% of all the zero-confirmation
transactions have at least one Bitcoin address used by both
the spent coins and generated coins. This means that many

users might transfer funds between their own Bitcoin addresses.
In this scenario, if the transactions are reversed, the users do
not lose anything, and thus they do not concern about the
transaction security. We note that such transactions account
for 46% of the funds in BTCs or 61.1% in USDs in all the
funds transferred by zero-confirmation transactions. A purpose
of creating such transactions is to protect the funds by using
different cryptographic keys and to help improve the transacting
privacy. Since the funds are transferred between the addresses
owned by the same user, the reversion of such transactions will
not cause fund loss. Thus, it is not necessary to set a high
number of confirmations in this case.

Another reason is that some zero-confirmation transactions
are created in an unintentional or intentional manner. Some
users are not familiar with the Bitcoin system and its confirma-
tion mechanism and thus mistakenly carry out such highly vul-
nerable transactions. Figure 11 shows the percentage of zero-
confirmation transactions over time. From the figure, we can
observe that the percentage of zero-confirmation transactions
can be very high in early years (e.g., 66.2% in November 2010
and 45.8% in August 2012), but has gradually decreased since
2015. This is largely consistent with our expectation that users
gain more knowledge about the confirmation mechanism of the
Bitcoin system over time, which contributes to the decrease of
zero-confirmation transactions. Meanwhile, it is also possible
that some other users can understand the confirmation mecha-
nism, but they simply believe the double-spending attacks can
rarely happen in practical scenarios and thus intentionally create
zero-conformation transactions for the purpose of reducing the
confirmation waiting time.

Finally, some zero-confirmations might be transactions gen-
erated to forge a false impression of the wide acceptance
of Bitcoin in the market to the general public. In particular,
we find that 8,1462 zero-confirmation transactions have the
same addresses for the spent coins and the generated coins,
indicating that the funds are transferred between the same
addresses. These transactions are not sensible and cannot bring
any benefits for regular users. They might be transactions
created by Bitcoin proponents with investment interests (e.g.,
Bitcoin investors and gambling websites).



Script Type Number Percentage (%)
P2PK 1,581,435 0.185

P2PKH 732,721,201 85.82
P2SH 111,151,759 13.02

OP Multisig 576,205 0.067
OP RETURN 5,234,468 0.613

Others 2,519,011 0.295

TABLE II: Transaction script types.

C. Summary and Remarks

Based on our observations, although the Bitcoin system
is a globally distributed electronic cash system supporting
international fund transfer, many users still prefer to have the
transaction completed in a short period of time. To reduce
the time of waiting for transaction confirmations, many users
choose to set a smaller number of required confirmations,
which decreases the transaction completion time but sacrifices
the transaction security. Such a trading behavior is based
on trusting the miners, assuming that the miners are benign
players. However, such an assumption is questionable, because
the Bitcoin system allows any miner to join or leave the system
at will. As the hashrate in the system has centralized to several
largest mining pools (the first five largest mining pools have
about 60% of all the hashrate of the system [46]), blindly
trusting the miners is a risky decision.

VI. IMPLEMENTATION FLEXIBILITY

The Bitcoin system provides a scripting language to allow
users to customize transaction implementations. In this section,
we present our observations on how real-world Bitcoin users
utilize the scripting language for implementing transactions and
the potential risks behind such a highly flexible mechanism.

A. Distribution of Transaction Types

Observation #4: About 99.71% of all the transactions are
standard transactions, and the flexibility of customizing
transactions is rarely utilized.

Bitcoin transactions are classified by the locking scripts in
transaction outputs. In the ledger data that we have analyzed,
there are 853,784,079 locking scripts. We decode these scripts
and show the results in Table II. The five standard trans-
action scripts, i.e., P2PK, P2PKH, P2SH, OP Multisig, and
OP RETURN, account for 99.71% of all the transaction scripts.

P2PKH is the most popular transaction type, accounting for
85.82% of the transaction scripts. P2PK is similar to P2PKH,
but it directly embeds the public key in the locking script. P2PK
is used in the early stage of the Bitcoin system, but is currently
obsolete.

