
JustQ: Automated Deployment of Fair and Accurate
Quantum Neural Networks

Ruhan Wang1, Fahiz Baba-Yara2, Fan Chen1

1Luddy School of Informatics, Computing, and Engineering, 2Kelley School of Business
Indiana University, Bloomington, IN, USA
E-mail: {ruhwang, fababa, fc7}@iu.edu

Abstract—Despite the success of Quantum Neural Networks
(QNNs) in decision-making systems, their fairness remains un-
explored, as the focus primarily lies on accuracy. This work
conducts a design space exploration, unveiling QNN unfairness,
and highlighting the significant influence of QNN deployment and
quantum noise on accuracy and fairness. To effectively navigate
the vast QNN deployment design space, we propose JustQ, a
framework for deploying fair and accurate QNNs on NISQ com-
puters. It includes a complete NISQ error model, reinforcement
learning-based deployment, and a flexible optimization objective
incorporating both fairness and accuracy. Experimental results
show JustQ outperforms previous methods, achieving superior
accuracy and fairness. This work pioneers fair QNN design on
NISQ computers, paving the way for future investigations.

Index Terms—Quantum neural networks, fairness, accuracy,
noisy intermediate-scale quantum, reinforcement learning

I. INTRODUCTION

Motivation. Quantum Neural Networks (QNNs) [1]–[5]

have become powerful tools for automated decision-making,

spanning finance [6], healthcare [7], and drug discovery [8].

While classical machine learning models are known to ex-

hibit susceptibility to social biases [9], current works on

QNNs predominantly emphasize accuracy [1]–[4] with limited

discussion on fairness [5]. We summarize related works in

Table I and identify three challenges. First, none of the prior

work performed a holistic evaluation of the accuracy and

fairness of QNNs. Second, existing work lacks a comprehen-

sive method for modeling and measuring quantum noises in

Noisy Intermediate-Scale Quantum (NISQ) computers [10],

despite their significant impact on accuracy and fairness. Third,
prior efforts solely focused on noise-aware training [2]–[4].

However, our preliminary studies show that accuracy gains

from training can be compromised by imprudent and often

unknown synthesis settings during the deployment phase.
Contributions. This work introduces a novel framework,

JustQ, which addresses fairness and accuracy in QNNs simul-

taneously. Our contributions are as follows:
• We explored the design space using IBM quantum com-

puters and found that: (1) QNN deployment has a greater

impact on accuracy and fairness than training, and (2) QNN

accuracy and fairness are closely linked during deployment,

highlighting the need for automated exploration methods.

• We present the JustQ framework with three components: (1)

an NISQ error model and measurement method; (2) a rein-

forcement learning-based approach for automated, fair, and

accurate QNN deployment; and (3) a flexible optimization

objective combining fairness and accuracy in a customizable

reward function for diverse application goals.

TABLE I
A SUMMARY OF RELATED WORKS.

Scheme Metric Error Model Design Phase
Acc. Fairness Real Device Meas Method Train. Deploy.

C14 [1]

� �

� �

� �
QMLP [2] � �
DATE22 [3] � �
DAC22 [4] � �
CAV22 [5] � � � �
JustQ � � � � � �

• We evaluate JustQ on various QNNs and show that JustQ

surpasses prior deployment methods in both accuracy and

fairness. Furthermore, JustQ’s adaptable optimization objec-

tive empowers users to tailor it to specific application needs.

Limitations and Scope. QNNs have demonstrated advan-

tages over their classical counterparts in theory [11], [12] and

small-scale practical implementations [13], [14]. In this work,

we initiate research on fair and accurate QNNs using IBM

quantum computers, paving the way for future investigations in

this domain. Machine learning fairness is an evolving research

area lacking a widely agreed-upon definition. We adopt the

concept of individual fairness [9], which advocates treating

similar individuals equitably for similar outcomes. The limi-

tation on the implementation scale (up to 27 qubits) is due to

current NISQ technology capabilities. As technology continues

to advance [10], the implementation scale and performance

enhancement of JustQ will also improve.

