
One Size Never Fits All: A Flexible Storage
Interface for SSDs

Zhaoyan Shen∗, Feng Chen†, Gala Yadgar‡, Zili Shao §
∗Shandong University, †Louisiana State University, ‡Technion, §The Chinese University of Hong Kong

ABSTRACT

The rapid adoption of solid-state drives (SSDs) as a
major storage component has been made possible thanks to
their ability to export a standard block I/O interface to file
system and application developers. Meanwhile, this high-level
abstraction has been shown to limit the utilization of the
devices and the performance of applications running on top
of them. Indeed, many optimizations of performance-critical
applications bypass the standard block interface and rely on
low-level control over SSD internal processes. However, the
need to directly manage the physical device significantly
increases development complexity and cost, and reduces its
portability. Thus, application developers must choose between
two extreme options, either easy development or optimal
performance, without a real possibility to balance between
these two objectives.

To bridge this gap, we propose a flexible storage interface
that exports the SSD hardware in three levels of abstraction:
as a raw flash media with its low-level details, as a group
of functions to manage flash capacity, or as a configurable
block device. This multi-level abstraction allows developers
to choose the degree in which they desire to control the
flash hardware in a manner that best suits their applications’
semantics and performance objectives.

We demonstrate the usability of this new model with Prism-
SSD—a prototype of this interface as a user-level library on the
Open-Channel SSD platform. We use each of the interface’s
three abstraction levels to modify the I/O module of three
representative applications: a key-value cache system, a user-
level file system, and a graph processing engine. Prism-SSD
improves application performance by 5% to 27%, at varying
development costs, between 200 and 3,500 lines of code.

I. INTRODUCTION

The complexity of today’s hierarchical and distributed
storage systems is hidden from the users by numerous layers
of abstraction that make up the storage stack, including device
drivers, file systems, databases, file sharing applications, etc.
This abstraction is realized by well-defined interfaces that
expose a standard set of functions between the layers of
the stack. These standard interfaces facilitate portability of

The work described in this paper is partially supported by the grants
from the State Key Program of National Natural Science Foundation of
China No. 61533011, the Research Grants Council of the Hong Kong
Special Administrative Region, China (GRF 15222315, GRF 15273616, GRF
15206617, GRF 15224918), Direct Grant for Research, the Chinese University
of Hong Kong (Project No. 4055096), the U.S. National Science Foundation
under Grants CCF-1453705 and CCF-1629291.

applications and other software-based components to different
hardware platforms, backward compatibility and adoption of
new hardware, and competitive development times.

At the same time, fixed interfaces prevent the components of
the storage stack from sharing valuable information. This gap
is particularly crucial for performance-critical systems, where
application-specific information is exploited to maximize their
utilization of the hardware they are built on. Many ad-hoc
approaches for bypassing layers in the storage stack and
for passing information between them have been proposed.
Examples include pinning pages in memory according to
the query execution plan [1], passing file and priority
information to the storage server’s cache manager [2] and
disk scheduler [3], leveraging application hints for exploiting
caching opportunities in databases [4], file systems [5], [6] and
hadoop applications [7].

The wide adoption of solid-state drives (SSDs) has exposed
well-known issues, such as ‘log-on-log’ [8], [9] and high tail
latency [10]–[12], that result from the semantic gap caused
by accessing SSDs via the standard block I/O interface.
A recent trend directly opens the SSD hardware details to
the applications [13]–[17]. Open-Channel SSD is one such
representative and popular example [14].

With Open-Channel SSD, the physical layout details
(e.g., channels, chips, and blocks) are directly exposed to
applications, which manage them via direct access to the
core flash operations—page-read, page-write, and block-erase.
This low-level control allows applications to optimize their
performance through a tight integration of software and
hardware. Indeed, several studies showed how such direct
access can be used to optimize key-value caches [16], key-
value stores [18]–[20], and LSM-trees [15].

The drawback of this approach is that it introduces
significant challenges into software development. For example,
a strong expertise in SSD hardware is required for application
developers; the development process becomes more complex,
involving both software and hardware . As a result, application
optimizations become ad-hoc and hardware dependent, with
limited portability.

Currently, developers must choose between these two
extreme usage modes, neither of which is ideal. They can
adopt the easy-to-use block interface, but suffer the long-
term consequences on their applications’ performance, or
directly control and optimize every aspect of their SSDs by
taking on excessive development burden. In practice, many
application types and development scenarios call for a finer-
grained compromise. For example, a developer may wish to

Open-Channel SSD

(device specific API)
Commercial SSD

(proprietary FTL, standard block interface)

Raw-flash abstraction
(standard low-level flash interface)

Flash-function abstraction
(standard user-controlled management API)

User-policy abstraction
(“enhanced” tunable block API)

Proposed flexible interface:

Existing fixed interfaces:

[MINIMAL

DEVELOPMENT

OVERHEAD]

[OPTIMAL

PERFORMANCE]

Fig. 1: Existing (bottom) and proposed (top) storage interfaces.

parallelize I/Os without being interested in explicit control of
garbage collection (GC). These two extreme choices, depicted
in the bottom of Figure 1, does not allow developers to strike
the best balance between development cost and performance.

In this work, we advocate for a flexible storage interface for
SSDs that will provide standard access to SSDs that expose
their physical layout to applications, while supporting the
versatile needs of applications and developers. Specifically, we
will focus on three abstraction levels, two of which are close
to the existing extreme usage modes, and one that introduces a
novel tradeoff point between them. As a proof-of-concept, we
implement Prism-SSD — a user-level library framework that
exports the SSD via three levels of abstraction, depicted in
Figure 1: (1) The raw-flash level abstraction directly exposes
the low-level flash details, including physical structures and
core flash operations; (2) The flash-function level abstraction
presents the SSD as a group of flash management functions
that can be scheduled and custom-defined by applications,
such as GC, wear-leveling, etc.; (3) The user-policy level
abstraction presents flash hardware as a block device that is
configurable by selecting predefined high-level policies.

We implemented a Prism-SSD prototype on the Open-
Channel SSD platform. We enhanced the I/O modules of three
representative applications, using each of the three abstraction
levels provided by the Prism-SSD library. We modified a key-
value cache based on Twitter’s Fatcache [21], a user-level
log-structured file system based on Linux FUSE [22], and a
graph computing engine based on GraphChi [23]. Together,
these three use cases well demonstrate the flexibility and
efficiency of our model. Our results show that Prism-SSD
allows developers to flexibly choose the most suitable storage
abstraction for optimizing their applications, at different
tradeoff points between performance and development cost.

Our main contributions are as follows. (1) We introduce
the concept of a flexible storage interface, that will allow
developers to interact with flash-based SSDs in a standardized
API with varying layers of abstraction. (2) We present a fully
functional prototype of Prism-SSD on the real Open-Channel
hardware platform. (3) We demonstrate the efficacy of our
approach in three use cases, with a range of development costs
and performance benefits.

II. BACKGROUND

Generic flash SSDs. Conventional flash SSDs typically
provide a generic block I/O interface to the host. An SSD
controller is used to process I/O requests, and manage flash
memory by issuing commands to the flash memory controller.
A Flash Translation Layer (FTL) is usually implemented
in the device firmware to manage flash memory and hide
its complexities behind the Logical Block Address (LBA)

interface. An FTL mainly consists of three components: an
address mapping table translating logical addresses to flash
physical pages, a garbage collector (GC) reclaiming invalid
flash blocks, and a wear-leveler spreading the wear of flash
blocks evenly across the flash memory chips. The details of
FTL algorithms can be found in prior work [24]–[26].