Another popular transaction type, P2SH, accounts for
13.02% of the transaction scripts. P2SH offloads the respon-
sibility of implementing verification methods from the sender
to the receiver. The receiver is responsible for preparing a script
for verification. The sender only has to specify the receiver in

the locking script (by using the receiver’s Bitcoin address). Due
to such advantages, P2PH is becoming popular.

OP Multisig and OP RETURN are also standard transac-
tion types, but are used for particular purposes. OP Multisig
requires one or more signatures out of multiple public keys
to improve fund security. OP RETURN allows users to store
arbitrary data of limited length (initially 40 Bytes and currently
80 Bytes [18]) in the locking script. These two types of
transaction scripts account for about 0.68% of all the transaction
scripts in total.

In addition to the standard transactions, we find only a
small portion, about 0.295%, of transaction scripts are not in
the five standard script types. The non-standard transactions
are largely implemented manually by technology enthusiasts,
Bitcoin software developers, or hackers.

Based on the distribution of transaction types, we can see
that most Bitcoin transactions are standardized, despite that the
highly customizable and flexible scripting interface is provided
by the system. A main reason is that most users are non-experts.
It is difficult for regular users to understand and compose the
scripts correctly. Comparatively, it is more convenient to use
Bitcoin wallets to execute transactions and manage their coins.

B. Erroneous and Harmful Transactions

Observation #5: The flexibility of transaction customiza-
tion exposes the system and users to erroneous, inappropri-
ate, and even dangerous transactions, which can cause fund
loss or even be harmful to the system.

In the transaction scripts that we have studied, we note
that 252 scripts among the non-standard transaction scripts are
erroneous. These scripts cannot be correctly decoded according
to the defined scripting language [25]. This may be caused by
implementation errors.

Some transactions can be correctly decoded, but are not
implemented in a semantically proper manner. Most of these
transactions involve OP RETURN transactions, OP Multisig
transactions, and coinbase transactions. Here we discuss four
main types of implementation errors in the transactions.

Erroneous value settings: OP RETURN scripts are ex-
pected to be associated with zero values, but 56,695
OP RETURN scripts are mistakenly associated with nonzero
values. OP RETURN scripts allow users to store a small piece
of arbitrary data and store it in the Bitcoin system. These scripts
are not supposed to be associated with any value because these
values are not spendable, meaning that associating nonzero
values with the OP RETURN scripts is only a waste of money,
without benefiting any miners or users.

Improper use of opcodes: OP Multisig scripts are used for
multiple users to share the possession of a coin and are expected
to require the signatures of multiple public keys. However, we
find that 2,446 OP Multisig scripts involve only one public
key. It is worth noting that these scripts are not grammatically
wrong, but they are not used in a proper scenario. Such scripts
have the same functionality as P2PK scripts, but have a larger
size and thus need to pay a higher transaction fee [47].



Redundant opcodes: Three transaction scripts contain an
unreasonably large number of opcodes. The Bitcoin system
allows users to customize transactions, but this also opens
opportunities for creating potentially harmful transactions. We
find three “suspicious” transaction scripts. These scripts are
similar to P2PKH scripts, but contain as many as 4,002
OP CHECKSIG opcodes. In contrast, normal P2PKH scripts
have only one OP CHECKSIG. The OP CHECKSIG opcode
is used for checking the validity of the transaction signa-
ture. It is not a sensible implementation to include multiple
OP CHECKSIG in a P2PKH locking script to repeatedly verify
the same signature. These three scripts containing thousands of
OP CHECKSIG only waste the computing resources of the
miners, being harmful to the system.

Wrong rewards settings: Two coinbase transactions are
associated with wrong mining rewards. Coinbase transactions
are created by miners to send the mining rewards to themselves.
It is surprising that two coinbase transactions do not set cor-
rect mining rewards. Specifically, mining block 124,724
should receive 50 BTCs, but 49.99999999 BTCs is set in the
coinbase transaction; mining block 501,726 should receive
12.5 BTCs, but 0 BTC is set in the coinbase transaction. Such
errors cause fund loss to the miners, especially for the latter
case. The date of mining block 501,726 is December 30th,
2017 and the price of 1 BTC was $12,630 at that time [45].
The miner lost 12.5 BTCs due to this mistake, which is about
$157,875, a non-trivial amount.

