
Reo: Enhancing Reliability and Efficiency of
Object-based Flash Caching

Jian Liu Kefei Wang Feng Chen
Computer Science & Engineering Computer Science & Engineering Computer Science & Engineering

Louisiana State University Louisiana State University Louisiana State University
jliu@csc.lsu.edu kwang@csc.lsu.edu fchen@csc.lsu.edu

Abstract—The fast-pace advancement of flash technology has
enabled us to build a very large-capacity cache system at a low
cost. However, the reliability of flash devices still remains a non-
negligible concern, especially for flash-based cache. This is for two
reasons. First, corruption of dirty data in cache would cause a
permanent loss of user data. Second, warming up a huge-capacity
cache would take an excessively long period of time. In this paper,
we present a highly reliable, efficient, object-based flash cache,
called Reo. Reo is designed to leverage the highly expressible
object interface to exploit the rich semantic knowledge of the
flash cache manager. Reo has two key mechanisms, differentiated
data redundancy and differentiated data recovery, to make a
flash cache highly reliable, and in the meantime, still remains
space efficient for high cache hit ratio. We have prototyped Reo
based on open-osd, an open-source implementation of T10 Object
Storage Device (OSD) in Linux. Our experimental results show
that compared to uniform data protection, Reo achieves graceful
performance degradation and prioritized recovery upon device
failures. Compared to full replication, Reo is more space efficient
and delivers up to 3.1 times of the cache hit ratio and up to 3.6
times of the bandwidth.

I. INTRODUCTION

In today’s data centers, flash-based cache systems are being
widely deployed for supporting high-speed data services [1],
[2], [3]. The recent technical breakthroughs in flash technolo-
gies, such as 3D Vertical NAND (V-NAND) and Quad-Level
Cell (QLC), have dramatically increased the device capacity
and reduced the cost, which enables us to build a very large,
high-speed flash cache for fast data accesses.

However, a long-existing concern that still remains in the
industry is the reliability of flash memory. As a type of
EEPROM devices, the current NAND flash technology has a
fundamental limitation—a flash memory cell wears out after a
limited number (1,000-5,000) of Program/Erase (P/E) cycles,
eventually leading to various hardware reliability issues, from
partial data loss to a complete device failure [4]. As the bit
density continues to increase (e.g., four bits per cell for QLC),
this lifetime problem is expected to be further exacerbated
rather than improved, meaning that the data reliability issue
will become even more challenging in the future.

A. Reliability Challenges in Flash-based Cache

A key application of flash technology is high-speed storage
cache. On one hand, the rapid growth of flash capacity enables
us to cache an unprecedentedly large volume of data in flash

at a very low cost (e.g., 1 Terabyte for less than $150).
On the other hand, an unexpected device failure could cause
detrimental results, which must be carefully addressed.

The most critical threat is permanent loss of user data. In
a typical write-back cache, updates to data are temporarily
held in cache and asynchronously flushed to the backend
data store (e.g., a database or a file system). It improves the
write performance. However, if any such “dirty data” in cache
are corrupted or inaccessible, it would cause an irrecoverable
data loss, leaving an obsolete, inconsistent copy in the data
store. Such a cache failure could result in various catastrophic
consequences, e.g., system crash, application malfunctioning,
service disruption, silent data corruption, etc. Due to the
violation of the service agreement with customers, even more
profound damages could happen, such as legal dispute, eco-
nomic penalty, irreparable brand image, not to mention the
loss of customers, market share, and investors.

Even for a read-only cache, cache device failures would
significantly and abruptly impair the caching services and
cause impact to the whole system. In data centers, high-speed
caching services are often the first line of defence for various
computing services. A cache device failure could render a
complete loss of caching services, affecting a large number of
clients and enforcing them to directly retrieve data from the
backend data store. Consequently, the backend servers would
be inevitably overloaded, resulting in intolerably long response
time, dropping client requests, and spreading the impact of
service degradation across the entire system. More importantly,
with today’s flash technology, a single-device capacity already
grows to Terabyte level. An enterprise flash array can easily
accommodate tens of Terabytes of data. Re-warming up the
entire cache from scratch again would take an excessively long
period of time, rendering the underperformance of caching
services for hours to even days [5].

B. Design Goals

In order to address the above-said reliability challenges, we
desire to build a highly reliable, large-capacity cache based on
high-speed flash SSDs. It is non-trivial to achieve this goal.
We must address three critical issues as follows.
• The cache system needs to provide a graceful degradation
upon device failures. Upon device failures, we desire to see
a gracefully degraded service quality, rather than an abrupt,

complete loss of caching services. Ideally, the cache system
should continue to provide caching services, proportional to
the surviving devices and uncorrupted data.
• The failure recovery is time consuming and its impact to
user experience should be minimized: We desire to accelerate
the recovery process, bring up the quality of caching services
(i.e., hit ratio) to the normal state as quickly as possible,
and minimize the impact of the recovery process to the other
incoming caching requests.
• The limited cache space must be efficiently used. For recov-
ery, certain level of data redundancy is needed upon device
failures. However, such redundant information also occupies
flash space, reducing the effectively usable cache space and
negatively affecting the cache hit ratio. We need to reach the
best balance between data reliability and space efficiency.

C. Reo: A Reliable and Efficient Object-based Flash Cache

In this paper, we present a Reliable, Efficient, Object-based
flash cache system, called Reo. Reo is built on an array
of high-speed flash SSDs. It is designed to handle multiple
partial or complete device failures, providing highly reliable,
continuous caching services. The essential goal is to retain the
caching services online as much as possible, even under harsh
situations, such as multi-device failures.

A key design principle of Reo is—differentiate data objects
based on their semantic importance and handle them differ-
ently. Such an object-based data differentiation enables us to
provide different levels of data redundancy and to prioritize
the recovery process to handle device failures.

Leveraging the expressive and flexible object storage in-
terface, Reo exploits applications’ semantic knowledge about
data objects and manages the cache data in a highly efficient
and reliable manner, through two key mechanisms:
• Differentiated Redundancy. To maximize data reliability
and also the efficiency of cache space usage, Reo assigns
different data redundancy levels according to the semantic
importance of data objects. In particular, dirty and hot data
objects are given a high redundancy level to survive many
device failures, while a low redundancy level is given to low-
priority objects, such as cold and clean objects, saving huge
cache space.