Open-Channel SSDs. Open-Channel SSDs expose device-
level details and raw flash operations directly to applications.
The host is responsible for utilizing SSD resources with
primitive functions through a simplified I/O stack. The
following design principles of Open-Channel SSDs open up
new prospects for SSD management. (1) Internal geometry
details, such as the layout of channels, LUNs, and chips,
are exposed to user-level applications. With this knowledge,
applications can effectively organize their data and schedule
accesses to fully exploit the raw flash performance. (2)
Applications can directly operate the device hardware through
the ioctl interface, allowing them to bypass the intermediate
OS components, such as file systems. (3) FTL-level functions,
such as address mapping, GC, and wear-leveling, are removed
from the device firmware. Applications are responsible
for dealing with flash physical constraints. For example,
applications are responsible for allocating physical flash pages,
ensuring a block being erased before it is overwritten. Thus,
it can avoid issues, such as the ‘log-on-log’ problem [8], by
directly issuing commands to erase physical blocks [16].

III. DESIGN GOALS

Open-Channel SSDs have been deployed with various kinds
of applications, such as file systems [6], key-value stores and
caches [15], [16], and virtualization environments [27], where
they help achieve significant performance improvements.
However, the prohibitive development overhead associated
with Open-Channel SSDs hinders them from a much wider
adoption, especially by applications that require special but
only minor deviations from the standard block I/O interface
(e.g., erase a block). This unrealized potential motivates our
new model of a flexible storage interface for SSDs. We define
our model with the following design goals.
• Flexibility: Applications should be able to flexibly choose

the degree of control they require over the SSD operations. We
achieve this goal by providing multiple levels of abstraction
for programmers to choose from.

• Generality: The application design, and most of the
interface’s implementation, should be general and portable to
different hardware and OS platforms. In this work, we show
how this can be achieved by encapsulating the low-level flash
accesses within a user-level flash monitor, and decoupling it
from a standard user-perceived storage abstraction.

Open-channel SSD

Flash Memories

Key/Slab Mapping

KV Cache Manager

Slab Manager

Cache Manager

Integrated GC

OPS Management

PCIE Device Driver

Operating System

Others

Bad Block

Management

Slab/Flash

Translation

Operation

Conversion

User-level Flash Monitor

App App …

Flash read/write/erase

read/write/erase

Prism-SSD

Hardware

Kernel

User
Raw-Flash Abs.

(Flash
read/write/erase)

Flash-Function Abs.
(Address mapping,
GC, Wear-leveler)

User-policy Abs.
(Ioctl, read/write)

Fig. 2: Overview of Prism-SSD architecture.
• Efficiency: Applications should experience minimal

overhead by using the interface. We achieve this goal in our
prototype by implementing it in user-space, thus bypassing
most of the kernel’s I/O stack and the latencies it entails.

By following these goals, the definition of our flexible
storage interface is designed to provide users a fine-grained
control on the tradeoff between performance and development
cost, while incurring minimal overhead.

IV. THE DESIGN OF PRISM-SSD
To achieve the above-said goals, we argue that much of

the intelligence and complexity of the device driver should
be moved into the user level, closer to the applications. This
can provide a customizable, easy-to-use storage abstraction,
and bypass multiple intermediate layers in the traditional I/O
stack, such as the file system, generic block I/O interface,
the scheduler, and the FTL in the firmware. We demonstrate
the power of this novel approach with a proof-of-concept
implementation, a design based on a user-level implementation
of a flexible storage interface—Prism-SSD.

Prism-SSD consists of three main components: (1) a
specialized flash-based SSD hardware, which exposes the
physical details of flash memory, (2) a user-level abstraction
library, which provides a comprehensive set of storage I/O
stack abstractions, and (3) applications, which customize their
software design with flash memory management at different
integration degrees through the library’s abstraction interface.
In our prototype implementation, the library includes three
sets of abstraction APIs with different degrees of hardware
exposure to applications: a raw-flash level, a flash-function
level, and a user-policy level. All accesses to an SSD managed
by Prism-SSD have to go through the library. The three
levels offer a set of choices for developers to optimize
their application performance at different integration levels
with distinct complexity and customizability. The library also
includes a flash monitor running as a user-level module,
which is responsible for allocating flash capacity to different
applications sharing the same SSD hardware, and for isolating
them from one another [27].

Figure 2 depicts the overall architecture of Prism-SSD, and
Figure 3 presents the APIs in our prototype. Below, we focus
on their details required for demonstrating our flexible storage
interface approach. We note, however, that the specific three-
layer design is only one of many possible realizations of our
approach. Other designs may define different or additional

abstraction layers to allow for finer-grained tradeoff points
between development cost and performance.
A. The User-level Flash Monitor

At the bottom layer of the Prism-SSD library is a user-level
flash monitor. Its main role is two-fold. First, as a storage
capacity manager, it allocates the required flash capacity
to applications and ensures space isolation. Second, it is
responsible for sharable services, such as OPS allocation,
global wear-leveling, bad block management, etc.

Applications request storage space through the user-level
flash monitor. The monitor uses LUNs as the basic allocation
unit1 for satisfying applications’ capacity requirements. Prism-
SSD allocates LUNs in a round-robin fashion across channels.
Consider an Open-Channel SSD with 12 channels, each
providing access to 16 LUNs of 1GB. If an application
requests a capacity of 24GB, the device manager will allocate
two LUNs from each channel. The monitor also allocates
an amount of over-provisioning space (OPS) as specified
by the application. The developer can determine the size of
OPS based on the application’s properties. For write-intensive
applications, the OPS can be set larger (e.g., 25%, similar
to a typical high-end SSD); for read-intensive applications,
the percentage can be smaller. The over-provisioning space
is also allocated in units of LUNs. In the above example,
for an OPS of 25%, six extra flash LUNs will be allocated
to the application. As the flash monitor tracks the channels
and LUNs allocated to each application, the flash capacity
of different applications is completely isolated. Applications
access the flash space allocated to them using the address
format <channel id, LUN id, block, page>.

Workload patterns of different applications may vary
considerably, causing the erase counts of flash blocks in
different channels to vary as well. To handle uneven wear
of the flash device, the design of Prism-SSD includes a global
wear leveling module, which is based on FlashBlox [27]:
Global wear leveling is applied in LUN granularity—it
calculates the average erase count of each LUN to distinguish
between ‘hot’ and ‘cold’ LUNs. If the difference in average
erase counts exceeds a threshold, a hot LUN will be shuffled
with a cold LUN, and their allocation status will be updated.
This module is not implemented in our current prototype.