The erroneous and harmful implementations of the transac-
tions indicate that the flexibility of customizing transactions is
provided to facilitate users, but may bring negative effects: for
the users who do not have sufficient knowledge for transac-
tion implementation, the erroneous and inappropriately imple-
mented transactions would cause fund loss; for the malicious
users, they may exploit the scripting language to make harmful
transactions.

C. Summary and Remarks

Our observations show that most users show low interests or
capability of implementing customized transactions. Such an
unnecessary flexibility may lead to undesirable consequences,
e.g., erroneous and harmful transactions. Compared to the
flexibility of implementing transactions, the convenience of
implementing transaction is a more important concern for
common users. In practice, Bitcoin wallets can automatically
implement transactions based on the transacting information
provided by users. However, such a choice offloads the re-
sponsibility of implementing transactions to Bitcoin wallets,
making the security of transacting largely depend on Bitcoin
wallets. Since many Bitcoin wallets are third-party applications
provided by centralized services, heavily relying on Bitcoin
wallets weakens the decentralization of Bitcoin services and
creates security risks—implementation errors, such as bugs in
the beta version of some Bitcoin wallets, can quickly spread
and cause system-wide damage.

VII. DISCUSSIONS

In previous sections, we have presented our observations
on the behaviors of real-world miners and users. Our findings
have reflected how these behaviors deviate from the original
design purposes of the Bitcoin system. In this section, we
discuss several prospective methods to optimize the design and
implementation of future cryptocurrency systems.

A. Bitcoin Variants

Following Bitcoin, more than 2,000 Bitcoin-like cryptocur-
rencies have been released. These cryptocurrency systems
deeply mimic the Bitcoin system and some are tuned to
overcome some limitations of the original Bitcoin system.
In particular, many systems increase the block size limit to
increase transaction processing efficiency. In Table III, we can
see that most of the major forks of Bitcoin adopt an enlarged
block size limit. A notable example is that Bitcion Cash [52],
[53] increases the block size limit to 32 MB.

An assumption behind such forks is that a larger block
size limit allows to process more transactions in a block and
will lead to a higher transaction processing speed. However,
according to our observations on Bitcoin, the miners prefer to
organize small blocks to win the mining rewards regardless of
the block size limit. Thus, such an assumption is intuitively true
but practically invalid. Since the Bitcoin forks mostly inherit
the same rewarding mechanism of Bitcoin, we can infer that
some of our findings are also applicable to such systems. In
other words, simply increasing the block size limit will not help
incentivize miners to organize large blocks and consequently
would not improve system performance. Our inference has been
confirmed with observations on some of the Bitcoin forks. For
example, though setting the block size limit to 32 MB, the
reported average block size of Bitcoin Cash is much smaller
than 1 MB [57].

In addition to Bitcoin forks, some Bitcoin-like systems
have also attempted to increase system performance by tuning
system protocols. For example, Ethereum [58] changes the
structure of the blockchain from a singly linked list to a directed
acyclic graph (DAG). This method keeps all the branches of
the blockchain, and the miners who create the blocks that do
not reside in the longest chain can still obtain certain rewards.
This is effective to alleviate the block competition and improve
system performance, but cannot address problems caused by
the overly provided freedom of the miners, such as the frozen
coin problem, because these methods do not essentially change
the right of the miners to pick transactions, and the users still
do not have the right to evaluate and control the quality of the
services provided by the miners.

