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Abstract—Current quantum generative adversarial networks
(QGANs) still struggle with practical-sized data. First, many
QGANs use principal component analysis (PCA) for dimension
reduction, which, as our studies reveal, can diminish the QGAN’s
effectiveness. Second, methods that segment inputs into smaller
patches processed by multiple generators face scalability issues.
In this work, we propose LSTM-QGAN, a QGAN architecture
that eliminates PCA preprocessing and integrates quantum long
short-term memory (QLSTM) to ensure scalable performance.
Our experiments show that LSTM-QGAN significantly enhances
both performance and scalability over state-of-the-art QGAN
models, with visual data improvements, reduced Fréchet Incep-
tion Distance scores, and reductions of 5× in qubit counts, 5×
in single-qubit gates, and 12× in two-qubit gates.

Index Terms—NISQ, Quantum Generative Adversarial Net-
work, Long Short-Term Memory

I. INTRODUCTION

Current QGANs. Recent advancements in Noisy

Intermediate-Scale Quantum (NISQ) platforms [1]–[3] have

catalyzed intense research on Quantum Generative Adversarial

Networks (QGANs) [4]–[13], which are well-suited to the

constraints of NISQ systems, such as limited qubit counts

and shallow circuit depths [14]. Building on the foundational

work [4] that established the theoretical superiority of QGANs

over classical counterparts, early QGAN implementations [5]–

[7] only focused on low-dimensional inputs like single-bit

data. Subsequent research introduced innovations such as

Wasserstein loss [8] and novel architectures [9] to improve

training stability. More recent work [10], [11] expanded

QGANs to high-dimensional data, like the 28×28 MNIST

dataset, by employing dimensionality reduction techniques

like Principal Component Analysis (PCA). The state-of-the-art

(SOTA) PatchGAN [12] further segments inputs into smaller

patches, enabling efficient processing on practical NISQ

devices.

Limitations. Despite recent developments, QGANs con-

tinue to face challenges in managing practical-sized data.

First, while pre- and post-processing with PCA and inverse

PCA [10], [11] enable QGANs to handle large-dimensional

data, PCA often dominates the process, diminishing the con-

tributions of the QGANs themselves. Second, although Patch-

GAN [12] facilitates the direct processing of practical-sized

inputs through multiple small patches, its architectural limi-

tations demand an increasing number of quantum resources

as input size grows, leading to serious scalability challenges.

For instance, generating a single MNIST image requires a

prohibitively high 56 sub-quantum generators and 280 qubits.

Third, and more concerning, our preliminary study shows a
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Fig. 1. A standard QGAN architecture.

significant decline in output quality as PatchGAN scales from

its original 5-qubit design [12] to 8 qubits, severely limiting

its effectiveness at larger scales.

Contributions. We introduce LSTM-QGAN, a novel ar-

chitecture that eliminates the need for PCA when processing

large-dimensional data. The design allows for the use of a

constant amount of NISQ computing resources as input size

increases. However, as additional hardware resources become

available, the architecture scales efficiently, ensuring consistent

and reliable performance. Our contributions include:

• Preliminary Analysis. We conduct experiments on the

SOTA QGANs [10]–[12], revealing previously undis-

closed limitations in PCA pre-processing and model

scalability.

• Scalable Architecture. We present LSTM-QGAN, a

scalable QGAN architecture inspired by recent advances

in quantum long-short memory (QLSTM) [15]–[17].

LSTM-QGAN eliminates the need for PCA, maintains

constant NISQ resources as input size grows, and ef-

ficiently scales with increasing quantum computing re-

sources.

• Enhanced Performance. We conduct evaluations on

NISQ computers. Experimental results show that LSTM-

QGAN significantly enhances generative performance

and improves scalability compared to SOTA QGANs.

II. BACKGROUND

QGAN Basics. Figure 1 illustrates a standard QGAN with

two parameterized models: the Generator, G(θg), which gener-

ates synthetic data, and the Discriminator, D(θd), which eval-

uates the generated data against real data. G is implemented

using a quantum neural network (QNN), typically composed

of a data encoder E(·) and repeated layers of a variational

quantum circuit (VQC) with one-qubit rotations (i.e., Rot.) and

two-qubit entanglement (i.e., Ent.). D in SOTA QGANs [10]–

[12] can be implemented with either classical or quantum

models. The objective is to optimize the predefined minmax

loss L, as outlined in Equation 1, where z represents the latent

variable. The specific loss function can be implemented using

various specified functions [6]–[8], [12], [13]. The overall goalIC
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Fig. 2. A standard QLSTM architecture.

is to enable G to generate data indistinguishable from real data,

while D improves its ability to differentiate between them.

min
θg

max
θd

L{Dθd(Gθg (z)), Dθd(x)} (1)

SOTA QGANs. To manage larger-dimensional data with

limited qubits on NISQ computers, SOTA QGANs [10]–[12])

primarily utilize the following two techniques:

• Pre- and Post-Processing. Several recent QGANs [10],

[11] utilize principal component analysis to reduce input

dimensions (e.g., from 784 to 4 in [10]) to fit within the

limitations of NISQ computers with constrained qubits.