Such a fine-grained, differentiated data redundancy brings
two benefits. First, it is highly space efficient. Owning to the
workloads’ locality, most data objects are relatively cold and
clean and do not need to be maintained in a high redundancy
level. The saved flash space can be effectively used for
caching, improving the hit ratio. Second, it enables a graceful
degradation of caching services. Due to the multiple levels
of data redundancy, losing a subset of flash devices or data
in cache only results in a partial loss of the relatively less
important data (i.e., the clean and cold data), making the
caching services remain available to its maximum extent.
• Differentiated Recovery. Upon device failures, the surviv-
ing devices still contain partially usable or repairable data
objects. If an object is immediately usable, Reo leverages
the flexible object interface to locate its position and retrieve

the data; if the object is not directly accessible but can be
reconstructed, Reo performs the recovery process to restore
the on-demand data first. To further mitigate the long latency
of reconstructing data objects, Reo proactively rebuilds the
data objects in advance, according to the objects’ semantic
importance. In particular, hot data objects are reconstructed
first, since it is more likely to be requested soon, while cold
objects are reconstructed at a lower priority. By differentiating
the semantic importance of data objects, we can quickly bring
the caching services back to its maximum potential.

With differentiated redundancy and differentiated recovery,
Reo is able to optimize the flash space usage to maximize
the protection for important data objects while minimizing the
demanded space and recovery time. We have built a prototype
of Reo based on open-osd [6], which is an open-source
implementation of T10 Object Storage Device (OSD) in Linux.
Our experimental results show that compared to uniform data
protection, Reo achieves graceful performance degradation and
prioritized recovery upon device failures. Compared to full
replication, Reo is more space efficient and delivers up to
3.1 times of the cache hit ratio and up to 3.6 times of the
bandwidth.

The rest of this paper is organized as follows. Section II
gives the background. Section III discusses the related work.
Section IV describes the design. Section V introduces the
implementation. Section VI presents the evaluation results.
The final section concludes this paper.

II. BACKGROUND

A. Object-based Storage

Object-based Storage Device (OSD) [7] is an extension
to T10 Small Computer System Interface (SCSI) command
set [8]. It was initially proposed to overcome the limitations of
the narrow block-based interface via a more expressive object-
based interface [9]. As a self-management data storage, object-
based storage offloads its data storage component to the OSD
from the original file system, as shown in Figure 1. More
importantly, the object interface allows applications to deliver
abundant semantic information from the application level to
the OSD device level, enabling the OSD device to make an
intelligent and application-aware data management.

Applications

System call interface

File system user

component

File system

storage

component

Block interface

Storage Device

Applications

Object interface

Storage Device

Block I/O manager

Object storage

component

(a) Block-based storage (b) Object-based storage

System call interface

File system user

component

Block I/O manager

Fig. 1: Blocked-based storage vs. object-based storage [9].

TABLE I: An illustration of different types of objects in OSD.

Type PID OID Description
Root Object 0x0 0x0 Recording the global information of the OSD
Partition Object 0x10000 and above 0x0 Recording the set of collection and user objects within the partition
Collection Object 0x10000 and above 0x10000 and above A logical collection of user objects for fast indexing
User Object 0x10000 and above 0x10000 and above A regular user data (e.g., a file or directory)
Super Block Object 0x10000 0x10000 Recording the super block information
Device Table Object 0x10000 0x10001 Recording the device information
Root Directory Object 0x10000 0x10002 Recording the root directory / information
Note: The OSD-2 documentation [7] defines four basic types of objects, Root, Partition, Collection, and User. The implementation of exofs [10] in Linux
reserves OID# 0x10000-0x10002 for Super Block, Device Table, and Root Directory objects as metadata.

As shown in Figure 2, OSD manages the storage data in
the form of objects. Each object has an exclusive partition ID
(PID) and an object ID (OID), which is the only identifier for
the object within the device. In general, there are four different
types of data objects in the storage. For each OSD logical unit,
there is a root object, whose PID and OID are both set to 0x0.
The root object records the global information about the OSD,
such as the device capacity, the number of partitions. Another
important type of object is partition object. To facilitate the
management of data objects, the whole OSD logical unit is
divided into multiple partitions. Each partition contains a set
of collection objects and user objects. The collection objects
are created for the sake of fast indexing and grouping. A
user object belongs to no or multiple collections [7]. All the
collection objects and user objects within one partition share
the same PID but have distinct OIDs.

Root Object

.
.
.

Partition 0 Partition N

Object 0

...

.
.
.

Root Object User ObjectPartition Object Collection Object

Object 1

Object 2 Object 3

Object 4 Object 5

Object

N-1
Object N

Fig. 2: Partition, Collection, and User objects in OSD.

OSD can be emulated by using iSCSI protocol coupled
with the current block-based devices. The initiator refers to
the host-side of an iSCSI session, while the target refers to
the server-side of an iSCSI session. On the initiator side, a
special file system exofs, which has been adopted in the Linux
kernel, runs on top of the initiator and exposes a file system
interface to the upper-level applications. All the file system
metadata (e.g., superblock, inode), regular files, and directories
are stored in the OSD in the form of user objects. On the target
side, it can use a regular file system (e.g., Ext4) to manage
the data objects, and a regular database (e.g., SQLite [11]) to
manage the related OSD metadata. Table I shows the different
types of OSD objects defined in exofs.

B. Data Reliability

For data reliability, certain level of data redundancy needs
to be introduced into the storage for recovery upon device
failures. There are two typical ways to achieve this purpose.

Data replication: As a simple way to enhance data re-
liability, multiple replicas can be stored in a faulty-isolated
manner (e.g., spread out to separate disks, data nodes, racks,
or even data centers). The limitation of data replication is the
high storage overhead. For example, to survive M failures, we
need to store M extra copies at the cost of storage space. The
storage efficiency is as low as 1

M+1 of that without replication.
Therefore, the data replication approach is often applied

with a low redundancy level or for small-sized data only [12].
For example, Google File System [13] uses a so-called tripli-
cation to store three replicas in multiple locations to enhance
the reliability and availability, significantly amplifying the
storage space cost. Recently, space-efficient erasure coding
methods are replacing the triplication method in many dis-
tributed systems to reduce the storage overhead [14].

Erasure coding: Erasure coding is widely used in data
protection and signal processing [12], [14], [15], [16]. The
basic idea of erasure coding is to slice data objects into m
equal-size data chunks and encode them with k parity chunks
into n fragments, and the value of n is the sum of m and k. If
the number of corrupted chunks is less than or equal to k, the
original data can be recovered using any k surviving fragments,
either data chunks or parity chunks. The encoding ratio m

n
describes the space efficiency and the redundancy level [15].
Clearly, the smaller an encoding ratio is, the higher reliability
can be achieved with the lower space efficiency.

In practice, Reed-Solomon code (RS-code) [17] is a com-
monly used erasure coding method, which encodes m data
chunks into n fragments using a Vandermonde matrix [12],
[16]. Since any data update causes a recalculation of the
parity, it would incur a large amount of extra disk reads to
fetch the involved data chunks, which is called direct parity-
updating. To alleviate the write amplification problem, another
method is called delta parity-updating [12]. Upon any update
to the current data chunk, the delta between the updated
data chunk and the original data is obtained. Using the delta
and the original parity can calculate the new updated parity.
The relative performance of the two methods depends on the
number of involved disk reads. In this paper, we choose the
encoding method that incurs the least disk reads.

