
Zhang K, Chen F, Ding X et al. Hetero-DB: Next generation high-performance database systems by best utilizing hetero-

geneous computing and storage resources. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 30(4): 657–678

July 2015. DOI 10.1007/s11390-015-1553-y

Hetero-DB: Next Generation High-Performance Database Systems by
Best Utilizing Heterogeneous Computing and Storage Resources

Kai Zhang 1,2 (张 凯), Feng Chen 3 (陈 峰), Member, ACM, IEEE, Xiaoning Ding 4 (丁晓宁)
Yin Huai 5 (槐 寅), Rubao Lee 2 (李如豹), Tian Luo 6 (罗 天), Kaibo Wang 2 (王凯博), Yuan Yuan 2 (袁 源)
and Xiaodong Zhang 2,∗ (张晓东), Fellow, ACM, IEEE

1Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
2Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, U.S.A.
3Department of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
4Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.
5Databricks Inc., San Francisco, CA 94105, U.S.A.
6VMware Inc., Palo Alto, CA 94304, U.S.A.

E-mail: kay21s@mail.ustc.edu.cn; fchen@csc.lsu.edu; xiaoning.ding@njit.edu; yhuai@databricks.com
E-mail: liru@cse.ohio-state.edu; tianl@vmware.com; {wangka, yuanyu, zhang}@cse.ohio-state.edu

Received February 21, 2015; revised April 23, 2015.

Abstract With recent advancement on hardware technologies, new general-purpose high-performance devices have been

widely adopted, such as the graphics processing unit (GPU) and solid state drive (SSD). GPU may offer an order of higher

throughput for applications with massive data parallelism, compared with the multicore CPU. Moreover, new storage device

SSD is also capable of offering a much higher I/O throughput and lower latency than a traditional hard disk device (HDD).

These new hardware devices can significantly boost the performance of many applications; thus the database community has

been actively engaging in adopting them into database systems. However, the performance benefit cannot be easily reaped

if the new hardwares are improperly used. In this paper, we propose Hetero-DB, a high-performance database system

by exploiting both the characteristics of the database system and the special properties of the new hardware devices in

system’s design and implementation. Hetero-DB develops a GPU-aware query execution engine with GPU device memory

management and query scheduling mechanism to support concurrent query execution. Furthermore, with the SSD-HDD

hybrid storage system, we redesign the storage engine by organizing HDD and SSD into a two-level caching hierarchy in

Hetero-DB. To best utilize the hybrid hardware devices, the semantic information that is critical for storage I/O is identified

and passed to the storage manager, which has a great potential to improve the efficiency and performance. Hetero-DB aims

to maximize the performance benefits of GPU and SSD, and demonstrates the effectiveness for designing next generation

database systems.

Keywords database, heterogeneous system, GPU, SSD

1 Introduction

With recent advancement on new hardware tech-

nologies, new general-purpose and high-performance

devices have been widely adopted, such as the com-

puting device GPU (graphics processing unit), and

new storage devices such as SSD (solid state drive).

GPU, with unprecedentedly rich and low-cost paral-

lel computing resources, may offer an order of mag-

nitude higher throughput compared with a multicore

Regular Paper

Special Section on Data Management and Data Mining

This work was supported in part by the National Science Foundation of USA under Grant Nos. CCF-0913050, OCI-1147522, and
CNS-1162165.

∗Corresponding Author

©2015 Springer Science+Business Media, LLC & Science Press, China

658 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

CPU. In high performance computing areas, GPUs as

accelerators have already been widely deployed to pro-

cess performance-critical tasks. For example, accord-

ing to the 41st Top500 List, published in June 2013,

more than 50 supercomputers have been equipped with

accelerators/co-processors (mostly NVIDIA GPUs),

compared to less than 5 six years ago. As an innova-

tive storage device, SSD has a much lower energy con-

sumption and may achieve up to 7 times higher read

throughput than a traditional hard disk. With the un-

precedented computation and I/O throughput, these

new general-purpose computing and storage devices can

significantly improve applications’ performance.

Because of GPU’s high computational power and

SSD’s high I/O throughput, how to accelerate vari-

ous workloads on GPUs and efficiently utilize SSDs has

been a major research topic in many areas. Specifically,

the database community has been actively engaging in

making effective use of the new hardware devices to

accelerate either the query execution engine or the sto-

rage engine of database systems[1-15]. However, major

data warehousing systems (e.g., Teradata, DB2, Oracle,

SQL Server) or MapReduce-based data analytical sys-

tems (e.g., Hive, Pig, Tenzing) have not truly adopted

GPUs and SSDs for productions. The reason is that the

significant performance benefits from these hardwares

cannot be easily reaped if they are not properly used.

To well utilize these new hardware devices, both

the special properties of the hardware and the cha-

racteristics of database systems need to be taken into

consideration in the database system design and im-

plementation. For instance, in order to use GPU to

maximize query execution performance, applications

must fully exploit both thread-level and data-level para-

llelisms and well utilize SIMD (single instruction, mul-

tiple data) vector units to parallelize workloads. More-

over, SSD has a fundamentally different working mecha-

nism with HDD, where fragmentation could seriously

impact performance by a factor of over 14.

Unfortunately, neither multicore-based query exe-

cution engines nor HDD-based storage engines in cur-

rent database systems can well utilize the new hard-

ware devices, resulting in resource underutilization and

relatively low performance. In the following, we will

show the four major technical challenges in effectively

adopting GPU and SSD in query execution engines and

storage engines, respectively.

1.1 GPU As the Main Processor in Query
Execution Engines

Challenge 1: A GPU-Aware Query Execution En-

gine. GPU has a separate device memory from the

main memory, and data has to be transferred to GPU

device memory via PCIe for processing. However, the

PCIe transfer is expensive and is considered as the ma-

jor overhead in GPU execution. The key of effectively

utilizing GPU is to fundamentally understand how the

two basic factors of GPU query processing are affected

by query characteristics, software optimization tech-

niques, and hardware environments. Furthermore, the

programming paradigm of GPU is fundamentally dif-

ferent from that of CPU. Therefore, the query opera-

tors such as JOIN need to be parallelized in CUDA

or OpenCL for execution on GPU, and a GPU-aware

query execution engine is demanded.

Challenge 2: Efficient Software Infrastructure for

Concurrent GPU Query Execution. Due to the hetero-

geneous, data-driven characteristics of GPU operations,

a single query can hardly consume all GPU resources.

Dedicated query processing thus often leads to resource

underutilization, which limits the overall performance

of the database system. In business-critical applications

such as high-performance data warehousing and multi-

client dataflow analysis, a large number of users may

demand query results simultaneously. As the volume

of data to be processed keeps increasing, it is also es-

sential for user queries to make continuous progress so

that new results can be generated constantly to satisfy

the goal of interactive analysis. The lack of concur-

rent querying capability restricts the adoption of GPU

databases in these application fields.

Concurrent query execution consolidated usage of

GPU resources enhances system efficiency and func-

tionalities, but it makes the design of query execution

engine more challenging. To achieve the highest perfor-

mance, each user query tends to reserve a large amount

of GPU resources. Unlike CPUs where the operating

system supports fine-grained context switches and vir-

tual memory abstractions for resource sharing, current

GPU hardware and system software provide none of

these interfaces for database resource management. For

example, GPU tasks cannot be preempted once started;

on-demand data loading is not supported during task

execution; automatic data swapping service is also miss-

ing when the device memory undergoes pressure. As a

result, without efficient coordination by the database,

multiple GPU queries attempting to execute simulta-

neously can easily cause low resource usage, system

Kai Zhang et al.: Hetero-DB: Next Generation High-Performance Database Systems 659

thrashing, or even query abortions, which significantly

degrade, rather than improve, overall system perfor-

mance. Fig.1 shows that compared with CPU-based

systems, GPU-based query execution engine lacks the

support for memory management and scheduling func-

tional facilities. Therefore, an efficient software infras-

tructure for supporting concurrent GPU query execu-

tion is essential for maximizing GPU utilization and

throughput.

Missing

Components

GPU-Aware

Query Execution Engine

GPU-Memory

Management

GPU Query

Scheduling

GPU Device Driver Operating System

Memory

Management

Multi-Task

Scheduling

GPU CPU

CPU-Based

Query Execution Engine

{{{

Fig.1. Lack of software infrastructure for concurrent GPU query
execution.

1.2 Integrating SSD in Storage Engine

Challenge 3: The Fittest Position of SSDs in Sto-

rage Systems. Flash memory based SSD, an emerg-

ing storage technology, plays a critical role in revolutio-

nizing the storage system design. Different from HDDs,

SSDs are completely built on semiconductor chips with-

out any moving parts. Such a fundamental difference

makes SSD capable of providing one order of magnitude

higher performance than rotating media, and makes it

an ideal storage medium for building high-performance

storage systems. However, building a storage system

completely based on SSDs is often above the accepta-

ble threshold in most commercial and daily operated

systems. For example, a 32 GB Intel X25-E SSD costs

around $12 per GB, which is nearly 100 times more

expensive than a typical commodity HDD. To build a

server with only 1 TB storage, 32 SSDs are needed and

as much as $12 000 has to be invested in storage solely.

Even considering the price-drop trend, the average cost

per GB of SSDs is still unlikely to reach the level of

rotating media in the near future[16]. Thus, we believe

that in most systems, SSDs should not be simply viewed

as a replacement for the existing HDD-based storage,

but instead, SSDs should be a means to enhance it.

Therefore, the fittest position of SSDs in storage sys-

tems needs to be found to strike a right balance between

performance and cost.

Challenge 4: Efficient Data Management on Hybrid

Storage System. Data layouts in database storage sys-

tems are established with different types of data struc-

tures, such as indexes, user tables, temporary data

and others. Thus, a storage management system typi-

cally issues different types of I/O requests with diffe-

rent quality of service (QoS) requirements[17]. Com-

mon practice has treated storage as a black box for a

long time. With an HDD-SSD hybrid storage system,

the “black-box” concept of management for storage is

hindering us from benefiting from the rich resources of

advanced storage systems. Consequently, efficient data

management on HDD-SSD hybrid storage system is re-

quired.

1.3 Our Solution

The performance of a database system depends on

two major parts: the query execution engine and the

storage engine. If either of them becomes the bottle-

neck, the overall performance of the system will be li-

mited no matter how fast the rest part is. For exam-

ple, a fast query processing engine would not improve

the overall performance if the data cannot be loaded in

time; and a fast storage engine would not be useful if the

query execution engine is incapable of processing data

at the same speed. Therefore, when designing the next

generation database systems, both the query execution

engine and the storage engine should be redesigned and

accelerated with the most advanced hardware devices.

We propose Hetero-DB, a new database system with

a complete redesign of the data processing engine and

the storage engine to maximize the performance with

GPU and SSD. Hetero-DB fully exploits the perfor-

mance benefits from GPU and SSD, and achieves a sig-

nificant speedup.