The key steps in PCA involve: (1) standardizing the data

to have zero mean and unit variance, and (2) calculating

the covariance matrix C and the matrix Vk, which con-

tains the top k eigenvectors (principal components). For

any data matrix X with mean μ, the data can be reduced

to the top k principal components by Z=XVk. The

reduced-dimensional data Z∗ can then be reconstructed

to approximate the original data through inverse PCA:

X∗=Z∗V�
k + μ.

• Patched Input. PatchGAN [12] segments the input

into small regional patches and trains a dedicated sub-

generator for each, capable of generating synthesized data

that follows the pattern of the corresponding patch. This

approach makes it a resource-efficient QGAN framework.

The number of sub-generators scales with the input

size; for instance, the 5-qubit design in the original

work [12] requires 56 sub-generators to process the 784-

pixel MNIST dataset, and doubling the input size would

proportionally increase the number of sub-generators

needed.

QLSTM. Long short-term memory [18] effectively captures

spatiotemporal information, enabling task-specific regulation

of data flow. Recent work [15] has introduced quantum LSTM,

extended to various sequential learning tasks [16], [17]. As

shown in Figure 2, QLSTM retains the classical LSTM gating

mechanism, with the key distinction being the integration of

QNNs. Due to page limit, we refer readers to [15], [18]

for detailed insights into QLSTM. LSTM has already been

applied in classical GANs [19], [20], demonstrating enhanced

generative power and reduced computational cost. Building on

this, we aim to leverage LSTM’s ability to selectively retain
relevant patterns within a QGAN by training a QLSTM-based

Fig. 3. Images reconstructed via inverse PCA using random vectors with the
covariance matrix from the MNIST dataset.

(a) 5 qubits, 56 sub-gens (b) 6 qubits, 28 sub-gens

(c) 7 qubits, 14 sub-gens (d) 8 qubits, 7 sub-gens
Fig. 4. Image quality degradation in scaling PatchGAN [12].

generator using different patched inputs, rather than separate
sub-generators for different patches as in [12].

III. PRELIMINARY STUDY AND MOTIVATION

A. Preliminary Study
PCA Overshadows QGANs. QGANs [10], [11] on MNIST

use PCA and inverse PCA for dimensionality reduction and

reconstruction. To assess PCA’s impact, we reduced 28×28

MNIST images to 1×2 vectors using scikit-learn, gen-

erating the corresponding C, V2, and μ. We then randomly

generated 1×2 vectors, applied inverse PCA, and present the

reconstructed images in Figure 3. The reconstructed images

closely resemble the original MNIST data and are comparable

to those generated by QGANs [10], [11], suggesting that PCA

pre- and post-processing may dominate, potentially overshad-

owing QGAN effectiveness. These results highlight concerns
about the independent validity of QGANs when PCA is used,
emphasizing the need for evaluation with unprocessed data.

Scalability for PatchGAN. PatchGAN [12] claims ef-

fectiveness with patch-based processing of high-dimensional

inputs but originally reports results with only 5 qubits. To

evaluate scalability, we increased the qubit count from 5 to 8.

Since PatchGAN employs amplitude encoding and processes

one patch at a time, we adjusted the number of sub-generators

to cover all 784 pixels in an MNIST image. As show in

Figure 4, the generated images degrade rapidly with increas-

ing qubits, with sub-figure titles indicating qubit counts and

required sub-generators (sub-gens). These findings underscore
PatchGAN’s poor scalability, suggesting limited potential for
handling larger-scale inputs even with additional qubits.

B. Motivation
Our preliminary results highlight the critical need for a

QGAN model capable of directly processing real-world data

without PCA preprocessing, as well as a more scalable ar-

chitecture to overcome the limitations of existing QGANs.

Motivated by these findings, we are exploring the integration

of patched inputs inspired by PatchGAN [12] to enable direct

input processing without PCA. Specifically, we are investi-

gating a scalable QGAN framework that leverages QLSTM

as the generator’s backbone, utilizing QLSTM’s ability to
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Fig. 5. The proposed LSTM-QGAN framework.

capture spatiotemporal information across patches with a sin-

gle generator, rather than separate sub-generators as in [12].