III. RELATED WORK

Regarding the cost and performance, flash memory falls
nicely in the middle of DRAM and hard disk drives, which
makes it an ideal storage media to form a new caching layer
between the two. A large body of research has studied the
design of flash-based cache in prior work (e.g., [1], [2], [3],
[18], [19], [20], [21], [22], [23], [24]). Although the increase
of bit density has significantly improved the capacity and
cost efficiency, the device reliability becomes an important
concern [4]. Our prior study [25] briefly outlines the key
reliability issues in flash-based caches.

For a large-capacity flash cache, how to quickly warm up
the cache and provide effective caching services is a new
challenge. Zhang et al. have studied the cache warm-up issue
in their early studies [5]. Their solution is to monitor the
storage server workload and keep track of important warm
data. By proactively preloading the warm data into the cache,
the warm-up process can be accelerated, thereby improving
the caching performance. In our study, we focus on retaining
the most important data as much as possible by creating more
chances to allow such data to survive device failures, rather
than warming up an empty cache. These two approaches are
orthogonal and complementary to each other.

In order to provide differentiated data redundancy and
differentiated data recovery, we need to deliver the semantic
knowledge from applications to storage devices. Traditional
block-based storage only sees a sequence of logical blocks,
and the critical semantic information is curtailed by the narrow
Logical Block Address (LBA) interface [26]. A variety of prior
studies have proposed solutions to close this semantic gap. The
“gray-box” [26] approach aims to infer the high-level informa-
tion (e.g., file system metadata vs. data) without changing the
interface. A more aggressive approach is to directly replace
the block interface with an object-based interface [9], which
is more expressive for the communication between upper-
level applications and low-level storage devices. Semantic
information can be easily passed to the device level, allowing
to offload data management to the storage device level, which
understands both hardware characteristics and also application
semantics. However, this solution demands a change to the
interface and applications. More details about object storage
can be found in prior research works [27], [28], [29], [30],
[31]. More recently, Mesnier et al. proposed to adopt a
moderate change to the LBA interface by allowing applications
to classify the data, and to deliver the classification information
through unused bits in the unmodified SCSI commands [32].
Our work is based on the object storage approach.

Our study is also related to prior work on D-GRAID [33],
which is proposed to improve the availability of RAID storage
by using a method similar to that introduced in semantic smart
storage [26]. D-GRAID stores the semantically related blocks
(e.g., data blocks of one file) in a fault-isolated manner (e.g.,
concentrated in one disk), and replicates the file system meta-
data among multiple devices for better fault tolerance. To avoid
clustered device failures, Balakrishnan et al. [34] propose to

age SSDs within the array at different rates through unevenly
distributed writes and parity reshuffle. Zhang et al. [12] also
have implemented a solution to improve the performance of in-
memory key-value storage. Their solution is to apply different
data redundancy techniques to handle large and small data
separately. The more space-efficient coding method is used for
large data, while the faster data replication method is applied
to small ones for reduced computational overhead. Our work
differentiates data based on their importance and focuses on
providing high reliability guarantees while still achieving high
space efficiency for caching.

IV. DESIGN

In this section, we will first describe the overall architecture
of Reo, and then the design of the two key mechanisms
differentiated data redundancy and differentiated data recovery
for achieving high reliability, efficiency, and performance.

A. Architecture Overview
Reo is a highly reliable, efficient, object-based cache built

on an array of flash SSDs. Being carefully designed to survive
partial or complete device failures, Reo achieves the desirable
graceful degradation and prioritized data recovery. To meet
this goal, Reo implements two key mechanisms:
• Differentiated data redundancy. Reo is an object-based
cache. It leverages the expressive object interface to differ-
entiate and manage the cache data in units of individual
objects. Exploiting the semantic hints from the cache system,
Reo effectively differentiates data objects in cache (e.g., hot
vs. cold, dirty vs. clean). Storing data in a fault-isolated
manner on an array of flash devices, Reo assigns different
data redundancy levels according to their semantic importance,
ensuring that critical data objects can survive multi-device
failures and provide graceful degradation.
• Differentiated data recovery. In order to minimize the impact
of disrupted caching services, Reo is also designed to prioritize
the data recovery process based on the data importance. In
other words, we recover the data objects in the order of
their semantic importance to make sure the most likely-to-be-
accessed data objects available at the earliest time. Leveraging
the object interface, Reo is also able to ensure the live data
objects on the surviving devices still accessible, without being
affected by the unrelated device failures.

B. Object Storage Interface
A key task of Reo is to differentiate data objects and handle

them with distinct policies. In traditional storage systems,
applications communicate with storage devices through the
Logical Block Address (LBA) interface, which simplifies the
data storage abstraction as a sequence of equal-size blocks. In
contrast, Reo is an object-based cache built on Object Storage
Device (OSD) [7], which is an extension to the T10 Small
Command Set Interface (SCSI) standard [8]. Leveraging the
expressibility of the object interface, we assign a label, which
is in effect a semantic hint, with each data object; when
the OSD storage receives a labeled object, the object storage
system applies the policy accordingly.

System Call Interface

Data

Encoding

Object-based Interface

Array of SSDs

Data

Recovery

Object-based Cache

HDD

Object-based Storage

OSD Initiator

Exonfs

File System

Data Classification

LRU Queue

Cache Manager

OSD0

Exofs

OSD1

OSD Target

Fig. 3: An illustration of Reo cache architecture.

C. Differentiated Data Redundancy

Data objects in the cache are not equally important—Dirty
data objects are more important than clean ones, since they
are the only valid copy in the system (not synchronized to
the backend data store); the frequently accessed (hot) objects
are more important than the infrequently accessed (cold) ones,
since these cold data objects are unlikely to be accessed soon.
We desire to have the more important data objects remain
accessible, even upon cache device failures.

The purpose of differentiated data redundancy is to achieve
both space efficiency and also data reliability, by selectively
applying different levels of data redundancy. In particular, a
high level of redundancy is applied to “important” data objects,
allowing which to survive multi-device failures at the cost of
extra space consumption; a low level of redundancy is applied
to “unimportant” data objects, which saves space at the cost
of being more vulnerable to device failures.

Reo realizes differentiated data redundancy in three steps:
(1) classifying data objects in cache, (2) delivering the clas-
sification information to the object-based flash cache, and (3)
applying the data encoding policy accordingly in the object-
based flash cache.

C.1. Data Classification: The cache manager categorizes
data objects into different groups, according to their semantic
importance; and the object-based flash storage applies the
predefined policies, accordingly. This brings three benefits.

First, although various applications may have different types
of semantic knowledge, the grouping information can be easily
standardized. Second, the storage system can simply apply the
corresponding policy without knowing the application details.
Third, the interface change can be minimized and easily
incorporated in the current object storage interface.