B. Next-generation Blockchain Systems

To overcome the limitations of the Bitcoin-like systems,
especially for the purpose of utilizing the blockchain technol-
ogy in scenarios other than cryptocurrencies, simply changing
system parameters is not enough. We need to fundamentally
reconsider the roles of miners and users for improving system
performance and scalability. Based on our findings, we discuss



Year Project Name Fork Type Block Size Limit Current Status
2009 Bitcoin [1] The original system initially no explicit limit, later 1 MB Active
2014 Bitcoin XT [48] Hard fork 8 MB (doubling every two years) Inactive
2016 Bitcoin Classic [49] Hard fork 2 MB (this value can be customized) Inactive
2016 Bitcoin Unlimited [50] Hard fork 16 MB (the value can be customized) Inactive
2017 SegWit [51] Soft fork virtually 4 MB Active
2017 Bitcoin Cash [52], [53] Hard fork initially 8 MB, currently 32 MB Active
2017 Bitcoin Gold [54] Hard fork 1 MB Active
2017 SegWit2x [55] Hark fork 2 MB Cancelled
2018 Bitcoin Private [56] Hark fork 2 MB Active

TABLE III: The history of the Bitcoin system and its major forks. This table lists the major forks of the Bitcoin system. A
hard fork is a new version of the system, which changes the rules of the original system and requires all participating nodes
to upgrade and agree on the new rules. A soft fork is a backward compatible modification to system protocols, in which the
upgraded nodes follow the new rules and the non-upgraded nodes continue to follow old rules. This table shows that increasing
the block size limit is an important factor in Bitcoin forks for improving transaction processing efficiency.

two possible directions that the next-generation blockchain
systems could evolve.

Evolution Direction 1: User-determined rewarding mech-
anism. With the current rewarding mechanism, the policy and
strategy taken by miners could degrade system performance.
The root cause for such a phenomenon is that the incentive
that motivates the miners to process a transaction comes from
the system by solving a cryptographic puzzle (i.e., PoW [1]),
rather than the feedback of users.

In order to incentivize miners to process transactions in a
user-oriented manner, we need to change the role of users in
the system: the users should not only “use” the Bitcoin system;
they should have certain capability to determine which miners
can process transactions and gain the incentives. For example,
the users can rank a miner based on its processing history.
The miners who only process high fee-rate transactions and
create small blocks will be given a low ranking and voted
out of work. This can effectively restrict the freedom of the
miners for addressing the frozen coin problem (see Section IV)
and improving performance. By using such a user-determined
rewarding mechanism, the users can have ability to evaluate
and control the quality of Bitcoin services.

In practice, the user-determined rewarding mechanism should
not be as simple as some online review systems, e.g., Amazon
Marketplace. We may need additional mechanisms to prevent
users from abusing their rights and to differentiate the weights
of different users’ votes. For example, in some protocols that
aim to address the limitations of Bitcoin, such as Delegated
Proof of Stake (DPoS) [59], the voting power of a user is
proportional to the number of coins that are held by the user.
The rationale behind it is that the users who own more coins
have more interest in maintaining the entire system efficient
and stable. Although how to create an efficient and secure
voting system still deserves further study, we believe that
the emerging DPoS-like protocols have reflected the evolution
direction towards limiting the freedom of miners and giving
more rights to users.

Evolution Direction 2: Limiting the overly provided
flexibility. Considering Bitcoin is mostly used for fund transfer,
its main usage is to support a limited number of standard

transaction types. To avoid implementation errors and scripting
attacks, we can define strict scripting grammars by putting
necessary constraints to the overly provided flexibility of
customizing transactions. Meanwhile, the miners should also
take responsibility for grammar checking. Together with the
above-mentioned user-determined incentivizing mechanism, the
miners that do not correctly report implementation errors can
be given a low credit and have less opportunities to process
transactions and obtain the incentives.

Moving towards the next-generation blockchain systems,
some new protocols for decentralized systems (e.g., DPoS [59])
have been proposed. DPoS fundamentally changes the underly-
ing protocols of Bitcoin-like systems (e.g., PoW-like protocols)
and allows users to evaluate and select miners. This adjust-
ment of the provided freedom in the system would encourage
the miners to provide more user-centered services. Due to
its potential advantages, DPoS has been adopted by some
blockchain systems (e.g., EOS [60], BitShares [61], Lisk [62]).
Facebook’s recently announced digital currency, Libra, also
adopts a protocol sharing some similarities with DPoS in terms
of limiting the freedom of validators [63]. Our findings indicate
that the DPoS-like protocols that give more rights to users and
constraint the freedom of miners might be promising in the
future.