II. PRELIMINARY

A. NISQ Hardware
NISQ noises [15]–[17] lead to readout, gate, and crosstalk

errors. Readout errors refer to incorrect qubit measurement,

e.g., reading |1〉 while the qubit is in the |0〉 state and

vice versa. They are modeled as a 2×2 probability matrix

and mitigated with readout-error correction [15]. Gate errors

are dominated by 2-qubit gates and modeled as depolarizing

noise [16]: Err(ρ) = (1-p)ρ + p I
2n , where p is the system error

rate depending on NISQ computers and the circuit. Err(ρ), ρ,
and n refer to the noise channel, the noiseless density matrix,

and the qubit count, respectively. Crosstalk errors result from
non-ideal qubit interactions in systems with over 10 qubits,

causing deviations from the ideal behavior of quantum gates

and circuits. The occurrence and impact of crosstalk are

influenced by the total number and spatial arrangement of 2-

qubit gates within the circuit [17].

Limitations in Prior Models. Prior noise-aware QNNs [2]–

[4] focused on gate errors but ignored crosstalk errors. Recent

979-8-3503-9354-5/24/$31.00 ©2024 IEEE

2B-1

121

20
24

 2
9t

h
A

si
a

an
d

So
ut

h
Pa

ci
fic

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(A
SP

-D
A

C
) |

 9
79

-8
-3

50
3-

93
54

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SP
-D

A
C

58
78

0.
20

24
.1

04
73

82
9

Authorized licensed use limited to: Indiana University. Downloaded on April 25,2025 at 12:37:13 UTC from IEEE Xplore. Restrictions apply.

U1

U2

Encoder VQC

q3

q2

q1

q0

E(x)

M
M
M
M

0/1
0/1

0/1
0/1

U1

U2

(a)�A�standard�QNN

(b)�Partition

(c)�Synthesis

U*1

U*2

(d)�Synthesized�
QNN�Q’

Q

Fig. 1. A standard QNN and its approximate synthesis.

work [17] shows that crosstalk can cause a 20% increase

in phase-flip error and a 33% decrease in gate coherence in

a small 9-qubit circuit on the IBM_Melbourne computer.

Moreover, none of the previous work [2]–[4] provides de-

tails on error estimation and measurement, which are time-

consuming and can introduce significant latency overhead.

B. Quantum Neural Networks
QNNs [1]–[4] are a sequence of quantum gates that operate

on a set qubits. As Figure 1(a) shows, a QNN comprises a data

encoder, E(x), embeding a classical input x into a quantum

state |x〉, a Variational Quantum Circuit (VQC), Q, generating

the output state, and a measurement layer, M , mapping the

output quantum state to a classical vector.

QNN Fairness. We consider individual fairness [5] for equi-
table treatment of similar inputs, ensuring unbiased outcomes.

A QNN is fair if and only if no (ε, δ)-bias pairs exist in

the dataset T . Such a pair is characterized by the input state

distance between E(xi) and E(xj) being within a threshold

ε, while the difference between their output Q(E(xi)) and

Q(E(xj)) exceeds a threshold δ, formulated as:

[D(E(xi), E(xj)) ≤ ε]∧ [d(Q(E(xi)),Q(E(xj))) ≥ δ] (1)
where 1≥ε,δ>0 and D(·), d(·) are distance metrics applied

to the input and output quantum spaces. [5] has proved that if

D(·) and d(·) are respectively specified as trace distance and

measurement outcome distribution, then the following holds

d(Q(E(xi)),Q(E(xj)))
︸ ︷︷ ︸

output measurement distance

≤ K ·D(E(xi), E(xj))
︸ ︷︷ ︸

input trace distance

(2)

where K (0<K≤1) is the Lipschitz constant that characterizes
a QNN circuit on a NISQ device. The smallest K, denoted as

K∗, sets the upper limit on the ratio of δ to ε for a fair QNN.

A smallerK∗ indicates a more fair QNN. A QNN is (ε, δ)-fair
if and only if δ ≥ K∗ε. Consider a noiseless QNN, Q, and

its noisy counterpart QErr, which includes only depolarizing

noise with an error rate of p. Let K∗ and K∗Err respectively

represent the Lipschitz constants of Q and QErr, we have

K∗Err = (1− p) ·K∗ (3)

Based on Equations 2 and 3, we can utilize p as a proxy for

fairness if noises in a synthesized QNN circuit on a particular

NISQ device can be unified as depolarizing noise. Note that

K∗ can be calculated based on p [5] to quantify the unfairness

of a QNN. For simplicity, this work only presents the measured

p as a proxy for fairness and omits the K∗ calculations.