Reo classifies the data in the whole system into four groups,
from high to low, according to their importance.
• Group #0: System metadata. Object storage maintains a set
of special objects persistently for organizing the storage data,

such as Root Object, Partition Object, Super Block Object,
Device Table Object and Root Directory Object. Besides the
standard OSD metadata objects, other application metadata can
be also classified into this group. These metadata are crucial to
the system integrity and must be given the strongest protection.
These metadata objects are given a Class ID “0”.
• Group #1: Dirty cache data. In a write-back cache server,
the data updates are temporarily saved in the cache (a.k.a.
dirty data). If the dirty data are corrupted, the most recent copy
would be permanently lost. Therefore, we need to separate the
dirty data objects from the clean ones, offering them a strong
protection. Dirty cache data objects are categorized with a
Class ID “1”.
• Group #2: Hot clean data. To provide graceful degradation
of cache services, we also desire to identify the frequently
accessed data objects and ensure they can survive severe
device failures, so that we can continue to provide caching
services to satisfy most requests. Since most requests still can
be hit in the local cache, we will see a graceful degradation
of caching services, rather than a sudden, complete service
disruption. Reo classifies hot cache data objects with a Class
ID “2”.
• Group #3: Cold clean data. The lowest protection is given
to cold and clean data objects in the cache. This is for several
reasons. First, retaining cold data objects in cache contributes
less to the cache hit ratio. Second, a low-level protection means
less cache space consumption. The saved space can be used
for caching more data. Third, even if a clean data object is
unrecoverable, the client still can retrieve it from the backend
data store. These data objects are given a Class ID “3”.

TABLE II: Classification of data objects in Reo.

Name Metadata Read-freq Dirty Class ID

A 3 ∼ ∼ 0
B 7 ∼ 3 1
C 7 3 7 2
D 7 7 7 3

Note: 3 means that the attribute is true; 7 means that the attribute is
false; ∼ means that the attribute is irrelevant.

Table II summarizes the above-said four data classifications.
For the first two classes, we can easily obtain the classification
information from the object storage system and the cache
manager. We classify the hot and cold clean data objects using
a greedy algorithm, as described below.

To identify the hot data, we consider two important factors.
(1) Read Frequency. The more frequently a data object is
accessed in cache, the more important this object is. We
associate a counter, Freq, with each object to record how many
times being accessed since it enters the cache. (2) Object Size.
The smaller a data object is, the higher priority it has. Given
a certain amount of cache space, caching smaller objects can
contribute more to improve the cache hit ratio than caching a
few large ones. Thus, the priority of a data object is reversely
proportional to the object size. Combining both, we calculate
an H value, H = Freq

Size , for each data object, as an indicator of
its hotness.

In order to differentiate the hot and cold data objects, we
need to determine a proper threshold Hhot . An object with an
H value greater than Hhot is classified as a hot object. We use
an adaptive approach to identify the threshold as follows.

We first sort the data objects in the descending order of
their H values. Then we presumably add the data objects into
the cache one by one, until a predefined data redundancy
percentage (e.g., 10%) is reached. That means that all the
remaining cache space should only be used to accommodate
the cold data objects, which do not need extra space for data
redundancy. We record the H value of the last “hot” data object
that is included in the cache, as an initial cutoff threshold, Hhot .
This Hhot threshold can be updated periodically to be adaptive
to the change of workloads.

C.2. Communication Interface: To enable the communica-
tion between the cache manager and the object-based flash
storage, we need a mechanism to deliver a variety of man-
agement and control information through the object interface.
For flexibility and generality, we have designed a special
mechanism for such a communication.

We define a special data object (reserved OID 0x10004) as a
communication point. All control messages are encoded into a
predefined format and written to this special object. To ensure
the object storage truly receives the message, we use fsync to
bypass the system buffer cache and explicitly flush the write to
the storage side immediately. As a message accounts for only
a few dozen bytes, the write operation can be completed very
quickly. When the object storage receives a write command to
this special object, it decodes the message and performs the
corresponding operation. Our current prototype defines two
types of commands.
• Classification command. A classification command delivers
a classifier (Class ID) for a specified data object. A classifica-
tion command has four fields. A header is a string “#SETID#”,
followed by the PID and OID of the target object, and then the
class ID, CID. After receiving the command, the object storage
sets the class of the object and applies the policy, accordingly.
• Query command. A query command retrieves the status
of a queried object. A query command consists of six fields.
A header is a string “#QUERY#”, followed by two fields, the
object PID and OID, which specify the target object. Additional
fields include the operation type (R/W), the offset, and the size
of the queried object. If the query is successful, a sense code
is returned. For example, the sense code 0x64 indicates that
the object storage is full, demanding a cache replacement. A
list of the sense codes is shown in Table III.

TABLE III: Sense code definition in Reo.

Sense code Description

0 The command is successful
-1 The command is unsuccessful

0x63 Data is corrupted
0x64 The cache is full
0x65 Recovery starts
0x66 Recovery ends
0x67 The allocated space for data redundancy is full

C.3. Device Management: The object storage of Reo is
built on an array of flash devices, which adopts a stripe-based
mechanism similar to Redundant Array of Independent Disks
(RAID) [35] to reliably manage data objects in a fault-isolated
manner. Figure 4 shows a basic structure, working as follows.

Data 0 Data 1 Data 2 Data 3

Parity 0 Data 0 Data 1 Data 2

Data 4

Data 3

Data 0 Parity 0 Parity 1 Data 1

Data 0 Data 0 Data 0 Data 0

Data 2

Data 0

SSD0 SSD1 SSD2 SSD3 SSD4

Full Replication:

1-Parity Stripe:

0-Parity Stripe:

2-Parity Stripe:

Fig. 4: An illustration of chunks and stripes in Reo.

In the flash array of Reo, the basic management unit is a
stripe. Each stripe has a unique stripe ID. A stripe is divided
into multiple chunks, each of which is mapped to a flash device
individually. A chunk could be a data chunk, which stores the
original data object content, or a parity chunk, which stores the
parity information encoded from the data chunks of the same
stripe. We map the parity chunks to the devices in a round-
robin manner for an even distribution. We use Reed-Solomon
code [17] to encode the parity chunks.

Unlike RAID, a stripe in Reo may contain a variable number
of parity chunks. A stripe without a parity chunk contains
no redundant information, meaning that if any chunk of this
stripe is corrupted, the data chunk is permanently lost; a stripe
may contain one or multiple parity chunks, and the number
of parity chunks in a stripe determines the redundancy level
of the stripe. Clearly, the more parity chunks in a stripe, the
more device failures a stripe can survive. A special case is full
replication, where the same data chunk is replicated across the
entire stripe.