GPU Query Engine. We have designed and imple-

mented a GPU query engine with various warehous-

ing operators on both NVIDIA and AMD GPUs, in-

cluding Selection, Join, Aggregation, and Sort. The

execution engine consists of a code generator and pre-

implemented query operators using CUDA/OpenCL.

The code generator can generate either CUDA drive

programs or OpenCL drive programs, which will be

compiled and linked with pre-implemented operators.

Concurrent Query Execution. To enable multitask-

ing on GPU processing, we propose a set of techniques

660 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

including GPU device memory management and con-

current query scheduling. we present a resource mana-

gement facility to support efficient executions of con-

current queries in GPU databases. It ensures high re-

source utilization and system performance through two

key components: a query scheduler that maintains opti-

mal concurrency level and workload on the GPUs, and

a data swapping mechanism to maximize the effective

utilization of GPU device memory.

Cache Hierarchy and Data Management. We orga-

nize the hybrid storage system into a two-level hierar-

chy. Level one, consisting of SSDs, works as a cache

for level two, consisting of HDDs. To effectively utilize

SSD, a direct communication channel between a DBMS

and its underlying hybrid storage system is made to

pass semantic information to the storage manager. We

are motivated by the abundance of semantic informa-

tion that is available from various DBMS components,

such as the query optimizer and the execution engine,

but has not been considered for database storage mana-

gement. By making selected and important semantic

information available to the storage manager, requests

can therefore be classified into different types. With

a set of predefined rules, each type is associated with

a QoS policy that can be supported by the underlying

storage system. At runtime, using the Differentiated

Storage Services[18] protocol, the associated policy of a

request is delivered to the storage system along with

the request itself. Upon receiving a request, the sto-

rage system first extracts the associated QoS policy,

and then uses a proper mechanism to serve the request

as required by the QoS policy.

The roadmap of this paper is as follows. Section

2 introduces the background and motivation of this

research. Section 3 outlines the overall structure of

Hetero-DB. Sections 4 and 5 describe the GPU-aware

query execution engine and the hybrid storage engine,

respectively. In Section 6, we evaluate the query exe-

cution engine and the storage engine, respectively. Sec-

tion 7 introduces related work, and Section 8 concludes

the paper.

2 Background and Motivation

2.1 GPU As a High-Performance Computing
Device

General-purpose GPUs, a.k.a. GPGPUs, are

quickly evolving from conventional, dedicated accele-

rators towards mainstream commodity general-purpose

computing devices. Compared with CPU, GPU has the

following three unique features. First, GPU devotes

most of its die area to a large array of arithmetic logic

units (ALUs), and executes code in an SIMD fashion.

With the massive array of ALUs, GPU offers an order of

magnitude higher computational throughput than CPU

for applications with ample parallelism. Second, GPU

has a very high memory bandwidth. NVIDIA GTX

780, for example, provides 288.4 GB/s memory band-

width, while most recent Intel Core E5-2680v3 pro-

cessor only has 68 GB/s memory bandwidth. Third,

GPU effectively hides memory access latency by warp

switching. Warp (or wave-front called in OpenCL),

the basic scheduling unit in NVIDIA GPU, can benefit

zero-overhead scheduling by GPU hardware. When one

warp is blocked by memory accesses, other warps whose

next instruction has its operands ready are eligible to be

scheduled for execution. With enough threads, memory

stalls can be minimized or even eliminated.

However, utilizing GPU in accelerating database

systems would face the following challenges.

1) Limited Memory Capacity and Huge Data Trans-

fer Overhead. The capacity of GPU memory is much

smaller than that of main memory. For example, the

memory size of a server-class NVIDIA Tesla K40 GPU

is only 12 GB, while that of a data center server can

be hundreds of gigabytes. Furthermore, transferring

data between host memory and GPU device memory

via PCIe can be a huge overhead. However, a database

system generally needs to process data with a large

dataset. Therefore, utilizing GPUs in database systems

needs a throughout evaluation to know its throughput

and overheads.

2) Low Resource Utilization. A typical query exe-

cution comprises both CPU and GPU phases. The

CPU phases are in charge of, e.g., initializing GPU

contexts, preparing input data, setting up GPU page

tables, launching kernels, materializing query results,

and controlling the steps of query progress. These ope-

rations can take a notable portion of query execution

time, which may cause GPU resources to be underuti-

lized during these periods. Assuming dedicated occu-

pation of the device, GPU queries also tend to release

reserved device memory space lazily to improve data

reuses and simplify algorithm implementation. This

lowers the effective usage of allocated space.

3) Uncoordinated Query Co-Running. Running

multiple queries on the same GPUs can improve re-

source utilization and system performance. Due to the

lack of necessary database facilities to coordinate the

sharing of GPU resources, co-running queries naively

Kai Zhang et al.: Hetero-DB: Next Generation High-Performance Database Systems 661

can cause serious problems such as query abortions or

mediocre throughput. One of the most important func-

tionalities not supported in current database systems

is the coordination over GPU device memory usage.

To maximize performance, each query tends to allocate

a large amount of device memory space and keep its

data on the device for efficient reuses. This causes high

conflicts when multiple queries try to use device mem-

ory simultaneously. Since the underlying GPU driver

does not support automatic data swapping, query co-

runnings, if not managed by the database, can easily

abort or suffer low performance. Even though there

are recent proposals to suggest adding such service in

the operating system[19], the database engine still needs

to provide this functionality on its own in order to take

advantage of additional information from query-level

semantics for maximizing performance.

To effectively utilize GPU in database systems, we

have implemented and intensively evaluated a GPU-

based system prototype, and proposed a set of tech-

niques to tackle the above issues.

2.2 Managing Heterogeneous Storage Systems

High-performance storage systems are in an un-

precedented high demand for data-intensive comput-

ing in database systems. However, most storage sys-

tems, even those specifically designed for high-speed

data processing, are still built on conventional HDDs

with several long-existing technical limitations, such as

low random access performance and high power con-

sumption. Unfortunately, these problems essentially

stem from the mechanic nature of HDDs and thus are

difficult to be addressed via technology evolution. Flash

memory based SSD, an emerging storage technology,

plays a critical role in revolutionizing the storage sys-

tem design. Different from HDDs, SSDs are completely

built on semiconductor chips without any moving parts.

Such a fundamental difference makes SSD capable of

providing one order of magnitude higher performance

than rotating media, and makes it an ideal storage

medium for building high-performance storage systems.

There are two existing approaches attempting to

best utilize heterogeneous storage devices. One is to

rely on database administrators (DBAs) to allocate

data among different devices, based on their knowledge

and experiences. The other is to rely on a management

system where certain access patterns are identified by

runtime monitoring data accesses at different levels of

the storage hierarchy, such as in buffer caches and disks.

The DBA-based approach has the following limita-

tions. 1) It incurs a significant and increasing amount of

human efforts. DBAs, as database experts with a com-

prehensive understanding of various workloads, are also

expected to be storage experts[20]. 2) Data granularity

has become too coarse to gain desired performance. As

the table size becomes increasingly large, different ac-

cess patterns would be imposed on different parts of a

table. However, all requests associated with the same

table are equally treated. 3) Data placement policies

that are configured according to the common access

patterns of workloads have been largely static.

Monitoring-based storage management for

databases can perform well when data accesses are

stable in a long term, where certain regular access

patterns can be identified via data access monitoring

at runtime. However, monitoring-based management

may not be effective under the following three condi-

tions. First, monitoring-based methods need a period

of ramp-up time to identify certain regular access pat-

terns. For highly dynamic workloads and commonly

found data with a short lifetime, such as temporary

data, the ramp-up time may be too long to make

a right and timely decision. Second, a recent study

shows that data access monitoring methods would

have difficulties to identify access patterns for concur-

rent streams on shared caching devices due to complex

interferences[21]. Third, certain information items are

access-pattern irrelevant, such as content types and

data lifetime[22], which are important for data place-

ment decisions among heterogeneous storage devices.

Monitoring-based approaches would not be able to

identify such information. Furthermore, monitoring-

based management needs additional computing and

space support, which can be expensive to obtain a deep

history of data accesses.

3 Overview of Hetero-DB

Fig.2 shows the framework of Hetero-DB, where the

data processing engine is redesigned with the hybrid

general-purpose computing hardware devices: multi-

core CPUs and GPUs. Furthermore, Hetero-DB uses

SSD as a cache layer above HDD, and makes selected

and important semantic information available to the

storage manager. Thus, the storage engine is also

redesigned. Based on the special characteristics of

database systems, Hetero-DB effectively and efficiently

uses the hybrid hardware devices to achieve a signifi-

cant speedup.

662 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

In the following, we will demonstrate our design

of the GPU-aware query processing engine and the

heterogeneity-aware storage engine, respectively.

A Query in SQL-Like
Declarative Language

GPU-Aware
Query Execution Engine

SSD/HDD
Heterogeneity-Aware

Storage Engine

GPU

HDD SSD

Hybrid
Storage
Hardwares

Hybrid
Computing
Hardwares

CPU

Fig.2. System overview.

3.1 GPU-Aware Query Execution Engine

Fig.3 shows the architecture of our query engine. It

is comprised of a SQL parser, a query optimizer and an

execution engine. The parser and the optimizer share

the same codes with YSmart[23]. The execution engine

consists of a code generator and pre-implemented query

operators using CUDA/OpenCL. The code generator

can generate either CUDA drive programs or OpenCL

drive programs, which will be compiled and linked with

pre-implemented operators. The engine adopts a push-

based, block-oriented execution model which executes

a given query plan tree in post-order sequence. It tries

to keep data in GPU device memory as long as possible

until all the operations on the data are finished.

Query Plan Tree

Translate

Submit

Join

Result GPU

Call

Translate

Join

T  T 

T 

Query

and

Schema

GPU Program

GPU Drive

Program

Implementation of

Query Operator on

GPU

Fig.3. Data processing engine.

To support concurrent query processing, Hetero-

DB provides the functionalities needed by databases

to coordinate GPU resource sharing. These functiona-

lities enforce controls over GPU resource usage by

transparently intercepting the GPU API calls from user

queries. This design does not change existing program-

ming interfaces of the underlying GPU drivers, and

minimizes the modifications to the other components

of the GPU query engine. The functionalities reside

completely in the application space, and do not rely

on any OS-level functionalities privileging to the GPU

drivers.

Hetero-DB comprises two main components provid-

ing the support required for concurrent query execu-

tions. Working like an admission controller, the query

scheduler component controls the concurrency level and

intensity of resource contention on GPU devices. By

controlling the queries that can execute concurrently

at the first place, query scheduler maintains optimal

workload on the GPUs that would maximize system

throughput. Once a proper concurrency level is main-

tained, the device memory manager component further

ensures system performance by resolving the resource

conflicts among concurrent queries. Through VM-like

automatic data swapping service, it makes sure that

multiple queries with moderate resource conflicts can

make concurrent progress efficiently without suffering

query abortions or causing low resource utilization.