Training & Deployment. QNNs are implemented using

multi-qubit gates and trained via hybrid quantum-classical

methods. Optimized QNNs are then deployed onto NISQ

devices, such as IBM computers, which support a specific

0.2

0.6

1

0.2

0.6

1

A
cc

ur
ac

y 0.875

�
���

0

4

8

(a)
0

8

N
or

m
al

iz
ed

O

ut
pu

t D
is

.

4

1

(b)
Fig. 2. (a) Output distance and (b) accuracy of synthesized QNNs on
IBM_Almaden (HPW: hours-per-week, Edu: education; CapG: capital-gain).

native gate set consisting of two 1-qubit gates (U2, U3)
and one 2-qubit gate (CNOT). Current 2-qubit gates, with

an error rate of 10−3 and a coherence time of ten to a

hundred microseconds [18], lead to considerable performance

degradation. To address this, quantum compilers [19], [20]

use approximate synthesis to reduce 2-qubit gate number (i.e.,

N2q) and circuit depth in the synthesized QNN (i.e., Q
′
)

while ensuring that the unitary difference between Q
′
and the

uncompiled Q remains within a predefined budget denoted

as εsyn. As shown in Figure 1, approximate synthesis has

three steps: (1) The original Q is partitioned into blocks (i.e.,

U1, · · · , UN) with each block having at most Sblk (e.g.,

3) qubits. (2) The compiler searches for circuit candidates

with a minimal N2q within an εsyn budget over a tree [19].

It generates a list of acceptable compiled circuits for each

individual partition, e.g., {U11 , U21 , · · · , Un1
1 } for U1. Note that

the number of synthesized circuits can vary across different

partitions. (3) One compiled circuit is selected from the

candidate list of each partition and sequentially recombined

to form the synthesized QNN Q
′
.

Limitations in Prior QNNs. We conducted a preliminary

study to evaluate fairness/accuracy of the best QNN circuit

generated by noise-aware training [4] using Adult Income [21]
dataset. We compiled the circuit using default settings in

BQSKit [19], [20]. We then selected data pairs (xi, xj)

with a unit input distance D(E(xi), E(xj)), resulting from

differences within a single feature group, e.g., age or hour-
per-week (HPW). We normalized the output distance to that

of HPW and presented the results in Figure 2(a). The results
reveal unfairness between different feature groups: the same
unit difference in Sex and HPW results in a 7.8× difference in
output distance. We also compile the QNN with various εsyn
and report the averaged accuracy in Figure 2(b) where the

blue line denotes the maximal/minimal accuracy achieved for

each εsyn, while the red line is the expected ideal accuracy.

Our observation reveals significant reductions and variations
in accuracy after QNN synthesis, emphasizing the critical
importance of QNN deployment over training in achieving
model accuracy. This is due to the potential compromise of

accuracy gains from training by imprudent synthesis settings,

which are often unknown to average end-users.

C. Reinforcement Learning
We use deep Q-learning (DQL) [22] that combines a

lightweight reinforcement learning (RL) model with deep

neural networks (DNNs) to search for the twin objectives of

fairness and accuracy in QNN deployment, following its recent

success in solving multi-constrained optimization problems in

resource-limited scenarios [23].

2B-1

122Authorized licensed use limited to: Indiana University. Downloaded on April 25,2025 at 12:37:13 UTC from IEEE Xplore. Restrictions apply.

0.5

0.6

0.7

0.8

0 5 10 15 20 2550.50

0.60

0.80

A
cc

ur
ac

y

10 20 25
Circuit Depth

0.70

5
(d)

15
0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25
0.1
0.2
0.3
0.4

0.6
Fa

ir
ne

ss

5 10 15 20 25
CNOT Gate #

0.5

(a)

Melbourne
Guadalupe

Almaden
Kolkata

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

0.2
0.3
0.4

0.6

Fa
ir

ne
ss

0.1

0.5

(b)
5 10 15 20 25
Circuit Depth

y

0.6

0.65

0.7

0.75

0.8

0 5 10 15 20 25
0.60

0.65

0.70

0.80

A
cc

ur
ac

y

5 10 15 20 25
CNOT Gate #

(c)

0.75

Fig. 3. QNN fairness vs. (a) CNOT gate # and (b) circuit depth; QNN accuracy vs. (c) CNOT gate # and (d) circuit depth.

st st+1

at Q(st,at) Q'(st+1,at+1)

rtTa
ke

 a
ct

io
n

at
,

 u
pd

at
e

en
vi

ro
nm

en
t

EnvironmentEnvironment

State GeneratorState Generator

Q (Policy
Network)

Q' (Target
Network)

Loss EvaluationLoss EvaluationAgentAgent

up
da

te
Fig. 4. A standard DQL model.