For bad block management, the flash monitor maintains a
list of blocks that are detected faulty and marked ineligible,
hiding them from applications.
B. Abstraction 1: Raw-Flash Level

The raw-flash level abstraction of Prism-SSD exposes the
device geometry and allows applications to control the low-
level flash hardware. Applications can directly operate on
flash pages or blocks through page read/write and block erase
commands. To use this level’s API, application developers
should be fully aware of the unique characteristics of flash
memories, such as the out-of-place update constraint, to
operate the device correctly. While the low-level details and

1A channel usually consists of multiple LUNs, which are the smallest
parallelization units [28]. Each LUN includes multiple flash blocks.

struct SSD_geometry{
 uint32 channel_count;
 uint 32 luns_each_channel;
 uint32 blocks_each_lun;
 uint32 pages_each_block;
 uint32 page_size};

uint32 Page_Read(physical_addr, data);
uint32 Page_Write(physical_addr, data);
bool Block_Erase(physical_addr);

uint32 FTL_Ioctl(mapping_option, gc_option,
begin_addr, end_addr);
uint32 FTL_Read(logical_addr, data, len);
uint32 FTL_Write(logical_addr, data, len);

Struct SSD_geometry* Get_SSD_Geometry();

Raw-flash abstraction Flash-function abstraction User-policy abstraction

uint32 Address_Mapper(channel_id,
*physical_addr, option);
void Flash_Trim(channel_id, physical_addr);
float32 Wear_Leveler(*shuffle_blocks);
uint32 Flash_SetOPS(percentage);
uint32 Flash_Read(physical_addr, len, data);
uint32 Flash_Write(physical_addr, len, data);

struct SSD_geometry{
 uint32 channel_count;
 uint 32 luns_each_channel;
 uint32 blocks_each_lun;
 uint32 pages_each_block;
 uint32 page_size};

uint32 Page_Read(address, data);
uint32 Page_Write(address, data);
bool Block_Erase(address);

uint32 FTL_Ioctl(mapping_option, gc_option,
begin_addr, end_addr);
uint32 FTL_Read(logical_addr, data, len);
uint32 FTL_Write(logical_addr, data, len);

Struct SSD_geometry* Get_SSD_Geometry();

Raw-flash abstraction Flash-function abstraction User-policy abstraction

uint32 Get_SSD_Channels();
uint32 Address_Mapper(channel_id,
*physical_addr, option);
uint32 Garbage_Collector(channel_id, option);
void Flash_Trim(channel_id, physical_addr);
void Wear_Levler(*shuffle_blocks);
uint32 Flash_SetOPS(percentage);
uint32 Flash_Read(physical_addr, len, data);
uint32 Flash_Write(physical_addr, len, data);

Fig. 3: APIs of Prism-SSD.

Algorithm IV.1 A GC process with the raw-flash abstraction.

1: CHnum ← 0;
2: while (GC) do //application determines GC status
3: Select Blocki ∈ CHnum with the least valid data;
4: while Pagej is valid in Blocki do
5: page read(Pagej , page data);
6: page write(Pagenew, page data);
7: //Pagenew is selected by the application
8: end while
9: block erase(Blocki);

10: CHnum ← CHnum + 1;
11: if CHnum ≥ CHcount then
12: CHnum ← 0;
13: end if
14: end while

control exposed by this layer are similar to those exposed
by existing low-level interfaces, its interface functions are
standard and decoupled from any specific SSD hardware,
providing an additional degree of portability for developers.

With this abstraction level, typical FTL functions, such as
address mapping, GC and wear-leveling, are not provided by
the library. Whether to implement them or not depends on
the application’s requirements. The application should also be
responsible for its own flash space allocation and management,
and for integrating them with its software semantic. The library
simply delivers function calls from applications to the device
driver through the ioctl interface.

Figure 3 shows the APIs provided by the raw-flash level
abstraction. Get_SSD_Geometry returns the SSD layout
information to the application. The SSD layout is described
by the number of channels, LUNs in each channel, blocks in
each LUN, pages in each block, and the page size. This layout
information is exposed to all abstraction layers via the same
interface. Applications use the API functions, Page_Read
and Page_Write to directly read and write flash physical
pages, and Block_Erase to erase a specified block.

Algorithm IV.1 gives a garbage collection process
implemented with the raw-flash abstraction. This process
reclaims flash blocks in each channel in a round-robin manner,
and the blocks with the least valid data are selected as victims.
Valid pages in the victim blocks are copied to newly allocated
physical pages, after which the victim blocks are erased.

The raw-flash abstraction gives applications full knowledge
and direct control of the low-level flash device, at the cost
of considerable development effort. The applications that will
likely benefit most from this abstraction are those with special,
regular, and well-defined access patterns.

C. Abstraction 2: Flash-Function Level
Our flash-function level abstraction models the flash storage

as a collection of core functions for flash management,
such as GC, wear-leveling, etc. Application developers can
compose them and implement more sophisticated and complex
management tasks. Thus, they can maintain a certain low-level
control, while avoiding the need to handle other irrelevant
details of the SSD hardware. Figure 3 shows the core APIs of
the flash-function level. These APIs are used to divide the main
components of flash management between the application and
the library, as follows.
Space allocation. At this level, applications directly read and
write flash physical addresses via functions Flash_Read and
Flash_Write, while the library is responsible for erasing
blocks and for allocating them to applications. The application
requests physical blocks via Address_Mapper, specifying
the channel in which the block should be allocated, and the
mapping scheme (i.e., page-level or block-level) for that block.
It then maps the physical address returned by the library to an
application-managed logical address. This function call returns
the amount of free space available for the application, allowing
the application to invoke GC according to its needs.
Garbage collection (GC). At this level, the application is
responsible for selecting the victim blocks for GC, and for
identifying the valid data on these blocks. The granularity
of the valid data is determined by the application and can
be as small as a tuple of several hundred bytes. Thus, the
application is also responsible for copying the valid data to
a new location. By calling the Flash_Trim command, the
application notifies the library that a block is ready to be
erased, in the background, and reallocated.
Wear-leveling. At this level, the application manages the
logical-to-physical block mapping while the library maintains
the blocks’ erase counts. Thus, wear leveling is triggered by
the application and executed by the library, as follows. The
application invokes the Wear_Leveler in a suitable time.
The library identifies the hottest blocks and the coldest ones,
and swaps the data written on them. It returns these block
addresses via the “shuffle block” parameter, as well as the
maximum variance between erase counts of the application’s
allocated blocks. The application then updates its mapping of
the two blocks, and potentially invokes another wear leveling
operation according to its target variance.
OPS management. The application can dynamically deter-
mine the over-provisioning space it requires according to its
current workload via Flash_SetOPS. The library reserves

Algorithm IV.2 Block allocation and GC with the flash-function
abstraction.

1: FBN ; //free block space
2: PBN ; //physical address
3: LBN ; //logical address
4: len ← 10×Blocksize; //length
5: while len > 0 do
6: CHid ← choose a channel with the least workload;
7: FBN ← Address Mapper(CHid, &PBN , “Block”);
8: LBN ← PBN ; // map logical to physical
9: //allocate physical block in channel CHid

10: if FBN < GC Threshold then
11: //Free space is under a GC threshold
12: APP GC(CHid);
13: end if
14: len ← len− 1;
15: end while
16: function VOID APP GC(CHid)
17: while FBN < GC Threshold do
18: PBNvictim ← victim block in CHid;
19: //select block by “Greedy”, “LRU”, etc.
20: //copy valid data from the victim block elsewhere
21: Flash Trim(CHid, PBNvictim);
22: end while
23: end function

the specified OPS for this application. The library cannot
provide the requested OPS if too many blocks are currently
mapped by the application. In this case, the application must
first release sufficient flash space.

Algorithm IV.2 shows an example of block allocation and
GC implemented with the flash-function level. In this simple
example, the application requests 10 flash blocks in an idle
channel by repeatedly calling the address mapping function
with block-level address mapping (“Block”). This function
call returns the number of free blocks currently available in
this channel. If the available free space is below a predefined
threshold, the application triggers an application-controlled
background GC process in this channel. The GC process
selects a victim block, copies its valid data elsewhere, and
releases this block for erasure by the library.