3.2 Heterogeneity-Aware Storage Engine

Fig.4 shows the architecture of the storage engine.

When the buffer pool manager sends a request to the

storage manager, associated semantic information is

also passed. We extend the storage manager with a

“policy assignment table”, which stores the rules to as-

sign each request a proper QoS policy, according to

its semantic information. The QoS policy is embed-

ded into the original I/O request and delivered to the

storage system through a block interface. We have im-

plemented Hetero-DB by using the Differentiated Sto-

rage Services protocol from Intel Labs[18] to deliver a

request and its associated policy to a hybrid storage

system. Upon receiving a request, the storage system

first extracts the policy, and invokes a mechanism to

serve this request.

Compared with monitoring-based approaches[24-26],

Hetero-DB has the following unique advantages. 1)

Under this framework, a storage system has the ac-

curate information of how (and what) data will be ac-

cessed. This is especially important for highly dynamic

Kai Zhang et al.: Hetero-DB: Next Generation High-Performance Database Systems 663

query executions and concurrent workloads. 2) A sto-

rage system directly receives the QoS policy for each

request, and thus could quickly invoke the appropriate

mechanism to serve. 3) Besides having the ability to

pass access-pattern irrelevant semantic information, in

Hetero-DB, storage management does not need special

data structures required by various monitoring-based

operations, thus incurring no additional computation

and space overhead. 4) A DBMS can directly commu-

nicate with a storage system about the QoS policy for

each request in an automatic mode, so that DBAs can

be relieved from the burdens of storage complexity.

Query
Optimizer

Query
Planner

Buffer Pool Manager

Request + Semantic Information

Storage Manager

(Policy Assignment Table)

Storage System Control Logic

HDD HDD SSDSSD

I/O Request + QoS Policy

Info. 1 ... Info. QoS Policy

Execution
Engine

...

... ...

Fig.4. Storage engine.

Our implementation mainly involves three issues. 1)

We have instrumented the query optimizer and the exe-

cution engine to retrieve semantic information embed-

ded in query plan trees and in buffer pool requests. 2)

We have augmented the data structure of the buffer

pool to store collected semantic information. The sto-

rage manager has also been augmented to incorporate

the “policy assignment table”. 3) Finally, to deal with

concurrency, a small region of the shared memory has

been allocated for global data structures that need to

be accessed by all processes.

The key to make Hetero-DB effective is associat-

ing each request with a proper QoS policy. In order

to achieve our goal, we need to take the following two

steps: 1) understanding QoS policies and their storage

implications; 2) designing a method to determine an

accurate mapping from request types to QoS policies.

In the following two sections, we will discuss the

details.

4 GPU-Based Data Processing Engine: Design

and Implementation

4.1 Query Operators

Our query execution engine in Hetero-DB imple-

ments four operators required by star schema queries,

each of which is implemented with representative algo-

rithms based on the state-of-the-art of research.

Selection. Selection’s first step is to sequentially

scan all the columns in the predicates for predicate

evaluation, with the result stored in a 0-1 vector. The

second step is to use the vector to filter the projected

columns.

Join. We implement the unpartitioned hash al-

gorithm that has been proved to perform well for

star schema queries on multi-core and many-core

platforms[11,27-28]. We implement the hash table using

both Cuckoo hash[29] and chained hash. For chained

hash, hash conflicts can be avoided by making the

size of hash table twice the cardinality of the input

data with a perfect hash function theoretically[30]. In

our study, the chained hash performs better than the

Cuckoo hash. This is because star schema queries have

low join selectivities, and Cuckoo hash needs more key

comparisons than chained hash when there is no match

for the key in the hash table.

Aggregation. We implement the hash-based aggre-

gation which involves two steps. The first step is to

sequentially scan the group-by keys and calculate the

hash value for each key. The second step is to sequen-

tially scan the hash value and the aggregate columns to

generate aggregation results.

Sort. Sort operator will sort the keys first. After

the keys are sorted, the results can be projected based

on the sorted keys, which is a gather operation. Since

sort is usually conducted after aggregation, the number

of tuples to be sorted is usually small, which can be

done efficiently through bitonic sort.

4.2 GPU Device Memory Management

The primary functionality of the device memory

manager is to coordinate the conflicting demands for

664 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

device memory space from different queries so that they

can make concurrent progress efficiently. To achieve

this goal, it relies on an optimized data swapping frame-

work and replacement policy to minimize overhead.

4.2.1 Framework

When free device memory space becomes insuffi-

cient, instead of rejecting a query’s service request,

Hetero-DB tries to swap some data out from device

memory and reclaim their space for better uses. This

improves the utilization of device memory space and

makes concurrent executions more efficient. To achieve

this purpose, the device memory manager employs a

data swapping framework that is motivated by a system

called GDM[19]. Different from GDM, our framework

resides in the application space, which cannot rely on

any system-level interfaces, but has the advantage of

using query-level semantics, for data swapping.

To support data swapping, the framework maintains

a swapping buffer in the host memory to contain the

query data that need not to reside in the device mem-

ory momentarily. When a device memory allocation

request is received, it creates a virtual memory area in

the swapping buffer and returns the address of the vir-

tual memory area to the query. Device memory space

only needs to be allocated when a kernel accessing the

data is to be launched. The framework maintains a

global list of data regions allocated on the device mem-

ory for all running queries. When free space becomes

insufficient, the device memory manager selects some

swappable regions from the list and evicts them to the

swapping buffer. Due to the special features of multi-

query workloads, several optimization techniques are

employed by the framework to improve performance,

as explained below.

Lazy Transferring. When a query wants to copy

some data to a device memory region (e.g., through cu-

daMemcpy in CUDA), the data are not immediately

transferred to device memory until they are to be ac-

cessed in a GPU kernel. The swapping buffer serves as

the temporary storage for the data to be transferred.

This design prevents data from being evicted from de-

vice memory immaturely because data only need to be

transferred to device memory when they are to be im-

mediately accessed. To further reduce overhead, the

memory manager marks the query source buffer copy-

on-write. The data can later be transferred directly

from the source buffer if it has not been changed.

Page-Based Coherence Management. GPU queries

usually reserve device memory space in large regions.

The memory manager internally partitions a large re-

gion into several small, fixed-size, logical pages. Each

page keeps its own state and maintains data cohe-

rence between host and device memories independently.

Managing data coherence at page units has at least

two performance benefits. First, by breaking a large,

non-interruptible DMA operation into multiple smaller

ones, data evictions can be canceled immediately when

they become unnecessary (e.g., when a region is being

released). Second, a partial update to a region only

changes the states of affected pages, instead of a whole

region, which reduces the amount of data that need to

be synchronized between host and device memories.

Data Reference and Access Advices. To avoid al-

locating device memory space for unused regions, the

memory manager needs to know which data regions are

to be referenced during a kernel execution. It is also

beneficial for the memory manager to know how the

referenced regions are to be accessed by a kernel. In

this way, for example, the content of a region not con-

taining kernel input data needs not to be loaded into

device memory before the kernel is issued; the mem-

ory manager also need not preserve region content into

the swapping buffer during its eviction if the data are

not to be reused. To achieve this purpose, the mem-

ory manager provides interfaces for queries to pass data

reference and access advices before each kernel invoca-

tion.

4.2.2 Data Replacement

When free device memory space becomes scarce, the

memory manager has to reclaim some space for the ker-

nel to be launched. The replacement policy that selects

data regions for evictions plays an important role to

system performance.

There are three main differences between data re-

placement in device memory and conventional CPU

buffer pool management. First, the target of device

memory replacement is a small number of variable-

size regions rather than a large amount of uniform-

size pages. GPU queries usually allocate a few device

memory regions, whose sizes may differ dramatically

depending on the roles of the regions and query proper-

ties. Since the physical device memory space allocated

for a region cannot be partially deallocated without

necessary driver support, a victim region, once selected,

must be evicted from device memory completely. Sec-

ond, unlike CPU databases where data evictions can be

interleaved with data computation to hide the latency

of replacement, a GPU kernel cannot start execution

Kai Zhang et al.: Hetero-DB: Next Generation High-Performance Database Systems 665

until sufficient space is vacated on the device memory

for all its datasets. This makes GPU query performance

especially sensitive to the latency of data replacement.

Third, device memory not only has to contain input

table data and output query results, but also stores

various intermediate kernel objects whose content can

be modified from both CPU and GPU. This makes the

data access patterns of device memory regions much

more diverse than buffer pool pages.

Based on these unique characteristics, we propose

a policy, called CDR (Cost-Driven Replacement), that

combines the effects of region size, eviction latency, and

data locality to achieve good performance. When a re-

placement decision has to be made, CDR scans the list

of swappable regions, and selects the region that would

incur the lowest cost for eviction. The cost c of a region

is defined in a simple formula,

c = e+ f × s× l, (1)

where e represents the size of the data that needs to be

evicted from device memory, s is region size, l repre-

sents the position of the region in the LRU list, and f

is a constant, which we call latency factor, whose value

is between 0 and 1. If two regions happen to have the

same cost value, CDR breaks the tie by selecting the

less recently used one for replacement.

The first part of (1), e, quantifies the latency of

space vacation. Its value depends on the status of the

data pages in a region. For example, e is zero if none

of the pages has been modified by kernels on the de-

vice memory. If some pages have been updated by the

query process from the CPU, the device memory copies

of those modified pages would have been invalidated

and thus should not be evicted back to the swapping

buffer, leading to a value of e less than s. The second

part of (1), f × s× l, depicts the potential overhead if

the evicted region would be reused in a future kernel.

The value of l is between 1/n and 1, depending on the

region’s position among the n swappable regions in the

LRU order. For example, l = 1/n is for the least re-

cently used region, l = 2/n for the second least recently

used one, and so on. The role of latency factor f is to

give a heavier weight to data eviction latency in the

overall cost formula.

4.3 Concurrent Query Scheduling

In an open system where user queries arrive and

leave dynamically, the query scheduler maintains opti-

mal workload on the GPUs by controlling which queries

can co-run simultaneously. A query is allowed to start

execution if it can make effective use of the under-

utilized or unused GPU resources without incurring

high overhead associated with resource contention. The

GPU workload status is monitored continuously, so that

delayed queries can be rescheduled as soon as enough

resources become available.