Figure 4 shows a stan-

dard DQL model. A current

state st guides the selection
of action at from the action

space A(st) using a policy

DNN. A target DNN, mir-

roring the policy DNN, aids

in updating policy network

parameters. The policy DNN takes st as input and outputs

action values for all possible actions, with Qmax(st, at) in-

dicating the best choice. Upon taking action at, the agent

receives a reward rt and transitions to next state st+1. Accurate
prediction of Q(st, at) by the policy DNN satisfies Equation 4.

The loss function in Equation 5 is employed for updating the

parameters of both the policy and target DNNs.

Qmax(st, at) = Q
′
max(st+1, at+1) + rt (4)

Loss = [r + γ·Q′
max(st+1, at+1)−Qmax(st, at)]

2 (5)

Challenges in RL-based QNN Deployment. We are the first

to apply DQL in QNN deployment. Our work identifies the

following challenges and provides corresponding solutions.

1) States Specification. The agent’s state tensors must contain

essential information to determine block connections that

meet fairness and accuracy requirements. However, gener-

ating a comprehensive and high-quality state representation

for QNN circuit deployment is a non-trivial task.

2) Action Specification. Each agent action requires an ex-

haustive search in the complete action space for the current

state. In addition, the action specification must align with

the input/output structure of the policy/target DNN, ensur-

ing a constant size for the state representation and action

specification throughout the design process.

3) Reward Quantification. Balancing fairness and accuracy

for different QNN designs is challenging, particularly when

the QNN is only a partial circuit in the synthesis process.

III. DESIGN SPACE EXPLORATION

A. Design Space Complexity
We explore the design space complexity by performing

approximate synthesis [19], [20] using four state-of-the-arts

QNNs [1]–[4] onto IBM_Almaden. We adjust the block size

Sblk and threshold εsyn to control the number of generated

synthesis blocks and the size of the search space. Increasing

Sblk and decreasing εsyn result in a smaller search space.

Table II shows the results using settings of Sblk=2, εsyn=10
−2,

and Sblk=3, εsyn=10
−5. It is worth mentioning that the results

TABLE II
COMPARISON ON DESIGN SPACE COMPLEXITY.

QNNs Config. Space Acc. Fairness
Sblk εsyn

C14 [1]
2 1E-2 43,046,721 0.764 0.3488
3 1E-5 729 0.724 0.4801

QMLP [2]
2 1E-2 43,046,721 0.772 0.5126
3 1E-5 729 0.756 0.4923

DATE22 [3]
2 1E-2 98,304 0.624 0.4992
3 1E-5 6,561 0.764 0.4697

DAC22 [4]
2 1E-2 43,046,721 0.748 0.3293
3 1E-5 6,561 0.742 0.4985

of DATE22 [3] deviate from the other three QNN circuits due

to its unique circuit, using CNOT gate instead of parameterized

entangled gates found in the other QNNs [1], [2], [4]. Overall,

we observe significant differences in the search space for

varying Sblk and εsyn. While reducing the search space

effectively reduces the search time, circuits obtained through

a smaller search space generally perform worse than those

obtained through a larger search space. Therefore, the vast
complexity of the design space in practical QNN synthesis
poses a significant challenge, requiring automated and effi-
cient exploration strategies.
B. Fairness and Accuracy in Synthesized QNNs
We perform noise-aware training [4] and approximate syn-

thesis [19], [20] using a 8-qubit QNN [2]. The target devices

are IBM_Melbourne and IBM_Guadalupe. To investi-

gate the impact of CNOT numbers, we randomly selected

a compiled circuit and iteratively reduced its CNOT count

by one, while ensuring it remained within the εsyn budget.

Simultaneously, we recorded the corresponding fairness and

accuracy measurements. We explore the impact of circuit depth

caused by CNOT displacement by measuring fairness/accuracy

for synthesized QNNs with varying depths. We repeated

experiments 100 times and report the averaged results.