The flash-function level abstraction exports basic flash
functions that application developers can use to configure
different flash-management policies and to invoke them at
the most suitable timing according to their current workloads.
At the same time, it hides the low-level device details, such
as LUNs and erase counts, from the application level. This
abstraction level is suitable for applications that can leverage
their software semantics for specific optimizations but are
not willing to handle the low-level management details. To
the best of our knowledge, it is the first general-purpose
implementation to provide this fine-grained tradeoff between
application management and ease-of development.
D. Abstraction 3: User-policy Level

The user-policy level abstraction hides all the flash related
management operations from users, allowing them to manage
the SSD as a simple block device. To some extent, it can be
regarded as a user-level FTL that handles address mapping,
GC, wear-leveling, etc. This abstraction level is designed to
provide the highest generality for SSDs. However, unlike

Algorithm IV.3 Example code of application initialization with the
user-policy level abstraction.

1: start addr ← 0;
2: split addr ← 10GB;
3: end addr ← 100GB;
4: FTL Ioctl(“Block”, “FIFO”, start addr, split addr);
5: // We can now read/write addresses between 0 and 10GB
6: FTL Ioctl(“Page”, “Greedy”, split addr, end addr);
7: // We can now read/write addresses between 10GB and 100GB

conventional device-level FTLs, this “FTL” runs as part of the
user-level library and is configurable, allowing applications to
select their preferred policies for managing flash space.

The applications use their semantic knowledge about the
data usage patterns to choose the best policies for optimizing
their specific objectives. Thus, these configuration parameters
serve as application ‘hints’ to the FTL. Meanwhile, the full
device layout information is exposed to applications, allowing
them to optimize the size of their data structures or level of
I/O parallelism for the underlying device.

Figure 3 lists the APIs provided in the user-policy
level abstraction. Logical addresses are read and written
via the FTL_Read and FTL_Write block I/O interfaces.
Applications configure the key flash management policies,
address mapping and GC, via the FTL_Ioctl function. The
same policies implemented in the flash-function level (see
Section IV-C) are available for selection.

Algorithm IV.3 presents an example code of an application
initialization progress with the user-policy level abstraction. In
this example, the application divides its flash logical space into
two parts. The first part is configured with block-level address
mapping and greedy garbage collection. The second part is
configured with page-level address mapping and FIFO-based
garbage collection. The application uses Flash_Write and
Flash_Read to access logical addresses within each of these
logical partitions.

The user-policy level abstraction is similar to existing host-
level FTLs. However, it is managed as part of a general-
purpose user-level library which also exposes additional ab-
straction layers. Furthermore, it allows application developers
to leverage their semantic knowledge to configure the FTL
policies. This abstraction level requires the lowest integration
overhead, which makes it suitable for applications that only
demand certain hardware/software cooperation through a
configurable interface, but are sensitive to development cost.

V. IMPLEMENTATION AND PROTOTYPE SYSTEM

We have built a prototype of Prism-SSD on the
Open-Channel SSD hardware platform manufactured by
Memblaze [29]. This PCI-E based SSD contains 12 channels,
each of which connects to two Toshiba 19nm MLC flash chips.
Each chip consists of two planes and has a capacity of 66GB.
The SSD exports its physical space to the upper level as one
volume, with access to 192 LUNs. The 192 LUNs are evenly
mapped to the 12 channels in a channel-by-channel manner.
That is, channel #0 contains LUNs 0-15, channel #1 contains
LUNs 16-31, and so on. Thus, the physical mapping of flash
memory LUNs to channels is known.

This interface is different from that of Open-Channel
SSDs used in other studies, which exports flash space as 44
individual volumes [13]. The hardware used in our prototype
allows the upper level to directly access raw flash memory via
the ioctl interface, by specifying the LUN ID, block ID, or
page ID in the commands sent to the device command queue.
Standard FTL-level functions, such as address mapping and
GC, are not provided. In Prism-SSD, they are implemented
in the library. The user-level flash monitor is responsible for
conveying the I/O operations to the device driver via ioctl.

Our prototype implements the user-level flash monitor and
the three abstraction levels, accounting for 4,460 lines of
C code. Specifically, the user-level flash monitor module
accounts for 560 lines, the raw-flash abstraction for 380
lines, and the flash-function abstraction and the user-policy
abstraction for 2,580 and 940 lines, respectively. We deployed
our prototype on a Linux workstation with an Intel i7-5820K
3.3GHZ processor and 16GB memory. We use Ubuntu 14.04
with Linux kernel 3.17.8 as our operating system.

VI. CASE STUDIES

The Prism-SSD model offers a powerful tool for
developers to optimize their performance with SSDs.
Choosing the abstraction level that best suits their needs,
application developers can integrate their software design
with the hardware management at the right balance between
performance and development cost.

In this section, we demonstrate the versatility of this
approach in typical software development scenarios, mainly
from the perspective of developers. We carefully selected
three major applications as our case studies: a key-value
cache system based on Twitter’s Fatcache (Section VI-A), a
user-level log-structured file system based on Linux FUSE
(Section VI-B), and a graph computing engine based on
GraphChi (Section VI-C). Due to space constraint, we use
key-value caching as our main case study and the other two
as examples demonstrating the applicability of Prism-SSD.

A. Case 1: In-flash Key-value Caching

Background and challenges. Flash-based key-value cache
systems, such as Facebook’s McDipper [30] and Twitter’s
Fatcache [21], are becoming increasingly common in industry.
These caches typically run on commercial flash-based
SSDs and adopt a slab-based allocation scheme, similar to
Memcached [31], to manage key-value pairs. For example,
Fatcache divides the SSD space into large slabs (e.g., 1MB),
each dedicated to a different range of value sizes. Slabs are
further separated into slots, each is used to store one key-value
item. An in-memory hash table is used to record the mapping
between key-value items and slabs.

The design of flash-based key-value caches is typically
made “aware” of the underlying SSD to certain extent
and maintains several flash-friendly properties. The SSD is
treated as a log-structured object store, and key-value updates
are implemented as out-of-place updates. In addition, I/O
operations are issued in large units of entire slabs. This is

accomplished by maintaining buffering small items in memory
and flushing them to the underlying SSD in bulk. Finally, the
cache is managed with coarse granularity, evicting entire slabs
when the cache is full.

Despite this simple “flash-aware” design, the decoupled
implementation of application-level cache management and
device-level FTL results in redundant mechanisms that
significantly degrade the cache’s utilization: (1) redundant
mapping between the in-memory hash table that maps key-
values to slabs and the FTL that maps logical addresses to
physical flash pages, (2) redundant garbage collection between
the cache’s slab eviction and the device-level GC that reclaims
flash blocks occupied by invalid pages, and (3) redundant
over-overprovisioning, allocated both at the cache management
module and the FTL.

A recent study addressed these redundancies in the design of
DIDACache [16]: a modified version of Fatcache implemented
on top of Open-Channel SSD. DIDACache directly drives the
SSD hardware while exploiting the semantic knowledge of
Fatcache, augmented with the following major components.
(1) a slab/block management module, which directly translates
slabs into one or more blocks; (2) a unified mapping module,
which records the mapping of key-value items to their physical
flash locations; (3) an integrated garbage collection module,
which reclaims flash space occupied by obsolete key-value
items; and (4) a dynamic over-provisioning space (OPS)
management module, which dynamically adjusts the OPS size
based on a queuing-theory based model.

The full details of the DIDACache policies appear in the
original study [16]. Its implementation based on Fatcache
required adding 2,100 lines of code in total , and is tightly
coupled with Open-Channel SSD’s architecture and API.
Below, we demonstrate how this development effort and
dependency can be avoided with Prism-SSD, allowing the
developer to choose from several tradeoff points between the
cache’s performance and the development effort.
Optimizing Fatcache with Prism-SSD. The Prism-SSD
library facilitates three different approaches.
• Deep Integration: Using the raw-flash level abstraction

provided by Prism-SSD, we allow the key-value cache
manager to fully exploit the semantic knowledge of Fatcache
and directly drive the SSD hardware. To that end, we have
augmented the key-value cache manager as described in
DIDACache [16], with the four major components described
above. As a low-level integration, our implementation uses the
library’s basic APIs and accounts for 1,450 lines of code. As
the library provides a standard API over the hardware, it is
more portable than DIDACache to different platforms.
• Function-level Integration: The second implementation,

based on the flash-function level abstraction, allows the key-
value cache manager to design cache-friendly policies without
managing all low-level details.