A critical issue in query scheduling is to estimate the

actual resource demand of a GPU query. The amount

of resource being effectively utilized by a query can be

much lower than its reservation. Scheduling queries

based on the maximal reservation can thus cause GPUs

to be under-loaded, leading to sub-optimal system

throughput. In GPU databases, different queries and

query phases may have diverse resource consumption,

depending on query and data properties such as filter

conditions, table sizes, data types, and content dis-

tributions. If the query scheduler cannot accurately

predict the actual resource demand, a mistakenly sche-

duled query can easily bring down the overall system

performance by large.

To address the problem, we propose a simple, prac-

tical metric to effectively quantify the resource demand

of a GPU query. The design of the metric is based

on some observations that are generally applicable to

analytical GPU databases. First, for GPU query pro-

cessing, the utilization of device memory space has the

principal impact on system throughput and can be fre-

quently saturated under multi-query workloads. Unlike

compute cycles and DMA bandwidth that can be freely

reused, reusing a device memory region requires data

evictions and space re-allocation, which can potentially

incur high overhead. This makes system performance

strongly correlated with the demand for and utilization

of device memory space. Second, to ensure data trans-

fer and kernel execution efficiencies, analytical GPU en-

gines usually employ a batch-oriented, operator-based

query execution scheme. Under this scheme, table data

are partitioned into large chunks and pushed from one

operator to another for processing. It is thus a good

model to consider query execution as a temporal se-

quence of operators, each of which accepts an input

data chunk, processes it with the GPU, and generates

an output data chunk that may be passed to the next

operator for further processing.

Based on the above observations, we define a met-

ric called weighted device memory demand, or briefly

weighted demand, which is the weighted average of the

device memory space consumed by a query’s operator

sequence. The weight is computed as the percentage of

666 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

query execution time spent in each operator. The de-

vice memory space consumed by an operator equals the

maximal total size of device memory regions referenced

by any GPU kernel in the operator. Suppose that each

operator’s execution time and device memory consump-

tion are ti and mi respectively, the weighted demand

m of the query can be computed by

m =
Σ(ti ×mi)

Σti
. (2)

The device memory consumption of an operator can be

computed from query predicates and table data statis-

tics. The execution time of an operator can be pre-

dicted through modeling, as has been shown in our pre-

vious work [31].

To accommodate the changes of resource consump-

tion in different query phases, the weighted demand

of a query is dynamically updated as the query exe-

cutes, and is exposed to the query scheduler for mak-

ing timely scheduling decisions. When a new query ar-

rives, the query scheduler computes its initial weighted

demand. If the number exceeds the available device

memory capacity, which is measured by the difference

between the device memory capacity and the sum of

weighted demands of scheduled queries, the query’s exe-

cution needs to be delayed. The query scheduler con-

siders rescheduling a postponed query every time when

a running query’s resource demand changes or when a

query finishes execution.

5 Utilizing SSD for High Performance I/O

In order to turn our design of the heterogeneous-

aware storage engine into a reality, we must address

the following technical issues.

Associating a Proper QoS Policy to Each Request.

Semantic information does not directly link to proper

QoS policies that can be understood by a storage sys-

tem. Therefore, in order for a storage system to be

able to serve a request with the correct mechanism,

we need a method to accomplish the effective mapping

from semantic information to QoS policies. However,

a comprehensive solution must systematically consider

multiple factors, including the diversity of query types,

the complexity of various query plans, and the issues

brought by concurrent query executions.

Implementation. Two challenges need to be ad-

dressed. 1) The QoS policy of each request eventually

needs to be passed into the storage system. A DBMS

usually communicates with storage through a block in-

terface. However, current block interfaces do not allow

passing anything other than the physical information

of a request. 2) A hybrid storage system needs an ef-

fective mechanism to manage heterogeneous devices, so

that data placement would match the unique functiona-

lities and abilities of each device. Data also needs to

be dynamically moved among devices to respond access

pattern changes.

We will first discuss general QoS policies and then

introduce the specific policies used in this paper.

5.1 Overview of QoS Policies

QoS policies provide a high-level service abstraction

for a storage system. Through a set of well defined QoS

policies, a storage system can effectively quantify its ca-

pabilities without exposing device-level details to users.

A QoS policy can either be performance-related,

such as latency or bandwidth requirements, or non-

performance-related, such as reliability requirements.

All policies of a storage system are dependent on its

hardware resources and organization of these resources.

For example, if a storage system provides a reliability

policy, then for an application running on such a sto-

rage system, when it issues write requests of important

data, it can apply a reliability policy to these requests.

Thus, when such a request is delivered, the storage sys-

tem can automatically replicate received data to multi-

ple devices.

On the one hand, QoS policies can isolate device-

level complexity from applications, thus reducing

the knowledge requirement on DBAs, and enabling

heterogeneity-aware storage management within a

DBMS. On the other hand, these policies determine

the way in which a DBMS can manage requests. It

is meaningless to apply a policy that cannot be un-

derstood by the storage system. Therefore, a different

storage management module may be needed if a DBMS

is ported to another storage system that provides a fun-

damentally different set of policies.

5.2 QoS Policies of a Hybrid Storage System

We will demonstrate how to enable automatic sto-

rage management with a case study where the QoS poli-

cies are specified as a set of caching priorities.

The underlying system is a hybrid storage system

prototype organized into a two-level hierarchy. The

first level works as a cache for the second level. We use

SSDs at the first level, and HDDs at the second level. In

order to facilitate the decision making on cache mana-

gement (which block should stay in cache, and what

Kai Zhang et al.: Hetero-DB: Next Generation High-Performance Database Systems 667

should not), its QoS policies are specified as a set of

caching priorities, which can be defined as a 3-tuple:

{N, t, b}, where N > 0, 0 6 t 6 N , and 0% 6 b 6
100%.

Parameter N defines the total number of priorities,

where a smaller number means a higher priority, i.e., a

better chance to be cached.

Parameter t is a threshold for “non-caching” priori-

ties: blocks accessed by a request of a priority> t would

have no possibility of being cached. In this paper, we

set t = N − 1. Thus, there are two non-caching priori-

ties, N −1 and N . We call priority N −1 “non-caching

and non-eviction”, and call N “non-caching and evic-

tion”.

There is a special priority, called write buffer, con-

figured by parameter b. More details about these pa-

rameters will be discussed later.

For each incoming request, the storage system first

extracts its associated QoS policy, and then adjusts the

placement of all accessed blocks accordingly. For exam-

ple, if a block is accessed by a request associated with

a “high priority”, it will be fetched into cache if it is

not already cached, depending on the relative priority

of other blocks that are already in cache. Therefore in

practice, the priority of a request is eventually trans-

formed to the priority of all accessed data blocks. In

the rest of paper, we will also use “priority of a block”

without further explanation.

5.3 QoS Policy for Each Request

5.3.1 Request Types

A database I/O request has various semantic infor-

mation. For the purpose of caching priorities, in this

paper, we consider semantic information from the fol-

lowing categories.

Content Type. We focus on three major content

types: regular table, index and temporary data. Regu-

lar tables define the content of a database. They are

the major consumers of database storage capacity. In-

dexes are used to speed up the accessing of regular ta-

bles. Temporary data, such as a hash table[8], would be

generated during the execution of a query, and removed

before the query is finished.

Access Pattern. It refers to the behavior of an I/O

request. It is determined by the query optimizer. A

table may be either sequentially scanned or randomly

accessed. An index is normally randomly accessed.

According to collected semantic information, we can

classify requests into the following types: 1) sequen-

tial requests; 2) random requests; 3) temporary data

requests; 4) update requests. The discussion of QoS

policy mapping will be based on these types.

5.3.2 Policy Assignment in a Single Query

We will present five rules that are used to map each

request type to a proper QoS policy which, in this case

study, is a caching priority. For each request, the rules

mainly consider two factors: 1) performance benefit if

data is served from cache, and 2) data reuse possibility.

These two factors determine if we should allocate cache

space for a disk block, and if we decide to allocate, how

long we should keep it in cache. In this subsection, we

will consider priority assignment within the execution

of a single query, and then discuss the issues brought

by concurrent query executions in the next subsection.

1) Sequential Requests. In our storage system, the

caching device is an SSD, and the lower level uses

HDDs, which can provide a comparable sequential ac-

cess performance to that of SSDs. Thus, it is not bene-

ficial to place sequentially accessed blocks in cache.

Rule 1. All sequential requests will be assigned the

“non-caching and non-eviction” priority.

A request with the “non-caching and non-eviction”

priority has two implications: 1) if the accessed data is

not in cache, it will not be allocated in cache; 2) if the

accessed data is already in cache, its priority, which is

determined by a previous request, will not be affected

by this request. In other words, requests with this prio-

rity do not affect the existing storage data layout.

2) Random Requests. Random requests may benefit

from cache, but the eventual benefit is dependent on

data reuse possibility. If a block is randomly accessed

once but never randomly accessed again, we should not

allocate cache space for it either. Our method to assign

priorities for random requests is outlined in rule 2.

Rule 2. Random requests issued by operators at a

lower level of its query plan tree will be given a higher

caching priority than those that are issued by operators

at a higher level of the query plan tree.

This rule can be further explained with the following

auxiliary descriptions.

Level in a Query Plan Tree. For a multi-level query

plan tree, we assume that the root is on the highest

level and the leaf that has the longest distance from

the root is on the lowest level, namely level 0.

Related Operators. This rule relates to random re-

quests that are mostly issued by “index scan” operators.

For such an operator, the requests to access a table and

its corresponding index are all random.

668 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

Blocking Operators. With a blocking operator, such

as hash or sorting, operators at higher levels or its sib-

ling operator cannot proceed unless it finishes. There-

fore, the levels of affected operators will be recalculated

as if this blocking operator is at level 0.

Priority Range. Note that there are totallyN differ-

ent priorities, but not all of them will be used for ran-

dom requests. Instead, random requests are mapped

to a consecutive priority range [n1, n2], where n1 6 n2.

Thus, n1 is the highest available priority for random

requests, and n2 is the lowest available priority.

When Multiple Operators Access the Same Table.

For some query plans, the same table may be randomly

accessed by multiple operators. In this case, the priori-

ties of all random requests to this table are determined

by the operator at the lowest level of the query plan

tree. If there is an operator that sequentially accesses

the same table, the priority of this operator’s requests

is still determined by rule 1.

(3) formalizes the process of calculating the priority

of a random request, issued by an operator at level i of

the query plan tree. Assume llow is the lowest level of all

random access operators in the query plan tree, while

lhigh is the highest level. And Lgap represents this gap,

where Lgap = lhigh − llow. Assume Cprio is the size of

the available priority range [n1, n2], so Cprio = n2−n1.

pi =


n1, if Cprio = 0,
n1, if Lgap = 0,
n1 + i− llow, if Cprio > Lgap,

n1 +
⌊
Cprio × (i−llow)

Lgap

⌋
, if Cprio < Lgap.

(3)

The last branch of (3) describes the case when a tree

has so many levels that there are not enough priorities

to assign for each level. In this case, we can assign

priorities according to the relative location of opera-

tors, and operators at neighboring levels may share the

same priority.