To evaluate QNN fairness, we utilize the measured noise

error rate, p, on the target NISQ device for each synthesized

circuit. Despite variations among NISQ computers, we observe

a consistent monotonic increase in QNN fairness with higher

CNOT count and circuit depth, as demonstrated in Figure 3(a)-

(b). The QNN accuracy is intricately tied to both the CNOT
count and circuit depth. Figure 3(c) highlights that the optimal

accuracy occurs at a middle sweet spot: exact synthesized

circuits with 32 CNOT gates introduce error-prone 2-qubit

gates, while drastically reducing CNOT gates (e.g., to 5)

enlarges the unitary difference, both leading to a decrease

in accuracy. Figure 3(d) demonstrates that, in most cases,

reducing circuit depth enhances accuracy by operating within

2B-1

123Authorized licensed use limited to: Indiana University. Downloaded on April 25,2025 at 12:37:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. The JustQ framework. Left: the overall architecture. Middle and Right: functional blocks in JustQ: (a) state generator; (b) reward generator.

the qubit coherence time. However, interestingly, we observe

a suboptimal spot across all IBM computers, with some

instances (e.g., the 20-qubit IBM_Almaden) achieving the

best accuracy at certain circuit depths. In conclusion, existing
compilers prioritize minimizing the CNOT gate count under
an εsyn budget. However, our findings demonstrate that the
compiled QNN circuits exhibit substantial fairness and accu-
racy variations, as they are intricately correlated with both the
CNOT gate number and circuit depth. These critical factors,
previously overlooked by compilers, significantly influence the
final performance of the compiled circuits.

IV. JUSTQ

The relationship between QNN accuracy and fairness is

complex and influenced by synthesized circuit characteristics,

sometimes yielding contradictory results. The intricate design

space and limited quantum circuit synthesis knowledge pose

challenges for deploying fair and accurate QNNs on NISQ

devices. To address these challenges, we propose JustQ, a

DQL-based framework for automated fair and accurate QNN

deployment. It includes a complete NISQ noise model and

measurement method for precise noise assessment. Our frame-

work also offers a flexible optimization objective with a cus-

tomizable reward function, integrating fairness and accuracy

to accommodate diverse application goals.

A. The JustQ Framework

As illustrated in Figure 5, the proposed JustQ framework

primarily consists of a state generator, a reward generator,

and paired policy/target networks. The policy/target networks

are initialized using random parameters without prior train-

ing. The framework undergoes multiple exploration cycles.

Each cycle starts from a blank design, which represents

a completely disconnected synthesized QNN with multiple

partitions. Throughout these cycles, the framework iteratively

refines the blank design by taking actions, gradually shaping

it into an optimized QNN configuration.

Training Process. To initiate the exploration cycle, a

random circuit from the first QNN partition, e.g., U i
1, is

selected as the initial action. Subsequently, the policy network

produces a vector encompassing all possible actions that can

be taken in that region, i.e., connecting U i
1 with each candidate

synthesized circuit for U2. The overall reward is calculated,

and this information, along with state, action, and value esti-

mates, trains the neural network and updates the policy/target

networks. The exploration cycle iterates to optimize the design.

Once the search is complete, full system simulations are

conducted to verify and evaluate the design. In general, the

policy network generates coarse designs, while the target

network efficiently refines them based on prior knowledge,

continuously generating more optimal configurations. Unlike

traditional supervised learning, this framework doesn’t require

a training dataset; instead, the policy/target networks gradually

train themselves from past exploration cycles.
B. The JustQ Error Model and Measurement
Error Estimation. Prior research [2]–[5] focused on gate-

level noise while neglecting crosstalk errors. To address this,

we introduced a noise-estimation circuit [24] that integrates

both gate errors and crosstalk errors. Enhancing the method

further, we incorporated randomized compiling [25] to convert

incoherent errors to coherent errors, and quantum circuit engi-

neering [17] to account for the impact of CNOT displacement

on crosstalk errors. The key steps of our approach are as

follows: (1) Estimation Circuit Construction: We start with

a given QNN partition circuit, referred to as the target circuit.

Then, we construct an error estimation circuit by removing

all 1-qubit gates from the target circuit. This simplifies the

circuit, making it easily simulatable and measurable, as shown

in [24]. (2) Randomized Compiling and Circuit Engineering:
We utilize randomized compiling [25] to convert coherent

errors into incoherent errors, which involves inserting a layer

of randomized 1-qubit gates before and after each layer of 2-

qubit gates. To incorporate the impact of CNOT displacement

on crosstalk errors, we adopt the approach proposed in [17].