C.4. Data Encoding Policy: The data encoding policy de-
termines how to achieve differentiated data redundancy. The
object storage of Reo offers a high data redundancy for data
objects with a higher priority. Here we describe how we handle
the four distinct data object groups.
• Group #0: Metadata objects. System metadata (Class ID:
0) is the most important data in our system. Thus, we apply an
aggressive replication policy to offer such objects the strongest
protection against device failures. We replicate each metadata
object across all the devices, which is similar to how Linux
Ext4 file system handles the superblocks. Since metadata
objects are small (e.g., the largest one, root directory object,
is only 4KB), such a replication is not space-consuming.
• Group #1: Dirty data objects. Dirty data objects (Class
ID: 1) contain the most recent updates in the system. Since
the backend data store is not updated yet, losing a dirty data
object would cause a permanent data loss. Thus, we also give
them a strong protection by replicating them across the flash
devices, similar to the metadata objects. As our aim for read-
intensive workloads, the total amount of dirty data objects is
small enough to afford such a replication method.

• Group #2: Hot clean objects: Hot and clean data objects
(Class ID: 2) are frequently accessed. Although losing such
data would not cause catastrophic consequences, retrieving
them from the backend data store still incurs a long I/O latency.
To retain a high hit ratio and ensure a graceful degradation, we
desire to offer such hot data objects a reasonable redundancy
level to protect them from device failures. Thus, we encode
these data objects with two parity blocks in a stripe, which
ensures that they can survive no more than two device failures.
Due to the cache locality, hot data objects account for a
relatively small percentage of the entire cache.
• Group #3: Cold clean objects: Cold and clean data objects
(Class ID: 3) are the majority in the cache, covering a large
portion of the entire data set, which helps eliminate most long-
latency accesses to the backend data store. However, relative to
the hot objects, these data objects are less frequently accessed,
losing them would not cause significant addition of latencies.
Thus, we do not provide any data redundancy for such data
objects, saving a lot of cache space.

D. Differentiated Data Recovery

In order to accelerate the data recovery process and bring the
caching services back up as quickly as possible, Reo adopts a
differentiated data recovery mechanism to quickly reconstruct
the corrupted data objects.
On-demand access. For a storage failure involving a subset of
devices, the other surviving devices still contain a large amount
of live data objects, which remain accessible in complete. Reo
manages cache data in objects rather than in blocks. Thus, Reo
is fully aware if an object is (1) immediately accessible, (2)
corrupted but recoverable, or (3) irrecoverable.

Upon an object request, we first check if the object is
still available. If the data loss exceeds the recovery capability
(greater than k), the object is permanently lost. Otherwise,
there are two possibilities. One is that the object itself is still
alive and we can directly return the object. The other possible
case is that the object is corrupted but can be reconstructed
using the remaining data chunks and the parity chunks through
the encoding process. In this case, we need to read the
surviving chunks, reconstruct the data, and return to satisfy
the request.
Data reconstruction. When a spare device is inserted into
the flash array, the object storage of Reo initiates a data
reconstruction process. Traditional block-based reconstruction
simply rebuilds the entire storage from block 0. In contrast,
Reo optimizes this process in two aspects.

First, Reo only reconstructs valid data objects, which could
be a small portion of the whole storage capacity. Thus, the
invalid blocks and irrecoverable objects are simply skipped,
which greatly accelerates the recovery process.

Second, Reo prioritizes the recovery based on the semantic
importance of data objects. This brings two benefits. First,
during the data recovery, another device failure could happen.
Prioritized recovery minimizes this vulnerable window by
reconstructing the most important data first to create additional
data redundancy on the new device as quickly as possible.

Second, due to the nature of cache locality, recovering the hot
data objects first makes the data objects ready for access at the
earliest time, which eliminates the delay of waiting for on-line
data reconstruction, improving performance.

Reo offers the highest priority to handle the on-demand
access first. When there is no on-demand requests, the re-
construction procedure restores the recoverable data objects
according to their class (metadata, dirty data, hot clean data,
and finally cold clean data), from Class 0 to Class 3, in
that order. In this way, we can realize the differentiated data
recovery according to their semantic importance, effectively
enhancing data reliability and also performance.

V. IMPLEMENTATION

To evaluate the proposed design, we have prototyped Reo
based on open-osd [6], an open-source implementation of
Object Storage Device (OSD) in Linux. Open-osd has two
main parts, osd-initiator (client) and osd-target (server). The
osd-initiator includes an exofs module and an ore (object raid
engine) module, which are adopted in Linux. Our implemen-
tation is based on Linux kernel 4.4.10. We have modified
exofs, focusing on the device table part, and recompiled it
into the Linux kernel. For our test, we specify two OSD
targets by setting the variable first_dev to a fixed value
(0 or 1) to specify the operation’s target device (OSD0 or
OSD1), respectively. For communications between the OSD
and the upper-level cache manager, we use a special object
(OID: 0x10004). All writes to this object are performed in
synchronous mode.

The osd-target is a user-level program, which is mainly
responsible for data object management in the flash array.
We have added about 6,000 lines of C code to implement
the differentiated redundancy and recovery in an object-based
array of flash SSDs in the target. In the original osd-target,
all the data objects are managed by the host file system, and
the metadata is handled with a SQLite database [11]. In our
prototype, the file system and the SQLite database are replaced
with our flash SSD array and a hash table to manage the data
object storage.

We have also implemented an object-based cache manager
for about 2,000 lines of C code on the osd-initiator side.
For cache replacement, we use the standard Least Recently
Used (LRU) replacement algorithm. The replacement is im-
plemented at the object level. The hot and cold data object
classification is also implemented in the cache manager.

VI. EVALUATION

In order to evaluate our proposed scheme, we measure the
performance of Reo in two situations. (1) Normal run. In the
normal running state, Reo applies differentiated data redun-
dancy to data objects. It allows us to utilize the cache space
more efficiently for achieving a higher cache hit ratio. (2)
Failure resistance. Upon device failures, Reo enables graceful
degradation and provides continuous caching services, though
at a degraded performance. Reo also recovers the cache in a
prioritized manner by reconstructing the important data first.

In our experiments, we compare Reo with the classic
approach, Uniform Data Protection, which does not differ-
entiate data objects for parity calculation and recovery and
indistinguishingly applies the same level of redundancy to all
data objects. We evaluate the effectiveness of Reo in four
metrics, space efficiency, hit ratio, bandwidth, and latency.

A. Experimental Setup

In our experimental system, we conduct all the tests on
three Lenovo TS440 ThinkServers. Each server is equipped
with a 4-core Intel Xeon E3-1266 3.3 GHz processor, 16 GB
memory, and a 7,200 RPM 1-TB Western Digital hard drive.
The cache server is equipped with an array of five 120-GB
Intel 540s flash SSDs. The storage server uses a separate 1-
TB Western Digital hard disk drive as the back-end data store.
All servers are connected in a 10-Gbps Ethernet network. We
use 64-bit Ubuntu 14.04 LTS with Linux kernel 4.4.10.