Let us take the query plan tree in Fig.5 as an exam-

ple. In this example, three tables are accessed: t.a, t.b

and t.c. We assume that the available priority range is

[2, 5]. Both operators that access t.a are index scans.

Since the lowest level of random access operators for

t.a is level 0, all random requests to t.a and its index

would be assigned priority 2. It also means that re-

quests from the “index scan” operator at level 1 are

assigned the same priority: priority 2.

As to t.b, there are also two related operators. But

according to rule 1, all requests from the “sequential

scan” operator (level 0) are assigned the “non-caching

and non-eviction” priority. Requests from the other

operator (level 2) that accesses t.b are random. Ac-

cording to (3), requests from this operator should be

assigned priority 4.

For Table t.c, it is accessed by random requests from

an “index scan” operator. However, due to the blocking

operator “hash” on level 4, the “index scan” operator

is considered at level 0 in priority recalculation, and

thus all random requests to table t.c would be assigned

priority 2.

0

1

0

1Join

Index Scan

On: t.c

Index Scan

On: t.b

Index Scan

On: t.a

Index Scan

On: t.a

Sequential Scan

On: t.b

Join

Join

Join

Hash

2

3

4

5

Fig.5. Example query plan tree. This tree has 6 levels. Root
is on the highest level: level 5. Due to the blocking operator
“hash”, the other two operators on level 4 and level 5 are re-
calculated as on level 0 and level 1.

3) Temporary Data Requests. Queries with certain

operators may generate temporary data during execu-

tion. There are two phases associated with temporary

data: generation phase and consumption phase. Dur-

ing generation phase, temporary data is created by a

write stream. During consumption phase, temporary

data is accessed by one or multiple read streams. In

the end of consumption phase, the temporary data is

deleted to free up disk space. Based on this observa-

tion, we should cache temporary data blocks once they

are generated, and immediately evict them out of cache

at the end of their lifetime.

Rule 3. All read/write requests to temporary data

are given the highest priority. The command to delete

temporary data is assigned the “non-caching and evic-

tion” priority.

A request with the “non-caching and eviction” prio-

rity has two implications: 1) if the accessed data is

not in cache, it will not be promoted into cache; 2) if

the accessed data is already in cache, its priority will

be changed to “non-caching and eviction”, and can be

evicted timely. Thus, requests with the “non-caching

and eviction” priority only allow data to leave cache,

instead of getting into cache.

Kai Zhang et al.: Hetero-DB: Next Generation High-Performance Database Systems 669

Normally, if a DBMS is running with a file sys-

tem, the file deletion command only results in metadata

changes of the file system, without notifying the sto-

rage system about which specific blocks have become

useless. This becomes a problem because temporary

data may not be evicted promptly. And because of its

priority, temporary data cannot be replaced by other

data. Gradually, the cache will be filled with obsolete

temporary data.

This issue can be addressed by the newly proposed

TRIM command[1], which can inform the storage sys-

tem of what LBA (logical block address) ranges have

become useless due to file deletions, or other reasons.

Supported file systems, such as EXT4, can automati-

cally send TRIM commands once a file is deleted. For a

legacy file system that does not support TRIM, we can

use the following workaround to achieve the same effect:

before a temporary data file is deleted, we issue a series

of read requests, with the “non-caching and eviction”

priority, to scan the file from beginning to end. This

will in effect tell the storage system that these blocks

can be evicted immediately. This workaround incurs

some overhead at an acceptable level, because the read

requests are all sequential.

Update Requests. We allocate a small portion of the

cache to buffer writes from applications, so that they

do not access HDDs directly. With a write buffer, all

written data will first be stored in the SSD cache, and

flushed into the HDD asynchronously. Therefore, we

apply the following rule for update requests.

Rule 4. All update requests will be assigned the

“write buffer” priority.

There is a parameter b that determines how much

cache space is allocated as a write buffer. When the oc-

cupied space of data written by update requests exceeds

b, all content in the write buffer is flushed into HDD.

Note that the write buffer is not a dedicated space.

Rather, it is a special priority that an update request

can “win” cache space over requests of any other prio-

rity. For OLAP workloads in this paper, we set b at

10%.

5.3.3 Concurrent Queries

When multiple queries are co-running, I/O requests

accessing the same object might be assigned different

priorities depending on which query they are from. To

avoid such non-deterministic priority assignment, we

apply the following rule for concurrent executions.

Rule 5. 1) For sequential requests, temporary data

requests and updates, the priority assignment still fol-

lows rule 1, rule 3 and rule 4; 2) for random requests

that access the same object (table or index) but for dif-

ferent queries, they are assigned the highest of all pri-

orities, each of which is determined by rule 3 and in-

dependently based on the query plan of each running

query.

To implement this rule, we store some global in-

formation for all queries to access: a hash table

H(oid, list), two variables gllow and glhigh.

• The key “oid” stores an object ID either of a table

or of an index.

• The structure “list” for each oid is a list.

• Each element of list is a 2-tuple (level, count). It

means that among all queries, there are totally count

operators accessing oid, and all of these operators are

on level level in their own query plan tree. If some ope-

rators on different levels of a query plan tree are also

accessing oid, we need another element to store this

information.

• Variable gllow (the global lowest level of all random

operators) stores the minimum value of all llow accord-

ing to each query; similarly, glhigh stores the maximum

value of all lhigh according to each query.

All these data structures are updated upon the start

and end of each query. To calculate the priority of a ran-

dom request, with concurrency in consideration, we can

still use (3), just changing llow into gllow, and similarly

lhigh to glhigh, and thus Lgap would be glhigh − gllow.

Fig.6 describes this process.

Random
Request

Query
Starts

Query
Ends

Input:
Get Priority

with (3)

Issue Request

Update Update
Global Data Structures:

Random
Request

Lookup

1. Hash Table H;

2. gllow, glhigh;

3. Lgap

i/llow
llow/gllow
lhigh/glhigh

Output:

Priority

ı

Fig.6. Process to calculate request priorities.

Table 1 summarizes all the rules hStorage-DB uses

to assign caching priorities to requests.

670 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

Table 1. Rules to Assign Priorities

Request Type Priority Rule

Temporary data requests 1 Rule 3

Random requests 2 Rules 2, 5

.

..

N − 2

Sequential requests N − 1 Rule 1

TRIM to temporary data N Rule 3

Updates Write buffer Rule 4

6 Experiments

In this section, we evaluate the performance of

the GPU-aware query execution engine and the hybrid

HDD/SSD based storage engine. To show the effective-

ness of our query execution engine and the storage en-

gine, they are evaluated separately. In the evaluation

of the GPU-aware query execution engine, instead of

reading data from SSD or HDD, we transfer data from

the main memory to the GPU device memory. When

we are evaluating the HDD/SSD heterogeneity-aware

storage engine, the CPU-based query execution engine

is used for a fair comparison.

6.1 Performance of GPU-Aware Query

Execution Engine

We conduct the experiments on NVIDIA GTX 680.

The experiments are conducted with NVIDIA Linux

driver 310.44 with CUDA SDK 5.0.35. We use the

star schema benchmark (SSBM) which has already been

widely used in various data warehousing research stu-

dies. It has one fact table lineorder and four dimension

tables date, supplier, customer, and part, which are or-

ganized in a star schema fashion. There are a total

of 13 queries in the benchmark, divided into four query

flights. In our experiments, we run the benchmark with

a scale factor of 10 which will generate the fact table

with 60 million tuples.

Fig.7 shows the execution time of SSBM queries

on our GPU-aware query execution engine, and Fig.8

shows the performance speedup of GPU over CPU. Our

comparisons of CPU and GPU query execution engine

are based on the following two kinds of performance

numbers. First, the GPU performance is the perfor-

mance of the CUDA engine on NVIDIA GTX 680. Sec-

ond, the CPU performance for each query is the better

one between the performance of MonetDB and that of

our OpenCL query engine on Intel Core i7. We con-

duct the experiments under two conditions: 1) data

are available in the pinned memory; and 2) data are

available in the pageable memory.

1.1 1.2 1.3

SSBM on Intel Core i7
SSBM on 680 Pinned Memory
SSBM on 680 Pageable Memory

2.1 2.2 2.3

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s)

3.1 3.2 3.3 3.4 4.1 4.2 4.3

1000

800

600

400

200

0

Fig.7. SSBM performance comparison. For the performance on
Intel Core i7, the performance of Q4.1 and Q4.2 are the perfor-
mance on OpenCL engine while the rest are the performance on
MonetDB.

1.1

8

7

6

5

4

3

2

1

0
1.2

S
p
e
e
d
u
p

Pinned

Pageable

1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Fig.8. SSBM performance speedup over CPU.

For Q1.1 to Q1.3 and Q3.1, processing on GPU

can only gain around 2X speedup, as shown in Fig.8.

Queries in flight 1 are dominated by selection opera-

tions. They cannot benefit from the transfer overlap-

ping technique. Although data compression technique

can reduce the PCIe transfer overhead, the kernel exe-

cution performance cannot be improved. Since selec-

tion does not involve much computation, processing

on GPU will not have significant performance speedup.

Q3.1 is dominated by the random accesses of data from

dimension tables. It cannot benefit much from both

the data compression technique and the transfer over-

lapping technique. Furthermore, the random accesses

cannot effectively utilize the bandwidth of GPU device

memory. In this case, we cannot gain significant per-

formance speedup.

We have the following three findings.

• The GPU query engine outperforms the CPU

query engine for processing all SSBM queries. However,

the performance speedup varies significantly depending

on query characteristics and system setups.

Kai Zhang et al.: Hetero-DB: Next Generation High-Performance Database Systems 671

• The key to obtain high query execution perfor-

mance on GPU is to prepare the data in the pinned

memory, where 4.5X∼6.5X speedups can be observed

for certain queries. When data are in the pageable

memory, the speedups are only 1.2X∼2.6X for all SSBM

queries.

• GPU has limited speedups (around 2X) for

queries: 1) dominated by selection operations, and

2) dominated by random accesses to dimension tables

caused by high join selectivities and projected columns

from dimension tables.

6.2 Performance of Concurrent Query

Execution

We call our system functionality for concurrent

query execution as MultiQx-GPU. For comparison, we

call the baseline system as YDB. Through coordinated

sharing of GPU resources, MultiQx-GPU improves sys-

tem throughput by letting multiple queries make effi-

cient progress concurrently. In this subsection, we eva-

luate the overall performance of MultiQx-GPU in sup-

porting concurrent executions. The evaluation is per-

formed by co-running SSB queries pair wisely. Among

91 possible query combinations, we select 69 pairs of co-

runnings whose peak device memory consumption ex-

ceeds device memory capacity (i.e., suffering conflicts).