Additionally, we are reengineering the quantum circuit ansatz

within the QLSTM structure to improve hardware efficiency,

fully addressing the NISQ constraints overlooked in previous

QLSTM studies like [15].

IV. LSTM-QGAN
A. Overall Architecture

As illustrated in Figure 5(b), LSTM-QGAN utilizes QLSTM

at the core of the generator to enhance scalability and resource

efficiency. Like PatchGAN [12], the discriminator in LSTM-

QGAN can be implemented using either a classical or quantum

neural network, depending on the available quantum comput-

ing resources. The following outlines the key components and

configurations in LSTM-QGAN.
• Patch Inputs without PCA. In line with [12], [13], LSTM-

QGAN processes patched inputs to generate corresponding

output patches, which are then recombined into a complete

output. Unlike [10], [11], LSTM-QGAN eliminates the need

for PCA and inverse PCA, processing the original data

directly. This introduces a trade-off between resources (i.e.,

qubit number N ) and processing latency (i.e., steps T ).

With an N -qubit implementation, LSTM-QGAN generates

2N measured probabilities at each step as the output vector

for each synthetic patched output. These vectors are then

compared to the real patched input data in the discriminator.

The total number of steps, T , is determined by D/2N , where

D represents the size of the real data.

• Scalable QGAN with LSTM. The generator in LSTM-

QGAN consists of four QLSTM cells, as shown in Fig-

ure 5(b). Normally distributed noise z is input to the genera-

tor, producing the initial sub-image Gθg (z). The discrimina-

tor evaluates both synthetic and real input patches, comput-

ing the loss L. Unlike PatchGAN [12], which requires sepa-

rate generators for each patch—drastically increasing NISQ

resource overhead with input size—LSTM-QGAN utilizes

QLSTM’s ability to retain relevant patterns while discarding

irrelevant information, independent of patch indices. To

achieve this, gradients from all patches within a single input

are averaged and applied to update the model parameters

collectively, resulting in an image-adaptive generator that

scales with increasing data dimensions while maintaining

fixed resource usage.

• Training Optimization. Convergence in QGAN train-

ing is a critical challenge, significantly influenced by

the choice of quantum loss function. Within the LSTM-

QGAN framework, we evaluated both the conventional

TABLE I
DESIGN COST COMPARISON.

PatchGAN [12] LSTM-QGAN (Δ)

Qubits per QNN 5 7
Number of QNNs 56 8

Total Number of Qubits 280 56 (5×↓)
Total Number of 1QG 1680 336 (5×↓)
Total Number of 2QG 1344 112 (12×↓)

binary cross entropy loss [6], [7], [12] and the Wasser-

stein loss [8], [13]. The specific Wasserstein loss used

for LSTM-QGAN is detailed in Equation 2, where Lx̂ =

E
x̂∼Px̂

[
(‖∇x̂Dθd(x̂)‖2 − 1

)2
], Pr and Pg represent the real

data (i.e., x) and generated data (i.e., x̃∈Dθd(Gθg (z)))
distributions, respectively. The distribution Px̂ is uniformly

sampled between Pr and Pg , and λ is a constant. Experi-

mental results on the impact of QGAN loss functions are

discussed in Section V.

min
θg

max
θd

E
x∼Pr

[Dθd(x)]− E
x̃∼Pg

[Dθd(x̃)]− λLx̂ (2)

B. NISQ Implementation

LSTM-QGAN offers flexibility in implementing G and D.

For fair comparison, D is implemented as a classical neural

network, as in PatchGAN [12]. In the QLSTM cells for G,

we employed a hardware-efficient ansatz inspired by recent

QNNs [21]–[23], instead of the generic circuit from [15].

Figure 5(a) shows the QNN circuit, which utilizes seven

qubits. Each VAC block includes Rx, RY, and RZ layers,

followed by 2-qubit CX entanglement layer, with the VQC

layers repeated twice. The measurement layer converts the

quantum state into classical vectors. Although the gate count

matches that in [15], our circuit uses native gates, while the

R(α, β, γ) gate in [15] requires synthesis into multiple native

gates.

Design Overhead. Table I compares the hardware resources

required by PatchGAN and LSTM-QGAN for the MNIST

dataset. Due to architectural differences, a QNN in PatchGAN

refers to the quantum generator used for each input patch,

while in LSTM-QGAN, it refers to the quantum module within

the QLSTM. The last three rows of Table I highlight that

LSTM-QGAN achieves a significant reduction: a 5× decrease

in qubit counts, a 5× decrease in one-qubit gates (1QG), and

a 12× decrease in two-qubit gates (2QG).