By varying the displacement of CNOT gates in each target

circuit and creating multiple circuits for later measurement,

we can effectively account for the impact of crosstalk errors

and enhance the error modeling of our QNNs.

Error Measurement. For each estimation circuit we syn-

thesize, we measure its error rate on the target NISQ computer.

Note that we exclude readout errors from our error model

because they are decoupled from the QNN circuits. However,

we adopt the IBM calibration errors and mitigate their nega-

tive impact on QNN performance using previously proposed

correction methods [15].

C. RL-based QNN Deployment

Representation of QNNs (States). In JustQ, each state

corresponds to a partial QNN circuit. The state tensor is

constructed to accurately predict the characteristics of the final

completed circuit. To achieve this, a natural choice is to utilize

quantum unitary matrices for the partial circuit as they offer

2B-1

124Authorized licensed use limited to: Indiana University. Downloaded on April 25,2025 at 12:37:13 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 35 40 45
0.0
0.3
0.6
0.9
1.2

Epoch

 C14 DAC22 DATE22 QMLP
Lo

ss

Fig. 6. Loss changes during the training process.

a complete representation of a quantum state. However, the

quantum unitary involves complex values, making it unsuitable

for direct processing by the policy/target network. Therefore,

we propose a state generator denoted as � in Figure 5. The

key idea is to split the complex-valued QNN unitary matrix

corresponding to the state into two parts: the real-valued tensor

and the imaginary-valued tensor. These two tensors are then

concatenated along the third dimension to form the input to the

policy/target networks. The output tensor of the action decision

network is sliced based on the current state’s action space, and

the index of the maximum value in this slice represents the

action to be taken in the current state.

Representation of Block Selection (Actions). To meet the

requirement of a constant-sized action specification throughout

the design process with an invariable DNN structure, we

sum up the candidate blocks from all partitions and use the

combined total as the output size for both the policy and target

networks. This approach guarantees that the size of the output

tensor remains constant, irrespective of the number of blocks

available for selection. In this setting, the action space for each

state is closely related to the block index corresponding to the

current state. For instance, when the current state is U∗1 , the
action space would be {U12 , U22 , · · · , Un2

2 }.
Flexible Optimization Goal (Reward). To ensure the

integration of both fairness and accuracy in QNN deployment,

a crucial aspect is designing a comprehensive reward function

that guides the search effectively. To accommodate diverse

design goals for various applications, we formulate a reward

function that combines both fairness and accuracy while

maintaining flexibility through the use of scaling factors, as

shown in Equation 6. To strike a balance between fairness

and accuracy, QNN designers can adjust the values of (α,
β). For example, by setting (α=0.5, β=0.5), a balanced QNN

deployment is achieved, with equal emphasis on both fairness

and accuracy. Adjusting the values of α and β, such as setting

(α=0.6, β=0.4) or (α=0.4, β=0.6), we can prioritize either

fairness or accuracy over the other metric.

Reward = α · Fairness+ β ·Accuracy (6)

To maintain a predefined reward, we assess the accuracy

and fairness of the partial QNN circuit after each action. As

denoted as � in Figure 5, after each action, we measure the

circuit’s accuracy on real devices using the error model and

workflow from the previous section. This estimation provides

us with the error rate p, representing the fairness of the

current QNN circuit. The final reward is then determined by

combining both accuracy and fairness scores.

0 5 10 15 20 25 30 35 40 45
0.0
0.6
1.2
1.8
2.4

Q
va

lu
e

Epoch

 C14 DAC22 DATE22 QMLP

Fig. 7. Q-value changes during the training process.

V. EXPERIMENTAL METHODOLOGY

Datasets & Benchmarks. We use two multi-attribute financial

datasets: Adult Income [21] and German Credit [26], similar

to [5]. German Credit contains 20 attributes, but we selected

8 based on their influence on credit prediction. We obtained a

final dataset of 1000 loan applicants, split into 700 for training

and 300 for testing due to quantum resource limitations. For

Adult Income, we used a modified version with 8 attributes,

randomly sampling 800 data points for training and 300 for

testing. We evaluate JustQ using four recent QNNs: C14 [1],

QMLP [2], DATE22 [3], and DAC22 [4]. C14 is a VQC

designed for classification. QMLP utilizes a multilayer percep-

tron architecture. Both DATE22 and DAC22 employ adaptive

circuits to enhance their performance.