We measure their throughput achieved with MultiQx-

GPU, and compare them with the original YDB sys-

tem. The first two bars of each group in Fig.9 show the

results.

It can be seen that, by processing multiple queries

at the same time, MultiQx-GPU greatly enhances sys-

tem performance compared with dedicated query exe-

cutions. The throughput is consistently improved

across all 69 co-runnings, by an average of 39% (at least

15%) as compared with YDB. For the co-runnings of

q32 with q41, q33 with q41, and q43 with itself, the im-

provements are more than 55%. The high performance

leap achieved by MultiQx-GPU is mainly attributed to

the better utilization of GPU resources. Under the ef-

ficient management of MultiQx-GPU, the DMA band-

width and GPU computing cycles unused by one query

can be allocated to serve the resource requirements from

other queries. The efficient utilization of resources im-

proves overall system throughput.

6.3 Experiments with Replacement Policies

By controlling the selection of proper victim regions

to evict under resource contention, data replacement

policy plays an important role to system throughput.

This subsection presents the results of our experiment

with several data replacement policies to support multi-

query executions and verifies the effectiveness of CDR

in improving MultiQxGPU performance. We compare

the performance of five replacement policies, LRU (least

recently used), MRU (most recently used), LFU (least

frequently used), RANDOM, and CDR. The first four

policies are selected because they are widely used in

conventional multitasking and data management sys-

tems. We measure the throughput of the same work-

loads used in the previous two subsections, achieved us-

ing MultiQx-GPU (all optimizations are enabled) with

different replacement policies. Due to space constraint,

we randomly select six queries and only present the re-

sults for their co-runnings, but similar observations can

be made with other queries as well.

As shown in Fig.10, there are no significant diffe-

rences among the performance of LRU, MRU, LFU, and

RANDOM; they perform unevenly, but closely match

each other under different workloads. CDR, how-

0

0.3

0.6

0.9

1.2

1.5

1.8

q
1
1
.q
1
1

q
1
1
.q
1
2

q
1
1
.q
1
3

q
1
1
.q
2
1

q
1
1
.q
2
2

q
1
1
.q
2
3

q
1
1
.q
3
1

q
1
1
.q
3
2

q
1
1
.q
3
3

q
1
1
.q
3
4

q
1
1
.q
4
1

q
1
1
.q
4
2

q
1
1
.q
4
3

q
1
2
.q
1
2

q
1
2
.q
1
3

q
1
2
.q
2
1

q
1
2
.q
2
2

q
1
2
.q
2
3

q
1
2
.q
3
1

q
1
2
.q
3
2

q
1
2
.q
3
3

q
1
2
.q
3
4

q
1
2
.q
4
1

q
1
2
.q
4
2

q
1
2
.q
4
3

q
1
3
.q
1
3

q
1
3
.q
2
1

q
1
3
.q
2
2

q
1
3
.q
2
3

q
1
3
.q
3
1

q
1
3
.q
3
2

q
1
3
.q
3
3

q
1
3
.q
3
4

q
1
3
.q
4
1

q
1
3
.q
4
2

q
1
3
.q
4
3

q
2
1
.q
2
1

q
2
1
.q
3
1

q
2
1
.q
3
2

q
2
1
.q
4
1

q
2
1
.q
4
2

q
2
1
.q
4
3

q
2
2
.q
3
1

q
2
2
.q
4
1

q
2
2
.q
4
2

q
2
3
.q
3
1

q
2
3
.q
4
1

q
2
3
.q
4
2

q
3
1
.q
3
1

q
3
1
.q
3
2

q
3
1
.q
3
3

q
3
1
.q
3
4

q
3
1
.q
4
1

q
3
1
.q
4
2

q
3
1
.q
4
3

q
3
2
.q
3
2

q
3
2
.q
4
1

q
3
2
.q
4
2

q
3
2
.q
4
3

q
3
3
.q
4
1

q
3
3
.q
4
2

q
3
4
.q
4
1

q
3
4
.q
4
2

q
4
1
.q
4
1

q
4
1
.q
4
2

q
4
1
.q
4
3

q
4
2
.q
4
2

q
4
2
.q
4
3

q
4
3
.q
4
3

T
h
ro
u
g
h
p
u
t

YDB MultiQx-GPU MultiQx-GPU-Raw

Fig.9. Throughput of pairwise SSB query co-runnings in three different systems. MultiQx-GPU-Raw is a variant of MultiQx-GPU
without optimizations. p.q denotes the combination of queries p and q.

672 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

ever, performs much better than other policies across

all query co-runnings, consistently improving system

throughput by 44% on average (56% at maximum) com-

pared with LRU. The performance advantage of CDR

compared with other policies is expected, due to its

careful design to select victim regions that minimize

space eviction and data swapping costs. On the con-

trary, the other four policies do not consider the unique

features of GPU queries and their concurrent execu-

tions. The criteria they use to make replacement de-

cisions are rather random in terms of the benefits to

overall system performance, often leading to increased

kernel launch latency and unnecessary data swapping.

0

q1
1.
q1

1
q1

1.
q1

2
q1

1.
q2

1
q1

1.
q2

2
q1

1.
q3

1
q1

1.
q4

1
q1

2.
q1

2
q1

2.
q2

1
q1

2.
q2

2
q1

2.
q3

1
q1

2.
q4

1
q2

1.
q2

1
q2

1.
q2

2
q2

1.
q3

1
q2

1.
q4

1
q2

2.
q2

2
q2

2.
q3

1
q2

2.
q4

1
q3

1.
q3

1
q3

1.
q4

1
q4

1.
q4

1

0.4

0.8

1.2

1.6

2.0

N
o
rm

a
li
z
e
d

T
h
ro

u
g
h
p
u
t

LRU MRU LFU RANDOM CDR

Fig.10. Performance of co-running selected SSB queries under
various data replacement policies. Throughput is normalized
against LRU.

6.4 Performance of Heterogeneity-Aware

Storage Engine

Our experiment platform consists of two machines,

connected with a 10 Gb Ethernet link. One machine

runs the DBMS, and the other is a storage server.

Both are of the same configurations: two Intelr Xeonr

E5354 processors, each having four 2.33 GHz cores,

8 GB of main memory, Linux 2.6.34, two Seagate Chee-

tah 15.7 K RPM 300 GB HDDs. The storage server has

an additional Intel 320 Series 300 GB SSD to be our

cache device. We choose TPC-H at a scale factor of 30

as our OLAP benchmark. With nine indexes, the total

dataset size is 46 GB.

Classification is meaningful only if a DBMS issues

I/O requests of different types. In order to verify this

assumption, for each query, we run it once, and count

the number of I/O requests of each type, as well as

the total number of disk blocks served for requests of

each type. As shown in Fig.11, we can observe requests

of various types in TPC-H: sequential requests (Seq),

random requests (Rand) and temporary data requests

(Tmp).

For each query, we run it with the following four dif-

ferent storage configurations: 1) HDD-only; 2) LRU; 3)

hStorage-DB; 4) SSD-only. HDD-only shows the base-

line case when all I/O requests are served by a hard

disk drive; SSD-only shows the ideal case when all I/O

requests are served by an SSD; LRU emulates a classi-

cal approach when cache is managed by the LRU (least

recently used) algorithm; since we only evaluate the

heterogeneity-aware storage engine, the queries are all

run on CPU instead of GPU. hStorage-DB is used to

represent such Hetero-DB with only the heterogeneity-

aware storage engine. When we experiment with LRU

and hStorage-DB, the SSD cache size is set to be 32 GB,

unless otherwise specified.

6.4.1 Sequential Requests

To demonstrate the ability of hStorage-DB to avoid

unnecessary overhead for allocating cache space for low-

locality data, we have experimented with queries 1,

1 5 92 6 103 74 8 11

P
e
rc
e
n
ta
g
e

15 1912 16 20 21 2213 1714 18

100

90

80

70

60

50

40

30

20

10

0
1 5 92 6 103 74 8 11

P
e
rc
e
n
ta
g
e

15 1912 16 20 21 2213 1714 18

100

90

80

70

60

50

40

30

20

10

0

(a)

Tmp Rand Seq Tmp Rand Seq

(b)

Fig.11. Diversity of I/O requests in TPC-H queries. X-axis: name of queries in TPC-H. Y -axis: percentage of each type. (a) Percentage
of each type of requests. (b) Percentage of each type of disk blocks.

Kai Zhang et al.: Hetero-DB: Next Generation High-Performance Database Systems 673

5, 11 and 19, whose executions are dominated by se-

quential requests, according to Fig.11. Test results are

shown in Fig.12.

There are three observations from Fig.12. 1) The

advantage of using SSD is not obvious for these queries.

2) If the cache is managed by LRU, which is not sensi-

tive to sequential requests, the overhead can be signifi-

cant. For example, compared with the baseline case,

the execution time of LRU cache increases from 317

to 368 seconds for query 1, and from 252 to 315 sec-

onds for query 19, resulting in a slowdown of 16% and

25% respectively. 3) Within the framework, sequential

requests are associated with the “non-caching and non-

eviction” priority, so they are not allocated in cache,

and thus incur almost no overhead.

317 317313

368

279

252

1 5

Query Name

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

11 19

68 6565 62

315

254245

280279

323

400

300

200

100

0

HDD-Only LRU hStorage-DB SSD-Only

Fig.12. Execution time of queries dominated by sequential re-
quests.

6.4.2 Random Requests

In order to show the effectiveness of rule 2. we have

experimented with query 9 and query 21. Both have

a significant amount of random requests, according to

Fig.11. Results are plotted in Fig.13.

Query Name

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

9 21

40

30

20

10

0

Τ103

35 865

21 817

6 216 6 120 4 986

8 053
5 658

10 208

HDD-Only LRU hStorage-DB SSD-Only

Fig.13. Execution time of queries dominated by random re-
quests.

We have three observations from Fig.13. 1) The ad-

vantage of using SSD is obvious for such queries. The

performance of the ideal case (SSD-only) is far more su-

perior than that of the baseline case (HDD-only). For

query 9 and query 21, the speedup is 7.2 and 3.9 re-

spectively. 2) Both queries have strong locality. LRU

can effectively keep frequently accessed blocks in cache,

through its monitoring of each block, and hStorage-DB

achieves the same effect, through a different approach.

3) For query 21, hStorage-DB is slightly lower than

LRU, which will be explained later.

6.4.3 Temporary Data Requests

In this subsection, we demonstrate the effectiveness

of rule 3 by experimenting with query 18, which gene-

rates a large number of temporary requests during its

execution. Results are plotted in Fig.14.

Query Name

18

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

10

8

6

4

2

0

Τ103 HDD-Only hStorage-DB SSD-OnlyLRU

8 950 8 694

6 146 5 990

Fig.14. Execution time of query 18.

This figure gives us the following three observations.