V. EXPERIMENTS AND RESULTS

A. Experimental Setup
Schemes and Benchmarks. We compare LSTM-

QGAN with PatchGAN [12] using the MNIST dataset, which

Authorized licensed use limited to: Indiana University. Downloaded on April 25,2025 at 01:57:39 UTC from IEEE Xplore.  Restrictions apply. 
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(a) Visual comparison of generated MNIST images (b) FID comparison of generated MNIST images

Fig. 6. Comparisons between images generated by PatchGAN and LSTM-QGAN.

consists of 28×28 grayscale images of handwritten digits

0∼9. PatchGAN is implemented according to its original

design [12], utilizing 5 qubits and 56 sub-generators. Each

sub-generator produces a 14-pixel patch, and together, the 56

sub-generators generate the entire 784-pixel MNIST image.

For LSTM-QGAN, we implement the generator with two

QLSTM layers, each containing 4 QNNs with 7 qubits. At

each time step, the LSTM-QGAN generates a 196-pixel

patch, requiring 4 time steps to produce a complete MNIST

image.

Simulation. All QGANs are implemented with the Pen-

nyLane and Torchquantum libraries. PatchGAN and LSTM-

QGAN are trained using the ADAM optimizer with a 2e-4

learning rate, a 128 batch size, and 1000 epochs. Quantum

circuits are run on the NISQ IBM_kyoto computer [24].

Evaluation metrics. We evaluate the generated images

using both qualitative (e.g., visual inspection) and quantitative

methods. For quantitative assessment, we employ the Fréchet

Inception Distance (FID), a widely recognized metric for

measuring image similarity in GANs [25]. A lower FID score

indicates a closer feature distance between real and generated

images, signifying higher quality. In our experiments, we

randomly select 500 real images and 500 generated images

for comparison.

B. Results and Analysis

Comparison of Image Visual Quality. Figure 6(a) presents

a visual comparison between the images generated by Patch-

GAN and LSTM-QGAN. PatchGAN demonstrates limited

generation capabilities, as the outlines of the digits (0∼9) are

only vaguely identifiable, with noticeable white noise in the

background. Additionally, the clarity of more complex digits,

such as 4, 5, and 9, is particularly low, further highlighting its

deficiencies. In contrast, LSTM-QGAN demonstrates superior

image generation, producing sharper and more distinct digits

with minimal noise, underscoring its enhanced capability in

generating high-quality images.

Comparison of Image FID Scores. Figure 6(b) compares

the FID scores of images generated by PatchGAN and LSTM-

QGAN across different digit classes. The FID scores vary

between the two models depending on the complexity and

distinctiveness of each digit. Overall, LSTM-QGAN achieves

lower FID scores than PatchGAN, indicating higher quality in

the generated images. Specifically, PatchGAN shows signif-

icant variability, with its highest FID score at 445.22 (class
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Fig. 7. Impact of loss functions on convergence.

0) and its lowest at 246.56 (class 4). In contrast, LSTM-

QGAN consistently outperforms PatchGAN, with its highest

FID score at 275.58 (class 7) and its lowest at 134.31 (class 1).

On average, PatchGAN’s FID score is 318.02, while LSTM-

QGAN achieves a significantly lower average FID score of

193.28.

Impact of Loss Function. Figure 7 illustrates the impact

of Wasserstein loss and binary cross-entropy (BCE) loss on

the training convergence of LSTM-QGAN, comparing both

generator loss (i.e., GL) and discriminator loss (i.e., DL).

With Wasserstein loss, the DL initially decreases while GL

increases, ultimately leading to convergence as training pro-

gresses. Conversely, with BCE loss, GL rapidly increases

after several training cycles and stabilizes around 100, while

DL drops sharply—indicating mode collapse, a known issue

in GAN training. Although LSTM-QGAN with BCE loss

can stabilize, achieving full convergence may require more

sophisticated techniques. In contrast, Wasserstein loss offers

greater training stability, resulting in smoother convergence.

VI. CONCLUSION

This work presents LSTM-QGAN, a quantum generative

adversarial network (QGAN) architecture that overcomes key

limitations in existing models. By eliminating reliance on

principal component analysis (PCA) and integrating quantum

long short-term memory (QLSTM), LSTM-QGAN achieves

scalable performance with efficient resource use. As the first

QGAN to incorporate QLSTM, this approach represents a

significant advancement likely to inspire further research.
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