Synthesis and NISQ Computers. We use BQSKit [19],

[20] for approximate synthesis and Qiskit to deploy the

synthesized QNNs on NISQ devices. We run experiments

on six NISQ computers: 14-qubit IBM_Melbourne, 16-

qubit IBM_Guadalupe, 20-qubit IBM_Almaden, 20-qubit
IBM_Boeblingen, 27-qubit IBM_Auckland, and 27-

qubit IBM_Kolkata.
Reinforcement Learning. We use DQL with ResNet19 as the

policy/target network backbone. The search process comprises

1000 iterations to determine the optimal circuit. During RL

training, we set the learning rate and decay factor γ respec-

tively as 1e-3 and 0.99. We gradually decrease the exploration

probability for ε-greedy from 0.05 to a final value of 1e-2.

Schemes. We use the default approximate synthesis [19],

[20], denoted as Quest, as our baseline. We evaluate five

different JustQ configurations against Quest: (1) RL1: α=0.1,
β=0.9; (2) RL2: α=0.4, β=0.5; (3) RL3: α=0.5, β=0.5; (4)

RL4: α=0.6, β = 0.4; (5) RL5: α=0.9, β=0.1.

VI. RESULTS AND ANALYSIS

Trainability of JustQ. Figures 6 and 7 visualize the training

process, showing a consistent decrease in the loss and a steady

increase in the Q-value. For instance, in the case of QMLP,

the initial training loss value of 0.5356 decreased to 0.0865 by

the 20th iteration, while the Q-value increased from 0.31 to

1.8382. Beyond this point, both the loss and Q-value stabilize

without significant further changes. These results demonstrate

the effective trainability of the JustQ model for nontrivial QNN

deployment tasks.

Performance Results. We compared the performance of syn-

thesized circuits generated by the baseline Quest and JustQ on

all QNN benchmarks used in this study. Figure 8 and Figure 9

demonstrate that circuits generated by JustQ outperform those

from the baseline Quest compiler in terms of accuracy and

2B-1

125Authorized licensed use limited to: Indiana University. Downloaded on April 25,2025 at 12:37:13 UTC from IEEE Xplore. Restrictions apply.

0.5
0.6
0.7
0.8

QMLP C14 DAC22 DATE22
0.5
0.6
0.7
0.8

A
cc

ur
ac

y

QMLP C14 DAC22 DATE22

Quest
RL1
RL2
RL3
RL4
RL5

German Credit Dataset0.5
0.6
0.7
0.8

QMLP C14 DAC22 DATE22QMLP C14 DAC22 DATE22
0.5
0.6
0.7
0.8

A
cc

ur
ac

y

Adult Income Dataset

Fig. 8. Accuracy comparisons among different schemes.

0.3

0.5

0.7

QMLP C14 DAC22 DATE22
0.3

0.5

0.7

Fa
ir

ne
ss

QMLP C14 DAC22 DATE22
0.2

0.4

0.6

QMLP C14 DAC22 DATE22
0.2

0.4

0.6

Fa
ir

ne
ss

QMLP C14 DAC22 DATE22

Quest
RL1
RL2
RL3
RL4
RL5

German Credit DatasetAdult Income Dataset

Fig. 9. Fairness scores comparisons among different schemes.

0.4

0.6

0.8

QMLP C14 DAC22 DATE22QMLP C14 DAC22 DATE22
0.4

0.6

0.8

R
ew

ar
d

Quest JustQ Quest JustQ Quest JustQ Quest JustQ0.4

0.6

0.8

QMLP C14 DAC22 DATE22QMLP C14 DAC22 DATE22
0.4

0.6

0.8

R
ew

ar
d

Quest JustQ Quest JustQ Quest JustQ Quest JustQ

RL1
RL2
RL3
RL4
RL5

German Credit DatasetAdult Income Dataset

Fig. 10. Reward score comparisons among different schemes.

fairness metrics when appropriate weights (>0.5) are applied.

We also assess the trade-off between accuracy and fairness

by comparing the weighted results of the circuits, as shown in

Figure 10. The JustQ output circuit achieves a higher weighted

sum of accuracy and fairness compared to the Quest output
circuit. In summary, Quest underperforms due to its dual-

annealing-based minimization approach [19], which prioritizes

output distance over fairness and accuracy, leading to imbal-

anced circuits. In contrast, JustQ achieves a superior balance

between accuracy and fairness in the synthesized circuits.