1) The advantage of using SSD is also obvious for this

query, giving a speedup of 1.45 over the baseline case

(HDD-only). 2) LRU also improves performance, be-

cause some temporary data blocks can be cached. But

they are not kept long enough, so the speedup is not

obvious. 3) hStorage-DB achieves a significant speedup

because temporary data is cached until the end of its

lifetime.

6.4.4 Running a Sequence of Queries

We have tested the performance of hStorage-DB

with a stream of “randomly” ordered queries. We use

the order of power test by the TPC-H specification. Re-

sults are shown in Fig.15. In this figure, “RF1” is the

update query at the beginning, and “RF2” is the up-

date query in the end. For readability, the results of

674 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

1 52 6 103 74 11 15 1912 16 22 RF1RF213 1714

(a) (b)

1000

900

800

700

600

500

400

300

200

100

0

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

HDD hStorage-DB SSD

Query Name Query Name

188 9 20 21

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

40

35

30

25

20

15

10

5

0

Τ103 HDD hStorage-DB SSD

Fig.15. Execution time of queries when packed into one query stream. (a) Short queries. (b) Long queries.

short queries and those of long queries are shown sepa-

rately. According to the results, hStorage-DB shows

clear performance improvements for most queries.

This experiment with a long sequence of queries

took hStorage-DB more than 10 hours to finish, which

shows the stability and practical workability of the

hStorage-DB solution. Different from running each

query independently, the success of this experiment in-

volves the issues of data reuse and cache space utiliza-

tion during a query stream. Particularly, useless cached

data left from a previous query need to be effectively

evicted from cache. Experimental results have shown

that in the framework of hStorage-DB, 1) temporary

data can be evicted promptly, by requests with the

“non-caching and eviction” priority; and 2) data ran-

domly accessed by a previous query can be effectively

evicted by random requests of the next query, if it will

not be used again.

7 Related Work

7.1 Heterogeneous Query Execution Engine

The use of GPUs for database applications has been

intensively studied in existing research. Some stu-

dies focus on the designs and implementations of ef-

ficient GPU algorithms for common database opera-

tions such as join[3,11], selection[12], sorting[2,6], and

spatial computation[1,15], achieving orders of magnitude

of performance improvement over conventional CPU-

based solutions. Other studies exploit various soft-

ware optimization techniques to accelerate query plan

generations[32], improve kernel execution efficiency[8,13],

reduce PCIe data transferring[13,33], and support query

co-processing with both GPUs and CPUs[34].

Our work in this paper is mainly related to recent

development efforts of GPU query engines. Ocelot[35]

is a hybrid OLAP query processor as an extension for

MonetDB. By adopting a hardware-independent query

engine design, it supports efficient executions of OLAP

queries on both CPUs and GPUs. Ocelot provides a

memory management interface that abstracts away the

details of the underlying memory structure to support

portability. The memory manager can also perform

simple data swapping within a single query. However,

it does not have sufficient mechanisms or policies to

support correct, efficient executions of queries in con-

current settings. Different from Ocelot, our work sup-

ports concurrent query execution on GPU with a query

scheduler and a memory manager with Cost-Driven Re-

placement policy. MapD 1○ is a spatial database sys-

tem using GPUs as the core query processing devices.

Through techniques such as optimized spatial algo-

rithm implementations, kernel fusing, and data buffer-

ing, MapD outperforms existing CPU spatial data pro-

cessing systems by large margins. GPUTx[9] is a high-

performance transactional GPU database engine. It

batches multiple transactional queries into the same

kernel for efficient executions on the GPU and ensures

isolation and consistency under concurrent updates.

The workloads GPUTx targets are short-running, small

tasks that would not cause device memory contention.

The techniques thus cannot be used for concurrent

analytical query processing on GPUs, where tasks usua-

lly have long time spans and have high demands for

device memory space. HyPE[36] is a hybrid engine

for CPU-GPU query co-processing. The idea of its

operator-based execution cost model is similar to the

weighted demand metric proposed in this paper. Com-

1○http://www.mapd.com/, May 2015.

Kai Zhang et al.: Hetero-DB: Next Generation High-Performance Database Systems 675

pared with these studies, Hetero-DB identifies the criti-

cal demands and opportunities of supporting concur-

rent query executions in analytical GPU databases. It

addresses a set of issues in GPU resource management

to achieve high system performance under multi-query

workloads.

In addition, there are several research studies on

GPU resource management in general-purpose comput-

ing systems. PTask[37] adds abstractions of GPUs in

the OS kernel to support managing GPUs as first-class

computing resources. It provides a dataflow-based pro-

gramming model and enforces the system-level mana-

gement of GPU computing resources and data move-

ment. TimeGraph[38] is GPU scheduler to provide per-

formance isolation for real-time graphics applications.

Both PTask and TimeGraph target computation-bond

workloads where memory usage will not exceed the

capacity of GPU memory. Therefore, they do not

have any facilities for memory management and do not

take memory swapping cost into consideration in the

scheduling policy. However, database queries generally

involve processing a huge amount of data which may in-

cur a high cost in PCIe data transfer and should be the

major factor in making scheduling policy. Moreover, as

the data size for multiple queries may exceed the capa-

city of GPU memory, GPU memory management faci-

lity is also highly demanded. Gdev[39] is an open-source

CUDA driver and runtime system. It supports inter-

process communication through GPU device memory

and provides simple data swapping functionality based

on the IPC mechanism. GDM[19] is an OS-level de-

vice memory manager, which motivated the design of

Hetero-DB’s data swapping framework.

7.2 Heterogeneous Storage Engine

There have been several different approaches to

managing storage data in databases, each of which has

unique merits and limits. The most classical approach

is to apply a replacement mechanism to keep or evict

data at different levels of the storage hierarchy. Repre-

sentative replacement algorithms include LIRS[26] that

is used in MySQL and other data processing systems,

and ARC[40] that is used in IBM storage systems and

ZFS file system. The advantage of this approach is that

it is independent of workloads and underlying systems.

The nature of general purpose enables this approach

to be easily deployed in a large scope of data manage-

ment systems. However, the two major disadvantages

are: 1) this approach would not take advantage of do-

main knowledge even if it is available; and 2) it requires

a period of monitoring time before determining access

patterns for making replacement decisions.

There are two recent and representative papers fo-

cusing on SSD management in database systems. In

[24], authors proposed an SSD buffer pool admission

management by monitoring data block accesses to disks

and distinguishing blocks into warm regions and cold

regions. A temperature-based admission decision to

the SSD is made based on the monitoring results: ad-

mitting the warm region data and randomly accessed

data to the SSD, and making the cold region data stay

in hard disks. In [7], authors proposed three admis-

sion mechanisms to SSDs after the data is evicted from

memory buffer pool. The three alternative designs in-

clude 1) clean write (CW) that never writes the dirty

pages to the SSD; 2) dual-write (DW) that writes dirty

pages to both the SSD and hard disks; and 3) lazy-

cleaning (LC) that writes dirty pages to the SSD first,

and lazily copies the dirty pages to hard disks. Al-

though specific to the database domain, this approach

has several limitations that are addressed by hStorage-

DB.

Compared with the aforesaid prior work, hStorage-

DB leverages database semantic information to make

effective data placement decisions in storage systems.

Different from application hints, which can be inter-

preted by a storage system in different ways or sim-

ply ignored[41], semantic information in hStorage-DB

requests a storage system to make data placement de-

cisions. In particular, hStorage-DB has the following

unique advantages.

First, rich semantic information in a DBMS can be

effectively used for data placement decisions among di-

verse storage devices, as have been shown in our ex-

periments. Existing approaches have employed various

block-level detection and monitoring methods but can-

not directly exploit such semantic information that is

already available in a DBMS.

Second, some semantic information that plays an

important role in storage management cannot be de-

tected. Take temporary data as an example. The

hStorage-DB performs effective storage management by

1) caching temporary data during its lifetime, and 2)

immediately evicting temporary data out of cache at

the end of its lifetime. In TAC[24], temporary data

writes would directly go to the HDD, instead of the

SSD cache, because such data are newly generated, and

are not likely to have a “dirty” version in the cache that

needs to be updated. In the three alternatives from [25],

only DW and LC are able to cache generated tempo-

676 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

rary data. However, in the end of lifetime, temporary

data cannot be immediately evicted out of cache to free

up space for other useful data.

Furthermore, some semantic information, such as

access patterns, may be detected, but with a consider-

able cost. Within hStorage-DB, such information is uti-

lized with no extra overhead. For small queries, the exe-

cution may be finished before its access pattern could

be identified. One example is related to sequential re-

quests. In [25], special information from SQL Server

is used to prevent special sequential request from be-

ing cached in SSD cache. In contrast, hStorage-DB

attempts to systematically collect critical semantic in-

formation in a large scope.

8 Conclusions and Future Work

This paper presented the motivation, design, im-

plementation, and evaluation of Hetero-DB, a new

database system on heterogeneous computing and sto-

rage hardware. We redesigned the query execution en-

gine to well utilize GPU and multi-core CPU, and pro-

posed a new storage engine by exploiting the hybrid

HDD-SSD storage system. In the future, we will per-

form an overall evaluation on the system and continue

optimizing Hetero-DB to adapt to the most advance-

ment of new hardwares.

We will extend Hetero-DB in three directions. First,

considering the importance of CPU-GPU co-processing

for high-performance query executions, we plan to in-

vestigate the probability of combining CPU scheduling

in the operating system with the GPU scheduling in

our system. Second, under the guideline of minimal

changes to query engines, current query scheduler in

Hetero-DB does not consider data overlapping between

different queries. We will study how to coordinate the

two layers to support data sharing. Third, we will also

consider semantic information from database applica-

tions.

References

[1] Bandi N, Sun C, Agrawal D, Abbadi A E. Hardware accel-

eration in commercial databases: A case study of spatial

operations. In Proc. the 30th International Conference on

Very Large Data Bases (VLDB), Aug. 31-Sept. 3, 2004,

pp.1021-1032.

[2] Govindaraju N K, Lloyd B, Wang W, Lin M, Manocha

D. Fast computation of database operations using graphics

processors. In Proc. the 2004 ACM SIGMOD International

Conference on Management of Data, June 2004, pp.215-

226.

[3] He B, Yang K, Fang R, Liu M, Govindaraju N, Luo

Q, Sander P. Relational joins on graphics processors. In

Proc. the 2008 ACM SIGMOD International Conference

on Management of Data, June 2008, pp.511-524.

[4] Pirk H, Manegold S, Kersten M. Accelerating foreign-key

joins using asymmetric memory channels. In Proc. ADMS,

September 2011, pp.27-35.

[5] Govindaraju N, Gray J, Kumar R, Manocha D. Gputera-

sort: High performance graphics co-processor sorting for

large database management. In Proc. ACM SIGMOD, June

2006, pp.325-336.