C. Other System Implications

In addition to changing the protocols and rules of the Bitcoin
system, our observations also provide guidance for optimizing
system implementation. For example, we find that due to the
fee-rate-based prioritization policy, small-value coins may be
“frozen”. This effect may degrade the performance of the coin
database (i.e., LevelDB [64] in the current implementation).
To improve the performance of the database, we can design a
value-aware optimization. For example, the records of small-
value coins can be given a low caching priority and stored
in low-performance storage devices. This method can separate
active coins from frozen coins and is thus helpful to improve
the access efficiency of the database.

Another optimization is to reduce the possibility of generat-
ing small-value coins with better coin selection algorithm used



by Bitcoin clients or wallets. When selecting the coins to pay
the target fund (the transfer amount plus the transaction fee),
Bitcoin Core [34] always attempts to select the coins that have
the smallest value to satisfy (be equal to or larger than) the
target [65]. Such a coin selection algorithm helps minimize
the number of change coins (to receive the difference between
the value of the coins and the target), but may generate many
small-value coins. Our finding suggests that the coin selection
algorithm should be optimized to avoid generating small-value
coins.

VIII. RELATED WORK

In this section, we present the prior works that are most
related to our work. Many of prior studies focus on investigating
the Bitcoin system and its variants in terms of performance,
scalability, and security, based on theoretical models of the
underlying blockchain protocols. Many of these prior studies
aim to improve the Bitcoin system by adjusting critical protocol
parameters [3], [4], [5], optimizing system implementation [6]
or proposing new system protocols [66]. Another focus is to
investigate potential attacks on the Bitcoin system, such as
double spending attacks [7], selfish mining attacks [8], [9],
[31], and eclipse attacks [10]. Unlike these prior works, our
study focuses on studying the real-world behaviors of miners
and users in the Bitcoin system, by quantitatively analyzing the
publicly shared ledger data.

Our work is also related to prior studies on the ledger data.
Transaction graphs [67], [68], [69], [70] have been widely used
to investigate user activities, such as linking Bitcoin addresses
to users, and speculating the relations between different users.
These studies investigate the user behaviors mostly from the
perspective of privacy and anonymity. In particular, Ron and
Shamir conducted a quantitative analysis of the ledger data in
early years, which primarily focuses on studying how users
move their funds between different accounts to protect transact-
ing privacy [69]. By contrast, our work focuses on investigating
the behaviors regarding how miners and users take advantage of
the provided freedom to achieve their own interests in practice.
Our study provides the first-hand observations and insights
on the behaviors of miners and users, which also make our
work different from the public websites or technical reports
that simply present the statistical data (e.g., [57], [17], [18],
[19], [20], [21]).

Some other works study the particular use of the Bitcoin
system, such as using blockchain to store arbitrary data. These
works study the metadata of OP RETURN transactions [18],
the methods of inserting data on the Bitcoin blockchain [20],
and the content of the data stored on the current Bitcoin
blockchain [21]. We focus on studying the behaviors and
practical concerns of miners and users. Our work is also
orthogonal to prior works that design tools for analyzing the
ledger data [71], [47] or use the ledger data to predict Bitcoin
price [72].

In addition to academic research, the blockchain technology,
which is originated from the Bitcoin system, has also been
utilized in industrial products to provide peer-to-peer services.

These blockchain based systems [12], [13], [14], [15] and appli-
cations [73], [74], [16] more or less inherit certain properties of
the Bitcoin system. Our study is also valuable and can provide
guidance to understand the user behaviors of these systems and
applications.

IX. CONCLUSION

The Bitcoin system enables trusted transactions based on its
underlying blockchain technology. It provides a high degree of
freedom to both miners and users for achieving decentralized
trust. To investigate the behaviors of miners and users, we
have analyzed the Bitcoin transaction history of more than nine
years. Our study has revealed how the miners and users use the
Bitcoin system in real-world deployment, which reflects the
gap between system design and user concern. We believe that
our study can not only help us clarify the behaviors of Bitcoin
miners and users, but also bring many useful insights for future
system design and optimization.
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