We use MediSyn [36] to generate three representative
workloads with various access patterns following Zipfian dis-
tributions. We synthesize the workloads by converting the files
into objects. Specifically, we generate three group of traces
with different localities, namely weak, medium, and strong.
All the workloads use a data set of 4,000 unique data objects
with the same object distribution. The average object size is
around 4.4 MB, and the total amount of data set is about
17.04 GB. The weak, medium, and strong workloads have
25,616, 51,057, and 89,723 read requests in total, respec-
tively. The total amounts of accessed data are approximately
109.4 GB, 220.04 GB, and 386.78 GB for the three workloads,
respectively.

We configure the cache size from 4% to 12% of the total
amount of workload data set. The three groups of workloads,
weak, medium, strong, are used to compare Reo with the
traditional uniform data protection, which distributes the parity
chunks across the devices in a uniform, round-robin manner
and indistinguishingly applies data protection to all the data
objects. We use four different settings for the uniform data
protection. In particular, 0-parity means no data redundancy
for the entire cache data; 1-parity and 2-parity mean that we
use 1 parity and 2 parity chunks in a stripe for data protection,
and full-replication means that we maintain replicas across all
devices for all the data objects.

B. Normal Run

An important goal of Reo is to maximize the space effi-
ciency without sacrificing data reliability. Reo selectively ap-
plies different levels of redundancy to data objects according to
their semantic importance. In contrast, the traditional uniform
protection approach simply introduces extra parity information
to all data objects equally.

We define space efficiency as the percentage of user data
among the entire occupied storage space (i.e., the sum of
data and parity). Thus, for a five-device flash array, the space
efficiency of 0-parity is 100%, and that of 1-parity and 2-parity
is 80% and 60%, respectively. Since Reo does not uniformly
provide data protection, we reserve a certain percentage of

flash space for parity information. Reo-10% means that we
reserve 10% of the flash space for parity. For a fair comparison,
we also test Reo-20% and Reo-40% to compare with the two
uniform data protection cases, 1-parity and 2-parity. In order to
fully exercise the flash cache, the cache server is configured
with 4 GB memory in the experiments. The flash array is
configured to use a chunk size of 64 KB.

Our results confirm that Reo-10% achieves 90.5%, 91.0%,
and 90% average space efficiency for weak, medium, and
strong workload, respectively. Reo-20% and Reo-40% also
show space efficiency close to the specified parity percentage.

Fig 5 shows the hit ratio, bandwidth, and latency results
under normal run. Despite the more complex data object
classification and differentiated data redundancy management,
Reo-20% achieves nearly identical performance to uniform
data protection (1-parity) under normal run condition. This is
as expected, since they have the same overall space efficiency.
Similar results are observed in medium and strong workload as
well. Reo-40% shows up to 1.8 percentage points (p.p.) higher
in hit ratio than 2-parity, which in turn increases the bandwidth
by up to 1.5%, and decreases the latency by up to 2.8%. This is
the result of having differentiated data redundancy. Reo does
not have to use up the entire 40% flash space reserved for
parity, if all the important data objects are already protected.
Thus, the saved space can be used to cache more data. Also
note that this slight performance improvement is as expected,
since Reo reserves the same amount of space for parity. This
result also well illustrates the low overhead of Reo.

C. Failure Resistance

Reo handles device failures by providing differentiated
redundancy, which ensures important data more survivable
during failures, to achieve a graceful performance degradation.

To illustrate the effect of caching services under device
failures, we first fully warm up the cache. Then we emulate
the device failure as follows. On the osd-target, we use an
individual program to send the target device ID to the OSD
manager via shared memory. Upon receiving the “shootdown”
command, OSD takes the device offline and sets all the
affected data objects as “corrupted”. Applications running on
the osd-initiator side can check the status through a query
command to OSD. If the sense code 0x65 is received, it
means that the device failure occurs; if the sense code 0x00
is returned, it means that the object is accessible; if the sense
code 0x63 is received, it indicates that the queried data object
is corrupted and irrecoverable. In order to ensure repeatable
tests, we inject failure points in specified positions. We run
the medium workload and inject four failure points at the
10,000th, 20,000th, and 30,000th, 40,000th requests to trigger
four device failures in total, one in addition each time. In
the experiments, the cache server is configured to use 4 GB
memory and a chunk size of 1 MB. The cache size is set to
10% of the workload data set size.

Upon device failures, the available cache space and the
available data in cache both decrease. Figure 8a shows the
change of cache efficiency as number of device failures

 0

 20

 40

 60

 80

 100

4 6 8 10 12

H
it
 R

a
ti
o
 (

%
)

Cache Size (%)

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(a) Hit Ratio

 0

 100

 200

 300

 400

 500

 600

 700

 800

4 6 8 10 12

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

Cache Size (%)

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(b) Bandwidth

 0

 5

 10

 15

 20

 25

 30

4 6 8 10 12

L
a
te

n
c
y
 (

m
s
)

Cache Size (%)

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(c) Latency

Fig. 5: Hit ratio, bandwidth, and latency comparison for weak-locality workloads.

 0

 20

 40

 60

 80

 100

4 6 8 10 12

H
it
 R

a
ti
o
 (

%
)

Cache Size (%)

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(a) Hit Ratio

 0

 100

 200

 300

 400

 500

 600

 700

 800

4 6 8 10 12

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

Cache Size (%)

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(b) Bandwidth

 0

 5

 10

 15

 20

 25

 30

4 6 8 10 12

L
a
te

n
c
y
 (

m
s
)

Cache Size (%)

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(c) Latency

Fig. 6: Hit ratio, bandwidth, and latency comparison for medium-locality workloads.

 0

 20

 40

 60

 80

 100

4 6 8 10 12

H
it
 R

a
ti
o
 (

%
)

Cache Size (%)

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(a) Hit Ratio

 0

 100

 200

 300

 400

 500

 600

 700

 800

4 6 8 10 12

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

Cache Size (%)

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(b) Bandwidth

 0

 5

 10

 15

 20

 25

 30

4 6 8 10 12

L
a
te

n
c
y
 (

m
s
)

Cache Size (%)

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(c) Latency

Fig. 7: Hit ratio, bandwidth, and latency comparison for strong-locality workloads.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

H
it
 R

a
ti
o
 (

%
)

Number of Failed Devices

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(a) Hit Ratio

 0

 100

 200

 300

 400

 500

 600

0 1 2 3 4

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

Number of Failed Device

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(b) Bandwidth

 0

 10

 20

 30

 40

 50

 60

0 1 2 3 4

L
a
te

n
c
y
 (

m
s
)

Number of Failed Device

0-parity
1-parity

2-parity
Reo-10%

Reo-20%
Reo-40%

(c) Latency

Fig. 8: Hit ratio, bandwidth, and latency during device failures and recovery.

increases. When one device failure occurs, the hit ratio of
0-parity immediately drops to zero, because there is no data
redundancy and the entire cache is corrupted and becomes
unusable. In contrast, 1-parity and 2-parity are able to recon-
struct all the lost data with parity, thus their hit ratios remain

the same. The hit ratios of Reo are affected due to the loss
of the unprotected cold data, but the overall hit ratios remain
at reasonable level, since the most important data objects are
still accessible. Reo-10% shows a hit ratio drop of 12.6 p.p.,
whereas Reo-40% only drops by 1.5 p.p., which is minimal.