[6] Satish N, Kim C, Chhugani J, Nguyen A D, Lee V W, Kim

D, Dubey P. Fast sort on CPUs and GPUs: A case for band-

width oblivious SIMD sort. In Proc. the 2010 ACM SIG-

MOD International Conference on Management of Data,

June 2010, pp.351-362.

[7] Fang W, He B, Luo Q. Database compression on graphics

processors. Proc. VLDB Endow., 2010, 3(1/2): 670-680.

[8] Sitaridi E A, Ross K A. Ameliorating memory contention

of OLAP operators on GPU processors. In Proc. the 8th In-

ternational Workshop on Data Management on New Hard-

ware (DaMoN), May 2012, pp.39-47.

[9] He B, Yu J X. High-throughput transaction executions on

graphics processors. Proc. VLDB Endow., 2011, 4(5): 314-

325.

[10] He B, Liu M, Yang K, Fang R, Govindaraju N, Luo Q,

Sander P. Relational query coprocessing on graphics proces-

sors. ACM Transactions on Database Systems, 2009, 34(4):

21:1–21:39.

[11] Kaldewey T, Lohman G, Müller R, Volk P. GPU join pro-

cessing revisited. In Proc. the 8th International Workshop

on Data Management on New Hardware (DaMoN), May

2012, pp.55-62.

[12] Ao N, Zhang F, Wu D, Stones D S, Wang G, Liu X, Liu J,

Lin S. Efficient parallel lists intersection and index compres-

sion algorithms using graphics processing units. PVLDB,

2011, 4(8): 470-481.

[13] Wu H, Diamos G, Cadambi S, Yalamanchili S. Ker-

nel weaver: Automatically fusing database primitives for

efficient GPU computation. In Proc. the 45th Annual

IEEE/ACM International Symposium on Microarchitec-

ture (MICRO), December 2012, pp.107-118.

[14] Lieberman M D, Sankaranarayanan J, Samet H. A fast sim-

ilarity join algorithm using graphics processing units. In

Proc. the 24th ICDE, April 2008, pp.1111-1120.

[15] Wang K, Huai Y, Lee R, Wang F, Zhang X, Saltz J H. Ac-

celerating pathology image data cross-comparison on CPU-

GPU hybrid systems. Proc. VLDB Endow., 2012, 5(11):

1543-1554.

[16] Handy J. Flash memory vs. hard disk drives — Which

will win? http://www.storagesearch.com/semicoart1.html,

May 2015.

[17] Lee S W, Moon B, Park C, Kim J M, Kim S W. A case for

flash memory SSD in enterprise database applications. In

Proc. the 2008 ACM SIGMOD International Conference

on Management of Data, June 2008, pp.1075-1086.

[18] Mesnier M P, Akers J B. Differentiated storage services.

SIGOPS Oper. Syst. Rev., 2011, 45(1): 45-53.

[19] Wang K, Ding X, Lee R, Kato S, Zhang X. GDM: Device

memory management for GPGPU computing. SIGMET-

RICS Perform. Eval. Rev., 2014, 42(1): 533-545.

Kai Zhang et al.: Hetero-DB: Next Generation High-Performance Database Systems 677

[20] Canim M, Mihaila G A, Bhattacharjee B, Ross K A, Lang

C A. An object placement advisor for DB2 using solid state

storage. Proc. VLDB Endow., 2009, 2(2): 1318-1329.

[21] Hassidim A. Cache replacement policies for multicore pro-

cessors. In Proc. Innovations in Computer Science (ICS),

January 2010, pp.501-509.

[22] Sivathanu M, Bairavasundaram L N, Arpaci-Dusseau A C,

Arpaci-Dusseau R H. Life or death at block-level. In Proc.

the 6th Symposium on Operating Systems Design and Im-

plementation (OSDI), December 2004, pp.379-394.

[23] Lee R, Luo T, Huai Y, Wang F, He Y, Zhang X. YSmart:

Yet another SQL-to-MapReduce translator. In Proc. the

31st International Conference on Distributed Computing

Systems (ICDCS), June 2011, pp.25-36.

[24] Canim M, Mihaila G A, Bhattacharjee B, Ross K A, Lang

C A. SSD bufferpool extensions for database systems. Proc.

VLDB Endow., 2010, 3(1/2): 1435-1446.

[25] Do J, Zhang D, Patel J M, DeWitt D J, Naughton J F,

Halverson A. Turbocharging DBMs buffer pool using SSDs.

In Proc. the 2011 ACM SIGMOD International Conference

on Management of Data, June 2011, pp.1113-1124.

[26] Jiang S, Zhang X. LIRS: An efficient low inter-reference

recency set replacement policy to improve buffer cache per-

formance. SIGMETRICS Perform. Eval. Rev., 2002, 30(1):

31-42.

[27] Balkesen C, Teubner J, Alonso G, Özsu M T. Main-memory

hash joins on multi-core CPUs: Tuning to the underlying

hardware. In Proc. the 29th ICDE, April 2013, pp.362-373.

[28] Blanas S, Li Y, Patel J. Design and evaluation of main

memory hash join algorithms for multi-core CPUs. In Proc.

ACM SIGMOD, June 2011, pp.37-48.

[29] Alcantara D A, Sharf A, Abbasinejad F, Sengupta S,

Mitzenmacher M, Owens J D, Amenta N. Real-time paral-

lel hashing on the GPU. ACM Trans. Graph., 2009, 28(5):

154:1-154:9.

[30] Motwani R, Raghavan P. Randomized Algorithms. Cam-

bridge University Press, 1995.

[31] Yuan Y, Lee R, Zhang X. The Yin and Yang of process-

ing data warehousing queries on GPU devices. Proc. VLDB

Endow., 2013, 6(10): 817-828.

[32] Heimel M, Markl V. A first step towards GPU-assisted

query optimization, In Proc. ADMS, August 2012, pp.33-

44.

[33] Yalamanchili S. Scaling data warehousing applications us-

ing GPUs. In Proc. the 2nd International Workshop on

Performance Analysis of Workload Optimized Systems

(FastPath), April 2013.

[34] Pirk H, Manegold S, Kersten M L. Waste not... efficient co-

processing of relational data. In Proc. the 30th IEEE Inter-

national Conference on Data Engineering (ICDE), March

31-April 4, 2014, pp.508-519.

[35] Heimel M, Saecker M, Pirk H, Manegold S, Markl V.

Hardware-oblivious parallelism for in-memory column-

stores. Proc. VLDB Endow., 2013, 6(9): 709-720.

[36] Breß S, Saake G. Why it is time for a HyPE: A hybrid query

processing engine for efficient GPU coprocessing in DBMs.

Proc. VLDB Endow., 2013, 6(12): 1398-1403.

[37] Rossbach C J, Currey J, Silberstein M, Ray B, Witchel E.

PTask: Operating system abstractions to manage GPUs

as compute devices. In Proc. the 23rd ACM Symposium

on Operating Systems Principles (SOSP), October 2011,

pp.233-248.

[38] Kato S, Lakshmanan K, RaJjkumar R, Ishikawa Y. Time-

Graph: GPU scheduling for real-time multi-tasking en-

vironments. In Proc. the 2011 USENIX Conference on

USENIX Annual Technical Conference (USENIX- ATC),

June 2011, Article No. 2.

[39] Kato S, McThrow M, Maltzahn C, Brandt C. Gdev: First-

class GPU resource management in the operating system.

In Proc. the 2012 USENIX Conference on Annual Tech-

nical Conference (USENIX ATC), June 2012, Article No.

37.

[40] Megiddo N, Modha D S. ARC: A self-tuning, low overhead

replacement cache. In Proc. the 2nd USENIX Conference

on File and Storage Technologies (FAST), March 31-April

2, 2003, pp.115-130.

[41] Liu X, Aboulnaga A, Salem K, Li X. CLIC: Client-informed

caching for storage servers. In Proc. the 7th Conference

on File and Storage Technologies (FAST), February 2009,

pp.297-310.

Kai Zhang is currently a Ph.D.

student at the Department of Computer

Science and Technology, University

of Science and Technology of China,

Hefei. His research interests include

GPUs, networked systems, and cloud

computing infrastructure.text text text

text text text text text text text text

text text text

Feng Chen is an assistant professor

of the Department of Computer Science

and Engineering at Louisiana State

University (LSU). Before joining LSU,

he was a research scientist at Intel

Labs, Oregon. He received his Ph.D.

degree (2010) and M.S. degree (2009)

in computer science and engineering

at The Ohio State University. He received his M.E.

degree (2003) in computer science and technology and

B.E. degree (2000) in computer science and engineering

at Zhejiang University, Hangzhou. His research interests

include operating systems, file and storage systems, and

distributed systems.

Xiaoning Ding is an assistant

professor of computer science at New

Jersey Institute of Technology. His

interests are in the area of experimental

computer systems, such as distributed

systems, virtualization, operating sys-

tems, storage systems, database system,

and computer architecture. He earned

his Ph.D. degree in computer science and engineering from

The Ohio State University in 2010.

678 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

Yin Huai is a software engineer at

Databricks and mainly works on Spark

SQL. Before joining Databricks, he was

a Ph.D. student at The Ohio State

University and was advised by Prof.

Xiaodong Zhang. His interests include

storage systems, database system, and

query optimization.

Rubao Lee obtained his Ph.D.

degree in computer science from the

Institute of Computing Technology,

Chinese Academy of Sciences, Beijing,

in 2008. His is currently a research sci-

entist in the Department of Computer

Science and Engineering at The Ohio

State University. His research interest is high-performance

data management.

Tian Luo is currently an employee

at VMware Inc., Palo Alto. He received

his Master’s degree from Huazhong

University of Technology, Wuhan.

His research interests include file and

storage systems, database, virtual

machine infrastructure, and big data

management.

Kaibo Wang is currently a Ph.D.

student at the Department of Com-

puter Science and Engineering, The

Ohio State University, USA. His re-

search interests include operating sys-

tems, multicores, GPUs, and cloud com-

puting infrastructure.text text text text

text text text text text text text text

text text

Yuan Yuan is a Ph.D. student in

the Department of Computer Science

and Engineering, The Ohio State

University. His research focuses on

efficient data processing on GPUs and

concurrency control for in-memory

multi-core databases.text text text text

text text text text text text

Xiaodong Zhang is the Robert M.

Critchfield Professor in engineering and

chair of the Department of Computer

Science and Engineering at The Ohio

State University. His research interests

focus on data management in computer,

networking and distributed systems. He

has made strong efforts to transfer his

academic research into advanced technology to impact pro-

duction systems. He received his Ph.D. degree in computer

science from University of Colorado at Boulder, where he

received Distinguished Engineering Alumni Award in 2011.

He is a fellow of ACM and a fellow of IEEE.