In contrast to the raw-level approach, the four major
components in this implementation are as follows: (1) A
slab to block mapping module. At the function level, the
application can still see and manage the physical flash blocks

6 8 1 0 1 26 0

7 0

8 0

9 0

1 0 0
Hit

 Ra
tio

(%
)

C a c h e S i z e (%)

 F a t c a c h e - O r i g i n a l
 F a t c a c h e - P o l i c y
 F a t c a c h e - F u n c t i o n
 F a t c a c h e - R a w
 D I D A C a c h e

Fig. 4: Hit ratio vs. cache size.

6 8 1 0 1 25 . 0 E 4

5 . 5 E 4

6 . 0 E 4

6 . 5 E 4

7 . 0 E 4

7 . 5 E 4

8 . 0 E 4

Th
rou

gh
pu

t (o
ps

/se
c)

C a c h e S i z e (%)

 F a t c a c h e - O r i g i n a l
 F a t c a c h e - P o l i c y
 F a t c a c h e - F u n c t i o n
 F a t c a c h e - R a w
 D I D A C a c h e

Fig. 5: Throughput vs. cache size.

1 : 0 7 : 3 1 : 1 3 : 7 0 : 10 . 0

5 . 0 E 4

1 . 0 E 5

1 . 5 E 5

2 . 0 E 5

2 . 5 E 5

Th
rou

gh
pu

t (o
ps

/se
c)

S e t / G e t R a t i o

 F a t c a c h e - O r i g i n a l
 F a t c a c h e - P o l i c y
 F a t c a c h e - F u n c t i o n
 F a t c a c h e - R a w
 D I D A C a c h e

Fig. 6: Throughput vs. Set/Get ratio.

1 : 0 7 : 3 1 : 1 3 : 7 0 : 10

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

La
ten

cy
 (u

s)

S e t / G e t R a t i o

 F a t c a c h e - O r i g i n a l
 F a t c a c h e - P o l i c y
 F a t c a c h e - F u n c t i o n
 F a t c a c h e - R a w
 D I D A C a c h e

Fig. 7: Latency vs. Set/Get ratio.

TABLE I: Garbage collection overhead.
GC Scheme Key-values Flash Pages Erase Counts

Fatcache-Original 13.27 GB 7.15 GB 8,540
Fatcache-Policy 13.27 GB 0 7,620

Fatcache-Function 3.63 GB 0 6,017
Fatcache-Raw 3.49 GB N/A 5,994
DIDACache 3.45 GB N/A 5,985

via the library APIs. Thus, it is responsible for the mapping
between slabs and flash physical blocks; (2) A hash-key-
to-slab mapping module. The key-value cache manager also
records the mapping of key-value items to their slab locations,
which is identical to the stock Fatcache implementation. (3)
A garbage collection module. The key-value cache reclaims
slab space occupied by obsolete (deleted or updated) key-
value items. The flash physical blocks are invalidated and
recycled via the library API; (4) A dynamic OPS management
module, which estimates the preferred OPS based on a queuing
theory based model. Note that at this level, the slab-to-flash-
block mapping is still maintained by the application, but the
block allocation, reclamation, and status are maintained by the
library. This implementation consists of 860 lines of code.

• Light Integration: For comparison, we also implemented
a light-weight optimization for Fatcache by using the user-
policy level abstraction. In this implementation, the key-value
cache manager is nearly identical to the stock Fatcache. Our
implementation only replaces the device initialization process
with the library APIs. The change requires 210 lines of code.

Implementation and Evaluation. Our implementation is
based on Twitter’s Fatcache [21]. For fair comparison, we
added non-blocking slab allocation and eviction to the stock
Fatcache. We use this version as our baseline and denote
it as “Fatcache-Original”. We refer to our implementation
with the raw-flash level, flash-function level, and user-policy
level abstractions as “Fatcache-Raw”, “Fatcache-Function”,
and “Fatcache-Policy”, respectively. For comparison, we run
Fatcache-Original on a commercial PCI-E SSD, which has the
same hardware as the Open-Channel SSD. We also show the
results of DIDACache [16], denoted as “DIDACache”, which
directly integrates the hardware management into the Fatcache
application, representing the ideal case.

• Overall performance. We first evaluate the key-value cache

system in a simulated production data-center environment.
This setup includes a front-end client, a key-value cache
server, and an MySQL database in the backend. The key-value
workload is generated using a model based on real Facebook
workloads [32], [33], which is also used in prior work [16].

Figure 4 shows the hit ratios of the five cache systems with
cache sizes of 6%–12% of the data set size. As the cache size
increases, the hit ratio of all schemes improves significantly.
Fatcache-Original and Fatcache-Policy have the same hit ratio
because they both reserve 25% flash capacity as static OPS. In
contrast, DIDACache, Fatcache-Raw, and Fatcache-Function
have a higher hit ratio thanks to their adaptive OPS policy,
which adaptively tunes the reserved space according to the
workload, saving more space for caching. This extends the
available cache space to accommodate more cache data. As
a result, they outperform Fatcache-Original and Fatcache-
Policy substantially: their hit ratios range between 76.5% and
94.8%, while those of Fatcache-Original and Fatcache-Policy
are between 71.1% and 87.3%.

Figure 5 shows the throughput, i.e., the number of
operations per second (ops/sec). We can see that as the cache
size increases from 6% to 12%, the throughput of all the four
schemes improves significantly, due to the improved cache hit
ratio. Fatcache-Raw has the highest throughput, and Fatcache-
Function is slightly lower. With a cache size of 10% of the
data set (about 25GB), Fatcache-Raw outperforms Fatcache-
Original, Fatcache-Function, and Fatcache-Policy by 9.2%,
0.4%, and 8.8%, respectively.

• Cache server performance. In our next set of experiments,
we study the performance details of the cache server. We
first populate the cache server with 25GB key-value items,
and then directly issue Set and Get operations to the
cache server. Figure 6 shows the throughput of the five
cache systems with different Set/Get ratios. Fatcache-Raw

achieves the highest throughput across the board. Fatcache-
Original achieves the lowest throughput. With 100% Set
operations, the throughput of Fatcache-Raw is 27.6% higher
than that of Fatcache-Original, 5.2% higher than that of
Fatcache-Function, and 15.5% higher than that of Fatcache-
Policy. The performance gain of Fatcache-Raw is mainly
due to its unified slab management policy and the integrated
application-driven GC policy, and the better use of the SSD’s
internal parallelism. Fatcache-Raw achieves almost the same
performance as DIDACache. The throughput of Fatcache-Raw
is only 1.7% lower than that of DIDACache in the worst case,
which also demonstrates that the overhead of the Prism-SSD
library is negligible compared to its benefits.

As we expected, the performances of Fatcache-Function
and Fatcache-Policy are lower than that of Fatcache-Raw. The
performance of Fatcache-Function is slightly lower than that
of Fatcache-Raw. This is because although Fatcache-Function
cannot operate with full low-level controls, it can still integrate
the cache semantics within flash management, such as the
GC process. Fatcache-Policy outperforms Fatcache-Original
by 10.2%, due to its simplified I/O stack and block-level
mapping, which reduces the overhead. As the portion of Get
operations increases, the raw flash read latency becomes the
main bottleneck, and this performance gain decreases.