 0

 20

 40

 60

 80

 100

10 20 30 40 50

H
it
 R

a
ti
o
 (

%
)

Write Ratio (%)

Full replication Reo

(a) Hit Ratio

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

10 20 30 40 50

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

Write Ratio (%)

Full replication Reo

(b) Bandwidth

 0

 10

 20

 30

 40

 50

10 20 30 40 50

L
a
te

n
c
y
 (

m
s
)

Write Ratio (%)

Full replication Reo

(c) Latency

Fig. 9: Hit ratio, bandwidth, and latency comparison for write-intensive workloads.

We can also find that the larger portion of space is allocated
for parity, the less the hit ratio of Reo is affected upon device
failures due to the extra data redundancy.

When there is a second device failure, the hit ratio of 1-
parity drops to zero suddenly. It is because with only one
parity, the corrupted data on the two failed devices cannot
be reconstructed. With the same space efficiency, Reo-20%
shows a hit ratio of 61.4% when two device failures occurs.
We have observed similar results for the case of having three
device failures. 2-parity fails completely, whereas Reo-40%
still retains a hit ratio of 58.3%. It is worth noting that
when more than two devices fail, a cache with uniform data
protection, 1-parity or 2-parity, becomes completely unusable,
with a hit ratio of 0%. While with Reo, cache remains
functional as long as there is at least one working device.
It is due to the differentiated data redundancy provided by
Reo, which gives the highest protection to the most important
data. The above experiments clearly show that Reo can achieve
graceful degradation, in contrast to a sudden and complete
service loss with uniform data protection.

The average bandwidth and latency during recovery are
shown in Fig 8b and Fig 8c. Under normal run, Reo-
20% (438 MB/sec) shows a similar bandwidth as 1-parity
(437 MB/sec). When one device fails, 1-parity drops to
303 MB/sec, while Reo-20% maintains the bandwidth at
387 MB/sec. This is due to Reo’s on-demand access and
prioritized recovery, with which important data objects still
can be accessed directly or reconstructed in the order of their
classifications. Similar results are found across all configura-
tions of Reo.

D. Dirty Data Protection

In a write-back cache, dirty data need to be protected
to avoid irrecoverable data loss. In this set of experiments,
we compare the uniform full replication protection method
with Reo. We have synthesized five write-intensive medium
workloads with the write request ratio varying from 10% to
50%. We configure the cache server with 6 GB memory and
use a chunk size of 64 KB. The cache size is set to 10% of
the workload data set size.

As shown in Fig 9, without any semantic information, the
uniform full replication protection has to assume all the data
are dirty, which leads to a low space utilization (20% when

using 5 devices) and a cache hit ratio of 27.2%, regardless of
the dirty data ratio. Unlike the uniform approach, Reo only
saves the replicas of the dirty data objects. As a result of
the higher space efficiency, Reo shows a hit ratio of 85.6%
when the write ratio is 10%. This in turn makes Reo reach
a bandwidth of 423.6 MB/sec, which is 3.6 times of the full
replication approach, which only has a bandwidth of 117.1
MB/sec. Even in a worse case with a write ratio of 50%, Reo
can still serve 56.8% of the requests in cache, while keeping
all the dirty data safe.

VII. CONCLUSION

In this paper, we present a highly reliable, efficient, object-
based flash cache, called Reo. Reo is designed to achieve
high reliability, efficiency, and performance. By exploiting the
semantic knowledge of flash-based object cache, Reo differ-
entiates the data in cache based on their semantic importance,
and accordingly provides differentiated data redundancy for
maximizing the reliability of important data and differentiated
data recovery for accelerating the recovery of caching services.
Our prototype based on Object Storage Device (OSD) has
shown promising results in experiments.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive
feedback and insightful comments. We are also grateful to
Boaz Harrosh for his technical advice and detailed support
with open-osd. We also thank Ralph O. Weber for providing
us the OSD documents. This work was supported in part by the
U.S. National Science Foundation under Grants CCF-1453705
and CCF-1629291.

REFERENCES

[1] Flashcache. [Online]. Available: https:
//www.facebook.com/notes/facebook-engineering/
flashcache-at-facebook-from-2010-to-2013-and-beyond/
10151725297413920/

[2] M. A. Roger, Y. Xu, and M. Zhao, “BigCache for Big-data Systems,”
in Proceedings of International Conference on Big Data (Big Data’14),
Washington, DC, USA, October 27-30 2014.

[3] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,
S. Kleiman, C. Small, and M. Storer, “Mercury: Host-side Flash Caching
for the Data Center,” in Proceedings of IEEE 28th Symposium on Mass
Storage Systems and Technologies (MSST’12), San Diego, CA, USA,
April 16-20 2012.

https://www.facebook.com/notes/facebook-engineering/flashcache-at-facebook-from-2010-to-2013-and-beyond/10151725297413920/
https://www.facebook.com/notes/facebook-engineering/flashcache-at-facebook-from-2010-to-2013-and-beyond/10151725297413920/
https://www.facebook.com/notes/facebook-engineering/flashcache-at-facebook-from-2010-to-2013-and-beyond/10151725297413920/
https://www.facebook.com/notes/facebook-engineering/flashcache-at-facebook-from-2010-to-2013-and-beyond/10151725297413920/

[4] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge, “Understanding the
Robustness of SSDs under Power Fault,” in Proceedings of the 11th
USENIX Conference on File and Storage Technologies (FAST’13), San
Jose, CA, February 12-15 2013.

[5] Y. Zhang, G. Soundararajan, M. W. Storer, L. N. Bairavasundaram,
S. Subbiah, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Warming
up Storage-Level Caches with Bonfire,” in the 11th USENIX Conference
on File and Storage Technologies (FAST’13), San Jose, CA, USA,
February 13-15 2013.