The scaling weights in Equation 6 are crucial for balancing

accuracy and fairness. Results in Figure 10 show that higher

accuracy weight leads to higher accuracy but lower fairness

in the output circuit. For instance, DAC22 generated by Quest
achieved an accuracy of 0.656 and a fairness score of 0.5101

on Adult Income. When balancing accuracy and fairness with

(α=0.5, β=0.5), the resulting overall score is 0.583. However,

the JustQ approach, under the same scaling weights, achieved

an accuracy of 0.732 and a fairness score of 0.5546, resulting

in a higher overall score of 0.6433. Notably, the JustQ output

circuit outperformed the circuits generated by Quest algorithm
on all three metrics (i.e., accuracy, fairness, and weighted

result), highlighting the potential benefits of this approach.

VII. CONCLUSION

This work initiates research on fair and accurate QNNs by

exploring the design space. We emphasize the deployment

phase’s critical role and its influence on QNN accuracy and

fairness. We propose JustQ, a reinforcement learning-based

framework for QNN deployment. Experimental results demon-

strate JustQ’s superiority, producing synthesized QNN models

that excel in accuracy and fairness.

ACKNOWLEDGMENTS

This work was supported in part by NSF CAREER AWARD

CNS-2143120. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of grant

agencies or their contractors.

REFERENCES

[1] S. Sim et al., “Expressibility and entangling capability of parameterized
quantum circuits for hybrid quantum-classical algorithms,” in Advanced
Quantum Technologies, 2019.

[2] C. Chu et al., “QMLP: an error-tolerant nonlinear quantum MLP
architecture using parameterized two-qubit gates,” in ISLPED, 2022.

[3] T. Patel et al., “OPTIC: A practical quantum binary classifier for near-
term quantum computers,” in DATE, 2022.

[4] H. Wang et al., “Quantumnat: quantum noise-aware training with noise
injection, quantization and normalization,” in DAC, 2022.

[5] J. Guan et al., “Verifying fairness in quantum machine learning,” in
ICCAV, 2022.

[6] S. Focardi et al., “Quantum option pricing and quantum finance,” The
Journal of Derivatives, 2020.

[7] D. Parsons, “Possible medical and biomedical uses of quantum comput-
ing,” Neuroquantology, 2011.

[8] Y. Cao et al., “Potential of quantum computing for drug discovery,” IBM
Journal of Research and Development, 2018.

[9] C. Dwork et al., “Fairness through awareness,” in ITCS, 2012.
[10] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,

2018.
[11] D. Ristè et al., “Demonstration of quantum advantage in machine

learning,” npj Quantum Information, 2017.
[12] S. Lloyd et al., “Quantum Generative Adversarial Learning,” Phys. Rev.

Lett., 2018.
[13] É. Genois et al., “Quantum-tailored machine-learning characterization

of a superconducting qubit,” PRX Quantum, 2021.
[14] L. Hu et al., “Quantum generative adversarial learning in a supercon-

ducting quantum circuit,” Science advances, 2019.
[15] B. Nachman et al., “Unfolding quantum computer readout noise,” npj

Quantum Information, 2020.
[16] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information. Cambridge University Press, 2010.
[17] M. Ahsan et al., “Quantum circuit engineering for correcting coherent

noise,” Physical Review A, 2022.
[18] W. Huang et al., “Fidelity benchmarks for two-qubit gates in silicon,”

Nature, 2019.
[19] T. Patel et al., “Quest: systematically approximating quantum circuits

for higher output fidelity,” in ASPLOS, 2022.
[20] E. Younis et al., “Berkeley quantum synthesis toolkit (bqskit) v1,” tech.

rep., 2021.
[21] “Census Income,” 1996. DOI: 10.24432/C5S595.
[22] H. Hasselt, “Double q-learning,” NIPS, 2010.
[23] J. Fan et al., “A theoretical analysis of deep q-learning,” in Learning for

Dynamics and Control, 2020.
[24] M. Urbanek et al., “Mitigating depolarizing noise on quantum computers

with noise-estimation circuits,” Phys. Rev. Lett., 2021.
[25] J. J. Wallman and J. Emerson, “Noise tailoring for scalable quantum

computation via randomized compiling,” Physical Review A, 2016.
[26] H. Hofmann, “German Credit Data,” 1994. DOI: 10.24432/C5NC77.

2B-1

126Authorized licensed use limited to: Indiana University. Downloaded on April 25,2025 at 12:37:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