Figure 7 shows the average latency of the cache systems
with different Set/Get ratios. Fatcache-Original suffers the
highest latency, while Fatcache-Raw, implemented with Prism-
SSD, has the lowest latency. For example, with 100% Set
operations, Fatcache-Raw reduces the average latency of
Fatcache-Original, Fatcache-Function, and Fatcache-Policy by
22.9%, 2.8% and 12.1%, respectively.
• Effect of garbage collection. We also evaluate the effect of

optimized GC on the flash erase counts, which directly affect
the device lifetime. We configure the available SSD size to
30GB, and preload it with 25GB data. We then issue 140M
Set operations following the Normal distribution, writing
approximately 50GB of logical data. To retrieve the erase
counts of Fatcache-Original, which runs on a commercial SSD,
we collect its I/O trace and replay it with the widely used SSD
simulator from Microsoft Research [34]. Table I shows the GC
overhead in terms of valid data copies (key-values and flash
pages) and block erases of the four schemes.

Fatcache-Original suffers from the highest GC overhead. It
uses the greedy GC policy and the SSD hardware uses page-
level mapping. As a result, blocks selected for erasure store a
mix of valid and invalid pages, incurring flash page copies by
the device-level GC. In contrast, the block-level mapping used
by Fatcache-Function and Fatcache-Policy maps each slab
directly to one flash block, thus eliminating all page copies
caused by the device-level GC. By aggressively evicting valid
clean items as part of the cache management policy, Fatcache-
Function, Fatcache-Raw, and DIDACache further leverage
application semantics to reduce the key-value copies to only
3.63 GB, 3.49 GB and 3.45 GB, respectively.

We further perform experiments to evaluate the GC latencies
of these three schemes, and we find that the GC overheads of

TABLE II: File system GC overhead.
File system File copy Flash copy Erase
ULFS-SSD 9.82GB 7.24GB 6,594
ULFS-Prism 9.82GB N/A 5,280
MIT-XMP N/A 9.37GB 5,429

Fatcache-Raw and Fatcache-Function are basically the same.
For Fatcache-Raw and Fatcache-Function, 88% and 86.2%
percent of the GC invocations finish in less than 100ms,
respectively. Fatcache-Policy is more affected by the GC due
to the lack of deep optimization, and with 84% of the GC
invocations finish in 100-1000ms.

This case study demonstrates the effectiveness of Prism-
SSD by comparing four implementations of an optimized in-
flash key-value caching. With the raw-flash abstraction, the
developer can tightly control the low-level flash operations
and optimize flash physical layout. With the flash-function
abstraction, the software integrates its software semantics into
hardware management without handling low-level details, and
the performance can be close to the raw-flash implementation.
With the user-policy abstraction, the application achieves
noteworthy performance gains with minimal development
overhead (210 lines of code). This successfully demonstrates
the flexibility of our proposed storage interface.

B. Case 2: Log-structured File System
User-space file systems are often used to prototype and

evaluate new approaches for file system design, and to develop
complex systems that are difficult to maintain in kernel-space.
Although user-space file systems achieve lower performance
than that of their kernel-level counterparts, they are easier to
develop and maintain, and enjoy better portability [40].

Log-structured file systems achieve high write throughput.
A log-structured file system divides its space into equal-
sized segments and writes its data and metadata sequentially
to segments. Such log-structured design is expected to be
flash-friendly. However, an oblivious log-structured file system
running atop an SSD’s log-structured FTL results in inefficient
storage management [6], [8]. Specifically, the GC logic is
duplicated without coordination, writes may not be properly
aligned to segment boundaries, and semantic knowledge about
data validity is unavailable at the FTL.

This inefficiency can be addressed by controlling the
allocation of flash blocks to segments. Further performance
improvement can be gained by explicit utilization of the
device’s channels. However, to achieve these benefits while
still enjoying the relatively low development cost of user-level
file systems, developers should avoid low-level details such
as address mapping and GC. Such flexibility is provided by
Prism-SSD’s flash-function abstraction, which we use to build
ULFS-Prism—a user-level log-structured file system.

ULFS-Prism directly allocates flash physical blocks to
files. It maintains only the block-to-file mapping. Similarly,
ULFS-Prism triggers greedy GC policy when the number
of free blocks drops below a threshold, using the
library’s implementation of the greedy scheme. ULFS-Prism
implements the channel-level parallelism and load balancing
explicitly, by utilizing the channel information provided by

F i l e s e r v e r V a r m a i l W e b s e r v e r0 . 0

5 . 0 E 3

1 . 0 E 4

1 . 5 E 4

2 . 0 E 4

2 . 5 E 4

3 . 0 E 4

3 . 5 E 4

4 . 0 E 4
Thr

oug
hpu

t (o
ps/

sec
)

W o r k l o a d

 M I T - X M P
 U L F S - S S D
 U L F S - P r i s m

Fig. 8: Performance evaluation.

twitter_2010yahoo-web friendster twitter Journal Pokec
0

100

200

300

400

500

600

700

Ti
m
e(
s)

Workload

Executing-UFTL
Preprocessing-UFTL
Executing-Original
Preprocessing-Original

Fig. 9: Pagerank performance.

TABLE III: Graph workloads.
Graph Name Nodes Edges Size

Twitter2010 [35] 41.7 m 1.4 b 26.2GB
Yahooweb [36] 1.4 b 6.6 b 50GB
Friendster [37] 6.6 m 1.8 b 211MB

Twitter [38] 81,306 1.8 m 44MB
LiveJournal [37] 4.0 m 34.7 m 1.1GB
Soc-Pokec [39] 1.6 m 30.6 m 404MB

the function-level abstraction. It maintains a queue for each
channel, and counts the read/write/erase operations in each
queue. A similar scheme was implemented in ParaFS [6] as a
kernel-level file system with a specialized device-level FTL.

We also implemented a user-level log-structured file system,
ULFS-SSD, and ran on a commercial PCI-E SSD, which
has the same hardware as our Open-Channel SSD. For
performance reference, we compare both log-structured file
systems to MIT-XMP—a user level file system implemented
as a FUSE wrapper for the host Ext4 file system [41] that ran
on the commercial SSD.

In our first experiment, we use Filebench [42] to compare
the results of the three file systems with three workloads,
namely fileserver, webserver, and varmail. Figure 8 shows
the throughput (operations per second, ops/sec) of the three
file system implementations. The throughput of the two log-
structured file systems is of a similar order of magnitude with
MIT-XMP. ULFS-Prism outperforms ULFS-SSD in all three
workloads, thanks to the cooperation between the hardware
and software. Its throughput is 21.5% higher than that of
ULFS-SSD on the varmail workload.

Table II shows the erase counts and valid data copied—file
copies in the file system level and flash page copies in the
device level—of each file system. ULFS-Prism and ULFS-
SSD incur the same amount of file copies, but ULFS-Prism
does not incur any flash page copies, because it does not
require any additional device-level GC. However, with ULFS-
SSD, the device-level GC may choose segments that still
include valid data as victims blocks. MIT-XMP performs in-
place updates at the file-system level, but incurs high GC cost
at the device level.