[6] open-osd. [Online]. Available: https://github.com/bharrosh/open-osd
[7] Information Technology - SCSI Object-Based Storage Device

Commands - 2 (OSD-2). [Online]. Available: https://www.techstreet.
com/incits/standards/incits-458-2011?product id=1801667#jumps

[8] T10 SCSI. [Online]. Available: http://www.t10.org/lists/2op.htm
[9] M. Mesnier, G. Ganger, and E. Riedel, “Object-based Storage,” IEEE

Communications Magazine, vol. 41, pp. 84–90, 2003.
[10] exofs. [Online]. Available: https://elixir.bootlin.com/linux/v4.4.10/

source/fs/exofs
[11] SQLite. [Online]. Available: http://www.sqlite.org
[12] H. Zhang, M. Dong, and H. Chen, “Efficient and Available In-memory

KV-Store with Hybrid Erasure Coding and Replication,” in Proceedings
of the 14th USENIX Conference on File and Storage Technologies
(FAST’16), Santa Clara, CA, USA, February 23-25 2016.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), Bolton Landing, NY, USA, October 19-22 2003.

[14] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery and
Degraded Reads,” in Proceedings of the 10th USENIX Conference on
File and Storage Technologies (FAST’12), San Jose, CA, USA, February
14-17 2012.

[15] H. Weatherspoon and J. Kubiatowicz, “Erasure Coding Vs. Replication:
A Quantitative Comparison,” in the International Workshop on Peer-to-
Peer Systems, Cambridge, MA, USA, March 07-08 2002.

[16] J. S. Plank, J. S. Plank, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn,
“A Performance Evaluation and Examination of Open-Source Erasure
Coding Libraries for Storage,” in Proceedings of the 7th Conference on
File and storage technologies (FAST’09), Berkeley, CA, USA, February
24-27 2009.

[17] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[18] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala,
and M. Zhao, “Write Policies for Host-side Flash Caches,” in Proceed-
ings of the 11th USENIX Conference on File and Storage Technologies
(FAST’13), San Jose, CA, USA, February 13-15 2013.

[19] D. A. Holland, E. Angelino, G. Wald, and M. I. Seltzer, “Flash Caching
on the Storage Client,” in Proceedings of the 2013 USENIX Annual
Technical Conference (USENIX ATC’13), San Jose, CA, USA, June 26-
28 2013.

[20] D. Arteaga and M. Zhao, “Client-side Flash Caching for Cloud Sys-
tems,” in Proceedings of International Conference on Systems and
Storage (SYSTOR’14), Haifa, Israel, June 30 – July 02 2014.

[21] D. Qin, A. D. Brown, and A. Goel, “Reliable Writeback for Client-side
Flash Caches,” in Proceedings of the 2013 USENIX Annual Technical
Conference (USENIX ATC’14), Philadelphia, PA, USA, June 19-20
2014.

[22] M. Saxena and M. M. Swift, “Design and Prototype of a Solid-state
Cache,” ACM Transactions on Storage, vol. 10, no. 3, p. 10, 2014.

[23] K. Wang and F. Chen, “Cascade Mapping: Optimizing Memory Ef-
ficiency for Flash-based Key-value Caching,” in Proceedings of the
ACM Symposium on Cloud Computing (SOCC’18), Carlsbad, CA, USA,
October 11-13 2018.

[24] F. Chen, D. Koufaty, and X. Zhang, “Hystor: Making the Best Use of
Solid State Drives in High Performance Storage Systems,” in Proceed-
ings of the 25th ACM International Conference on Supercomputing (ICS
2011), Tucson, AZ, May 31 - June 4 2011.

[25] J. Liu, “Brief Announcement: Exploring Schemes for Efficient and
Reliable Caching in Flash,” in Proceedings of Workshop on Storage,
Control, Networking in Dynamic Systems (SCNDS’18), New Orleans,
LA, USA, October 19 2018.

[26] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Semantically-Smart Disk
Systems,” in Proceedings of the 2nd USENIX Conference on File and

Storage Technologies (FAST’03), San Francisco, CA, USA, March 31-31
2003.

[27] C. Karakoyunlu, M. T. Runde, and J. A. Chandy, “Using an Object-
Based Active Storage Framework to Improve Parallel Storage Systems,”
in Proceedings of the 43rd International Conference on Parallel Pro-
cessing Workshops, Minneapolis, MN, USA, September 9-12 2014.

[28] B. Hou and F. Chen, “Pacaca: Mining Object Correlations and Par-
allelism for Enhancing User Experience with Cloud Storage,” in the
26th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS’18), Milwaukee,
WI, USA, September 25-28 2018.

[29] Y. Kang, J. Yang, and E. L. Miller, “Efficient Storage Management for
Object-based Flash Memory,” in Proceedings of 2010 IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS’10), Miami Beach, FL,
USA, August 17-19 2010.

[30] Y.-S. Lee, S.-H. Kim, J.-S. Kim, J. Lee, C. Park, and S. Maeng, “OSSD:
A Case for Object-based Solid State Drives,” in Proceedings of IEEE
29th Symposium on Mass Storage Systems and Technologies (MSST’13),
Long Beach, CA, USA, May 6-10 2013.

[31] Y. Kang, J. Yang, and E. L. Miller, “Object-based SCM: An Efficient
Interface for Storage Class Memories,” in Proceedings of IEEE 27th
Symposium on Mass Storage Systems and Technologies (MSST’11),
Denver, CO, USA, May 23-27 2011.

[32] M. Mesnier, F. Chen, T. Luo, and J. B. Akers, “Differentiated Storage
Services,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP’11), Cascais, Portugal, October 23-
26 2011.

[33] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Improving Storage System Availability with D-GRAID,”
ACM Transactions on Storage (TOS), vol. 1, no. 2, pp. 137–170, 2005.

[34] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi, “Differen-
tial RAID: Rethinking RAID for SSD Reliability,” ACM Transactions
on Storage, vol. 6, no. 2, p. 4, 2010.

[35] D. A. Patterson, G. A. Gibson, and R. H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” in Proceedings of the Inter-
national Conference on Management of Data (ACM SIGMOD 1988).
Chicago, IL: ACM Press, June 1988.

[36] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat, “MediSyn: A Synthetic
Streaming Media Service Workload Generator,” in Proceedings of the
13th international workshop on Network and operating systems support
for digital audio and video (NOSSDAV’03), Monterey, CA, USA, June
01-03 2003.

https://github.com/bharrosh/open-osd
https://www.techstreet.com/incits/standards/incits-458-2011?product_id=1801667#jumps
https://www.techstreet.com/incits/standards/incits-458-2011?product_id=1801667#jumps
http://www.t10.org/lists/2op.htm
https://elixir.bootlin.com/linux/v4.4.10/source/fs/exofs
https://elixir.bootlin.com/linux/v4.4.10/source/fs/exofs
http://www.sqlite.org

	Introduction
	Reliability Challenges in Flash-based Cache
	Design Goals
	Reo: A Reliable and Efficient Object-based Flash Cache

	Background
	Object-based Storage
	Data Reliability

	Related Work
	Design
	Architecture Overview
	Object Storage Interface
	Differentiated Data Redundancy
	Differentiated Data Recovery

	Implementation
	Evaluation
	Experimental Setup
	Normal Run
	Failure Resistance
	Dirty Data Protection

	Conclusion
	References