This use case demonstrates that the flash-function level
abstraction allows developers to quickly optimize their
software design with relatively lower development cost. ULFS-
SSD was implemented from scratch with 2,880 lines of code,
and ULFS-Prism required only 660 more lines for integrating
its flash management. This medium-level development effort
is well paid off for a 21.5% speedup.
C. Case 3: Graph Computing Engine

Graph data processing is essential in big data systems.
Graph computing platforms play an important role in
analyzing massive graph data and extracting valuable infor-
mation, such as social, biological, healthcare, information and
cyber-physical systems. Many distributed graph processing
systems like Pregel [43], GraphLab [44], PowerGraph [45],
GraphX [46], are proposed to handle large scale graphs.

These platforms adopt in-memory processing model, which
is costly and difficult to scale. To address this issue, external
memory graph processing systems are proposed, such as
GraphChi [23], X-Stream [47] and GridGraph [48]. In this use
case, we have enhanced a popular graph computing platform,
GraphChi, with the Prism-SSD library.

We modify GraphChi with Prism-SSD using the user-
policy level abstraction, as a showcase of quick, light-
weight integration. In the initialization process, we divide the
allocated logical space into two parts, and use one to store the
shard data, and the other to store the results. We divide the data
of each shard into block-sized segments (instead of files), and
record the mapping between shards, intervals, and segments.
We configure the logical space for shards with block-level
mapping. The GC policy is irrelevant because this data is never
updated. Similarly, we divide the result data into segments
and record their mapping information in the application. We
configure the logical space for result data with block-level
mapping and greedy GC.

We compare the original GraphChi platform to our opti-
mized implementation by running the “pagerank” algorithm
on the graphs shown in Table III. Figure 9 shows the total
run time of both GraphChi versions on each graph, divided
into preprocessing time and execution time. In general, our
optimized implementation outperforms the stock GraphChi in
both preprocessing and execution steps across the board. For
example, on the Soc-Journal graph, the optimized GraphChi
reduces the preprocessing and execution times of the original
platform by 5.2% and 7.6%, respectively, resulting in an
overall 5.7% reduction.

This performance improvement is limited compared to our
previous use cases. This is mainly due to the highly optimized
nature of the original GraphChi: its I/O stack is simplified
and its access pattern has been carefully optimized for SSDs.
Also, I/O is not a major bottleneck, and optimizing it does
not have a major impact on overall runtime. Nevertheless, we
still were able to noticeably reduce this run time with a small
development effort with 490 lines of code.
Summary. Table IV summarizes the development cost and
main characteristics of our three use cases. These cases clearly
demonstrate the flexibility and versatility provided by Prism-
SSD—applications built with the raw-flash abstraction require
the most development effort, while the user-policy abstraction
requires the least code adaptation. With Prism-SSD, developers
can choose how to integrate application software with low-
level hardware management, according to their design goals.

TABLE IV: Use case summary.
Application Level Code Lines Library Services Application Responsibilities

Raw-flash 1,450 Transfer to flash operations Slab-to-block mapping, block allocation,
garbage collection, OPS management

Key-value caching Flash-function 860 Block allocation, Wear leveling, Slab-to-block mapping, Dynamic OPS,
Asynchronous block erase Valid data copies

User-Policy 210 Wear leveling, garbage collection, Slab allocation,
block allocation, block mapping item-to-slab mapping

User-level LFS Flash-function (2,880+) 660 Wear leveling, block erasure, block File-to-segment mapping, segment-based
allocation, block mapping garbage collection, load balancing

Graph computing User-Policy 490 Wear leveling, garbage collection, Shard-to-segment mapping,
block allocation, block mapping logical space partitioning

VII. DISCUSSION

We have demonstrated the applicability and performance
implications of Prism-SSD on several representative use cases.
Here, we discuss additional aspects of our proposed interface.
Flexible extension. The flexibility of our storage interface
can be easily extended to include more than just three
abstraction levels. For example, the raw-flash level abstraction
can be extended to develop and export a key-value set/get
interface. The flash-function level can be extended to support
asynchronous I/O operations by adding a scheduling algorithm
for read, write and GC operations. Similarly, the user-policy
level can be extended to implement a “container” abstraction
for dividing the flash space into several partitions, facilitating
separation of data according to lifetime or access frequency.
Alternative implementations. Our user-space implementation
brings several performance benefits, as we have demonstrated
above. Nevertheless, existing kernel-level frameworks can be
leveraged to export the flexible storage interface to application
developers. The LightNVM subsystem is an obvious candidate
for this task [14]. The current implementation exposes three
abstractions levels which can be classified into two categories:
the “NVMe Device Driver” and the “LightNVM Subsystem”
both require low-level management and control of all the
aspects of the flash-based device, while the “High-level
I/O Interface” exposes a standard block I/O interface to
applications. These building blocks can be used to export
a wider range of abstraction layers, such as those provided
by PrismSSD, as well as additional layers. The performance
implications of a kernel-space implementation of the entire
interface remain subject for future work.
Hardware development: From the perspective of hardware
vendors, a flexible storage interface in the form of a user-level
library is a powerful tool for reducing development costs and
the time-to-market. Moving complex internal firmware into the
library layer will allow hardware vendors to quickly roll out
new features in the form of library updates, and to accelerate
the development cycle thanks to reduced coding, debugging,
and testing requirements at the user level. These advantages
are particularly appealing with the increasing complexity
of hardware storage devices. Furthermore, hardware vendors
can easily offer custom-built hardware/software solutions
addressing various applications’ requirements. Such solutions
are currently prohibitive in terms of development time and
costs. Combined, these advantages offer hardware vendors
the means to build and own a complete vertical stack to

closely connect with applications, creating more business
opportunities in a new model.

VIII. RELATED WORK

Flash SSDs have been extensively studied and optimized in
the last decades. Besides the works mentioned previously, we
focus here on the works related to the storage interface and
their integration with file systems and applications.

Several recent works have been proposed to expose some
or all of the internal flash details to applications. The Open-
Channel SSD used in our implementation is one such example.
Another example is SDF [13], which exposes the channels
in commodity SSD hardware to the software, allowing it to
fully utilize the device’s raw bandwidth and storage capacity.
FlashBlox [27], based on Open-Channel SSD, utilizes flash
parallelism to improve isolation between applications. It runs
them on dedicated channels and dies, and balances wear within
and across different applications.

Other designs, implemented on customized SSDs or FPGAs,
follow a similar approach. ParaFS [6] exposes device physical
information to the file system, which in turn exploits its
internal parallelism and coordinates the GC processes to
minimize its overhead. AMF [7] provides a new out-of-place
block I/O interface, reducing flash management overhead and
pushing management responsibilities to the applications.

While the semantics of the interfaces exported by these
systems vary, they all export a fixed interface of the device
to the application level. However, as we have demonstrated in
our use cases and discussion, many applications can benefit
from a flexible interface that will allow developers to balance
their performance and development cost. At the same time, we
believe that the designs in these works can be implemented
and made portable with Prism-SSD.

IX. CONCLUSION

In this paper, we presented a flexible storage interface and
prototype implementation, Prism-SSD, which exports SSDs to
applications in three abstraction levels. This interface allows
developers to choose how tightly they want to integrate
flash management into their application, providing more than
just the two extreme options with current fixed interfaces.
We demonstrated the usability of our model by comparing
application performance improvement and development cost
of three representative use cases. Our evaluation results reveal
potential optimization opportunities that are facilitated by our
model in a wide range of applications.

REFERENCES

[1] X. Ouyang, N. S. Islam, R. Rajachandrasekar, J. Jose, M. Luo,
H. Wang, and D. K. Panda, “SSD-assisted hybrid memory to accelerate
memcached over high performance networks,” in International
Conference on Parallel Processing (ICPP’12), 2012.

[2] G. Yadgar, M. Factor, K. Li, and A. Schuster, “Management of
multilevel, multiclient cache hierarchies with application hints,” ACM
Transactions on Compututer Systems, vol. 29, no. 2, pp. 1–51, 2011.

[3] H. Liu and H. H. Huang, “Graphene: fine-grained io management
for graph computing.” in USENIX Conference on File and Storage
Technologies (FAST’17), 2017.

[4] T. Luo, R. Lee, M. Mesnier, F. Chen, and X. Zhang, “hStorage-DB:
Heterogeneity-aware data management to exploit the full capability of
hybrid storage systems,” in ACM International Conference on Very Large
Databases (VLDB’12), 2012.

[5] M. Mesnier, J. Akers, F. Chen, and T. Luo, “Differentiated storage
services,” in ACM Symposium on Operating System Principles
(SOSP’11), 2011.

[6] J. Zhang, J. Shu, and Y. Lu, “ParaFS: a log-structured file system to
exploit the internal parallelism of flash devices,” in USENIX Annual
Technical Conference (ATC’16), 2016.

[7] S. Lee, M. Liu, S. W. Jun, S. Xu, J. Kim, and A. Arvind,
“Application-managed flash.” in USENIX Conference on File and
Storage Technologies (FAST’16), 2016.

[8] J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sundararaman, “Don’t
stack your log on my log,” in USENIX Workshop on Interactions of
NVM/Flash with Operating Systems and Workloads (INFLOW’14), 2014.

[9] Y. Lu, J. Shu, W. Zheng et al., “Extending the lifetime of flash-based
storage through reducing write amplification from file systems,” in
USENIX Conference on File and Storage Technologies (FAST’13), 2013.

[10] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[11] M. Hao, G. Soundararajan, D. R. Kenchammana-Hosekote, A. A. Chien,
and H. S. Gunawi, “The tail at store: a revelation from millions of hours
of disk and SSD deployments,” in USENIX Conference on File and
Storage Technologies (FAST’16), 2016.

[12] S. Yan, H. Li, M. Hao, H. Tong, S. Sundararaman, A. A. Chien, and H. S.
Gunawi, “Tiny-tail flash: near-perfect elimination of garbage collection
tail latencies in NAND SSDs,” in USENIX Conference on File and
Storage Technologies (FAST’17), 2017.

[13] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “SDF:
software-defined flash for web-scale internet storage systems,” in
ACM International Conference Architecture Support for Programming
Languages and Operating Systems (ASPLOS’14), 2014.

[14] M. Bjørling, J. Gonzalez, and P. Bonnet, “LightNVM: the Linux open-
channel SSD subsystem,” in USENIX Conference on File and Storage
Technologies (FAST’17), 2017.

[15] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong,
“An efficient design and implementation of LSM-tree based key-value
store on open-channel SSD,” in ACM European Conference on Computer
Systems (EuroSys’14), 2014.

[16] Z. Shen, F. Chen, Y. Jia, and Z. Shao, “DIDACache: a deep integration
of device and application for flash-based key-value caching,” in USENIX
Conference on File and Storage Technologies (FAST’17), 2017.

[17] S. Seshadri, M. Gahagan, M. S. Bhaskaran, T. Bunker, A. De, Y. Jin,
Y. Liu, and S. Swanson, “Willow: a user-programmable SSD.” in
USENIX Symposium on Operating Systems Design and Implementation
(OSDI’14), 2014.

[18] R. J. Yang and Q. Luo, “FlashTKV: a high-throughput transactional key-
value store on flash solid state drives,” in International Conference on
Advanced Communications and Computation (INFOCOMP’12), 2012.

[19] L. Marmol, S. Sundararaman, N. Talagala, and R. Rangaswami,
“NVMKV: a scalable, lightweight, FTL-aware key-value store.” in
USENIX Annual Technical Conference (ATC’15), 2015.

[20] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, “KAML:
A flexible, high-performance key-value SSD,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA’2017),
2017.

[21] Twitter, “Fatcache,” https://github.com/twitter/fatcache.
[22] N. R. Miklos Szeredi, “Filesystem in userspace,”

http://fuse.sourceforge.net.

[23] A. Kyrola, G. E. Blelloch, and C. Guestrin, “GraphChi: large-scale graph
computation on just a PC,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI’12), 2012.

[24] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song,
“A survey of flash translation layer,” Journal of Systems Architecture,
vol. 55, no. 5, pp. 332–343, 2009.

[25] E. Gal and S. Toledo, “Algorithms and data structures for flash
memories,” in ACM Computing Survey (CSUR), 2005.

[26] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” in USENIX
Annual Technical Conference (ATC’08), 2008.

[27] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma, and
M. K. Qureshi, “FlashBlox: achieving both performance isolation and
uniform lifetime for virtualized SSDs,” in USENIX Conference on File
and Storage Technologies (FAST’17), 2017.

[28] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data
processing,” in IEEE International Symposium on High Performance
Computer Architecture (HPCA’11), 2011.

[29] Memblaze, “Memblaze,” http://www.memblaze.com/en/.
[30] Facebook, “McDipper: a key-value cache for flash storage,”

https://www.facebook.com/notes/facebook-engineering/mcdipper-a-
key-value-cache-for-flash-storage/10151347090423920.

[31] Memcached, “Memcached: a distributed memory object caching
system,” http://www.memcached.org.

[32] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in ACM
SIGMETRICS Performance Evaluation Review (SIGMETRICS’12),
2012.

[33] D. Carra and P. Michiardi, “Memory partitioning in memcached: an
experimental performance analysis,” in IEEE International Conference
on Communications (ICC’14), 2014.

[34] S. S. G. G. John Bucy, Jiri Schindler, “DiskSim 4.0,”
http://www.pdl.cmu.edu/DiskSim/.

[35] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in International conference on World Wide
Web (WWW’10), 2010.

[36] “yahoo-web,” http://webscope.sandbox.yahoo.com/catalog.php?datatype=g.
[37] J. Yang and J. Leskovec, “Defining and evaluating network communities

based on ground-truth,” in IEEE International Conference on Data
Mining (ICDN’12), 2012.

[38] J. McAuley and J. Leskovec, “Learning to discover social circles
in ego networks,” in International Conference on Neural Information
Processing Systems (NIPS’12), 2012.

[39] L. Takac and M. Zabovsky., “Data analysis in public social networks,”
in International Scientific Conference and International Workshop on
Present Day Trends of Innovations, 2012.

[40] B. K. R. Vangoor, V. Tarasov, and E. Zadok, “To FUSE or not to FUSE:
performance of user-space file systems.” in USENIX Conference on File
and Storage Technologies (FAST’17), 2017.

[41] “Xmp,” https://github.com/libfuse/libfuse/releases.
[42] “Filebench benchmark,” http://sourceforge.net/apps/mediawiki/filebench.
[43] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in ACM SIGMOD International Conference on Management of data
(SIGMOD’2010), 2010.

[44] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin,
and J. Hellerstein, “Graphlab: a new framework for parallel machine
learning,” arXiv preprint arXiv:1408.2041, 2014.

[45] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: distributed graph-parallel computation on natural
graphs.” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI’12), 2012.

[46] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “GraphX: A
resilient distributed graph system on Spark,” in International Workshop
on Graph Data Management Experiences and Systems (GRADES’13),
2013.

[47] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: edge-centric
graph processing using streaming partitions,” in ACM Symposium on
Operating Systems Principles (SOSP’13), 2013.

[48] X. Zhu, W. Han, and W. Chen, “GridGraph: large-scale graph processing
on a single machine using 2-level hierarchical partitioning.” in USENIX
Annual Technical Conference (ATC’2015), 2015.

